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Abstract—Embedded medical devices, such as wearable de-
vices, are becoming increasingly common, but data from these
devices is both very private and highly vulnerable to theft. Data
needs to be collected from multiple devices to improve the effec-
tiveness of treatment. The medical devices, data processing sites
and intended care givers are often geographically distributed,
and operate on different time scales with collected data being
aggregated for days or months before analysis and usage. Current
approaches to data security do not provide a framework for
end-to-end protection, where data can always be encrypted but
still used effectively. We present a security architecture with
end-to-end encryption that supports 1) secure collection of data
from embedded medical devices, 2) protected computing on this
data in low-cost commodity cloud environment and 3) restricts
the delegation of access to this data to designated recipients.
The basis of the architecture comes from recent advances in
lattice encryption technologies. This approach leverages recent
breakthroughs in Homomorphic Encryption (HE) and Proxy
Re-Encryption (PRE) that would practically support specific
data aggregation, processing and distribution needs of a secure
medical data architecture. This architecture lowers health care
data system costs by securely outsourcing computation to cloud
computing environments while simultaneously reducing vulnera-
bilities to some of the most problematic security challenges such
as insider attacks and enables additional cost savings with lower-
cost embedded medical devices.

I. INTRODUCTION

Irrespective of regulation [1], medical data security, espe-

cially data from wearable devices, is a pressing concern. These

devices collect the most sensitive data about patients’ health

day-to-day, often with information about the patients’ physical

location and well being. The data also needs to be shared

and manipulated to be useful. The data is often collected

in a different location from where it is processed and the

processing location is often different from where health care

providers will interpret the results of processing. These data

collection, processing and interpretation steps may often occur

over different time scales with data sometimes being collected

every few minutes or even seconds in the case of detecting life-

threatening emergency alerts. Conversely, wearable medical
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devices may collect information over days or weeks that is

used for diagnostic purposes to decide on courses of treatment.

The pressing security concerns, coupled geographically and

temporally distributed data lifecycles, create challenges in

creating effective but secure and lower-cost information archi-

tectures. It can be difficult to balance security, effectiveness

and cost concerns as they are not necessarily monolithic and

tradeoffs between them are not always smooth. Current solu-

tions might protect data at times using encryption technologies

when data is in motion (when transmitted between storage

points) or at rest (when stored). Any substantive manipulation

of the data, up to now, has required the data to unencrypted.

This means that medical data processing could, until now, only

be done in trusted computing environments which are often

expensive to set up and maintain because they need to be

exclusively managed by highly trusted individuals, often in

dedicated facilities. Similarly, because encryption is used to

protect data when transmitted point-to-point, data is encrypted

only when the intended recipient of the data has been pre-

approved. There has been no way for medical data to be

encrypted at collection, and then routed later to intended

without prior coordination of encryption keys. This need for

prior coordination between encryption and decryption points

presents another possible set of vulnerabilities where data

thieves could have more opportunities to steal decryption keys.

Security and effectiveness trade-offs have preventing the wide-

spread use of low-cost cloud computing environments [2]

and large engineering effort has been needed to validate the

security of wearable medical devices that more easily integrate

with a larger security ecosystems [3]. All of these concerns

substantially raise the cost of treatment and reduce flexibility.

Based on this problem context, the contributions of this

paper are:

• A security model and concrete set of features that should

be used in reasoning about security architectures for

wearable medical devices.

• An end-to-end architecture for the secure collection,

processing and distribution of wearable medical devices

data based on recent theoretical and experimental results.

• Motivation for how this architecture enables the secure

use of cost-effective cloud computing environments and

lowers the costs of wearable medical devices.



Fig. 1. Architecture USe-Case Overview

The paper is organized as follows. In Section II we identify

the security model for the potential vulnerabilities we attempt

to security against and identify functional, security and cost

features that should be considered when evaluating an in-

formation security architecture for wearable medical devices.

We present our security architecture in Section III. Section

IV discusses initial experimental results. Section V discusses

related encrypted computing activities and applications. We

conclude the paper with a discussion of our insights, resulting

cost reduction and future work in Section VI.

II. SECURITY MODEL AND EVALUATION MEASURES

An overview of the use of our proposed secure architecture

is seen in Figure 1. In this figure, multiple body sensors send

their data to a network access point, notionally a smart phone

with data capability. The sensors could be any number of

devices such as heart rate monitors, smart prosthesis diagnos-

tics, hearing aids, etc... where data needs to be collected and

transmitted either periodically or in an event-driven manner.

The smart phone access point aggregates data from multiple

sensors as needed to save on bandwidth, and then transmit the

data on commodity data networks to a secure data store which

hosts the collected data. The data store runs any processing

needed on the collected data, such as diagnostic functions to

identify leading indicators of health issues. The data is then

sent to approved health care providers.

We envision the security architecture instantiated as a kind

of middleware, with adaptability in terms of underlying com-

munication protocols and upper-layer applications that need

to manipulate the data. The sensors could communicate with

the smart phone through any number of possible standard

protocols including BAN, Bluetooth, 802.11 or Zigbee. The

smart phone and data store could send data over, for example,

packet-switched networks such as the Internet, or on cellular

data networks, depending on network access. Similarly, the

datastore is notionally any server and could reside in a

proprietary data-center or in a cloud computing environment.

To set up the environment, point-to-point communication

approvals would need to be established, namely that:

• The sensors would need to be paired with the smart

phone.

• The smart phone access point would need to be config-

ured with the URL of IP address of the data store.

• The approval for care providers to receive data would

need to be received from the patient or the patient’s

legally approved representative.

Within the framework of standard information security

analysis approaches [4], systems are generally analyzed from

the perspective of the Confidentiality, Integrity and Availability

(CIA) triad. We particularly seek to address vulnerabilities

from the Confidentiality perspective, by enabling the data store

to 1) process data without access to the unencrypted data or

decryption keys and 2) grant access to the encrypted data

without being able to grant access to themselves. We address

these issues through a proposed architecture that incorporates

an end-to-end encryption capability where embedded medical

devices encrypt data at the sensor, and data is never accessible

unencrypted until it reaches its intended recipient. As such,

we design the architecture to address important data leakage

threats to better and more key security concerns [4].

Based on the discussed high-level use cases and security

goals, we identify several design measures with which to

evaluate and reason over our secure information architecture

designs tradeoffs. These design measures are general and are

usable to address other information security design challenges.

We organize these concerns in terms of security, functional-

ity/performance and cost design measures:

1) Security

a) Non-Interactive: We want to minimize or elimi-

nate any human interactions which could slow any

data sharing, processing or access delegation, or

lead to social engineering vulnerabilities.

b) Unencrypted Data: We want to minimize the

incidence of unencrypted data, even during data

processing if possible.

c) Access: As few (human or machine) participants as

possible should have any data access or the ability

to access decryption keys to decrypt data.

d) Encryption Work Factor: Any use of encryption

to secure data should provide an encryption work

factor roughly comparable that eliminates any prac-

tical opportunity to compromise confidentiality of

the encrypted data. For all practical purposes, this

means that the computational effort required to

break the encryption through brute force methods

has a work factor at least as high as AES-128, a

current encryption standard.

2) Functionality/Performance

a) Latency: The end-to-end delivery of source data

to eventual user should provide a workable end-

to-end latency. This measure is highly context de-

pendent. For long-term diagnostics this means that

the lag from data capture to care giver use could

have a latency of as much as a day, inclusive of



processing. For life-critical operations this latency

could need to be as low as seconds.

b) Expansion: Security technology such as encryp-

tion and error correcting codes often expand the

size of the representation of data. This expansion

should be minimized.

c) Wide Geographic Area: The capability should op-

erate with participants over a wide geographic area,

ideally trans-continental if not inter-continental

without an unacceptable degradation in latency.

d) Adaptability: The architecture should be easy to

adapt to multiple data formats, data networks and

data store frameworks.

e) Extensibility: The architecture should be able to

be extended as new capabilities are needed or

become practical, such as new methods to support

encrypted computing. Also, the technology should

be able to support different usage patterns, possibly

with data from other sources, such as from digital

health records.

3) Cost

a) Resource Efficient: The computational require-

ments required to support the architecture should

be as modest as possible, with little overhead due

to the use of encrypted processing.

b) Scalability: The capability should be able to sup-

port multiple users and participants and scale hori-

zontally to support all the users of enterprise sized

organizations.

c) Portable: The should be easily ported to multiple

commodity client and server types that are in broad

current use.

d) Usability: The capability should be easy to deploy,

manage an update.

III. SECURE INFORMATION ARCHITECTURE

We use end-to-end lattice encryption to form the basis

of our approach to realize our information architecture that

addresses the above measures to encrypt data at the sensor,

transmit the data to a cloud computing environment where

processing is done on the data while it is still encrypted, and

the encrypted results shared with intended recipients, without

ever decrypted the data or sharing decryption keys. Current

information architectures do not provide end-to-end encryption

capabilities, thus creating vulnerabilities such as to insider

attacks and creating an inability to lower costs by out-sourcing

computing to commodity cloud computing environments.

Lattice encryption is a relatively new family of encryption

technologies [5]. A key feature of lattice encryption technolo-

gies is that their security is based on the hardness of variants

of the ”Shortest Vector Problem” [6]. As a result, lattice en-

cryption schemes are generally considered post-quantum and

are secure against attacks even from adversaries with practical

quantum computing devices, in addition to adversaries with

classical computing devices [7].

Fig. 2. Secure Computation Outsourcing

Recent results have shown lattice encryption schemes which

have Homomorphic Encryption (HE) properties that make it

theoretically possible to securely perform arbitrary computa-

tions on encrypted data without sharing keys decrypting the

data [8]. To show the potential of this capability, consider

the HE concept of operations model in Figure 2 where

public encryption keys are given to a data source (such as a

sensor) who encrypts data. Only encrypted data is given to a

computation host without access to any decryption keys. The

computation host runs computations on the encrypted data.

The output of the host’s encrypted computation is shared with

a client who has a decryption key. When the client uses the

decryption key to decrypt the encrypted output, the resulting

decrypted data is the same result as if the computation run by

the host had been run on the original data without decryption.

Beyond recent encouraging HE results, we need to adapt

the existing schemes to support our information architecture.

Although recently discovered HE schemes can support ar-

bitrary computations on encrypted data, many computations

are impractically slow [9], but recent very positive results

indicate HE designs [10] and implementations [11], [12], [13]

are becoming increasingly practical. In fact, recent results

show the practicality of classes of computations relevant to

the processing that would need to be performed on wearable

medical device data [14], [15].

Despite the practicality of HE, recent HE schemes do not

have a native capability to delegate decryption other than by

using the highly unpreferred method of sharing decryption

keys. This changed recently with the demonstration of a

lattice-based Proxy Re-Encryption (PRE) [16] which pro-

vide an approach to delegate decryption ability. Based on

these results, we show in Subsection III-A applying HE to

practically support important subsets computations encrypted

wearable medical sensor data. In Subsection III-B we discuss

modifying and integrating HE and PRE to enable our end-to-

end encrypted architecture vision.



A. Secure Data Aggregation and Processing

Of particular interest to our architecture are variants of the

NTRU lattice encryption scheme [17] which was not origi-

nally design for homomorphic encryption properties. NTRU

spawned a family of related capabilities. See for example

the LTV scheme [10] which demonstrates a very general

and adaptable encrypted computing capability and provides

a stronger security model which aligns with our information

architecture vision. Early results on implementing a variant

of the LTV scheme with a more traditional FHE computation

model are shown in [13]. We build off the scheme in [13]

to discuss the applicability of these approaches to wearable

medical device processing.

We represent plaintext and ciphertext in our architecture as

arrays of unsigned integers. For n a power of 2, we define the

ring R = Z[x]/(xn+1) (i.e., integer polynomials modulo xn+
1) where, and for any positive integer q, define the ciphertext

space Rq = R/qR (i.e., integer polynomials modulo xn + 1,

with mod-q coefficients). The plaintext space is Rp for some

integer p ≥ 2. Concretely, we represent plaintext as a length-n
vector of integers modulus p. Typically p is much smaller than

264 and we typically choose p to be between 2 and 210. This

ciphertext c is an n-element vector of mod-q integers. We

concretely represent any ciphertext c in its evaluation, CRT

or double-CRT representation [18]. For the sake of simplicity,

power conservation and bandwidth limitations, we encrypt c at

the sensors in its CRT representation where c is an n-element

vector of mod-q integers. Typically n is set to 1024 and q is

represented with 32 for initial security as discussed in [13].

The basis of the key generation and encryption operations

in our scheme are as follows:

• KeyGen: choose a “short” f ∈ R such that f = 1 mod p
and f is invertible modulo q. The “short” elements f is

chosen from discrete Gaussian distributions. We output

the secret key sk = f . Similarly, we choose a “short”

g ∈ R from a discrete Gaussian distribution. We output

the public key pk = h = g · f−1 mod q .

• Enc(pk = h, µ ∈ Rp): choose a “short” r ∈ R and a

“short” m ∈ R such that m = µ mod p. The vectors r
and m′ are sampled from discrete Gaussian distributions

and m can be chosen as m = p · m′ + µ. We output

c = p · r · h+m mod q.

The formulation of the key generation and encryption opera-

tions are key for generalizing the scheme to incorporate a PRE

capability as in [16].

An important feature of the scheme is that enables the

efficient aggregation of encrypted data at the smart phone

access point to save on bandwidth. Each plaintext has n mod p
“entries” to host data in each ciphertext c. We could organize

the encoding of data into plaintext so that each sensor is

assigned a different “entry” in each ciphertext. That is, if

a heart rate monitor generates data every minute about the

average heart rate hr, this data could be placed in the first

plaintext entry as [hr, 0, 0, . . . , 0] and the array encrypted as

c1. If a prosthetic device generates failure alert data with a

signal pa, this data could be placed in the second plaintext

entry as [0, pa, 0, . . . , 0] and encrypted as c2. We continue

these assignments as needed to cover all wearable devices.

Because we are using a public key encryption scheme, the

smart phone access point could be assigned a public key

by the patient or even the patient’s primary care provider.

The smart phone could assign this public encryption key

to the wearable medical devices to use for encrypting data

so that the additive homomorphism would work. Because

all of the data is encrypted with the same encryption key,

data could be aggregated at the smart phone access point

in its encrypted state using an additive homomorphism of

the homomorphic encryption scheme. In this manner, each

cellular access point could aggregate data {c1, c2, . . . , cn} into

cagg = c1 + c2 + · · · + cn mod q. Hence, we leverage the

additive homomorphic properties of the encryption scheme to

greatly reduce bandwidth consumption and have the access

point regularly transmit cagg to the computation host. Reported

results in [13], [14] show that the encryption and ciphertext

aggregation operations can be performed in milliseconds,

leading to low latency due to these operations.

As aggregated ciphertexts {c1
agg

, c2
agg

, c3
agg

, . . .} are re-

ceived by the computation host, we may not be able to

practically perform every possible computation on the cipher-

text datasets, but it is possible to perform a wide array of

important operations such as linear regression and covariance

computations [15]. These operations have a long history

of use in basic statistical analyses which includes [19] as

examples. Reported results in [15] indicate that the linear

regression and covariance computations can be performed in

the order of minutes depending on the size of the dataset.

This experimental latency is non-trivial, indicating that the

secure computations approach might not be reasonable for

time-critical applications. However, statistical operations such

as linear regression and covariance computations are usually

only needed on large data sets which may need to be collected

over long periods of time, indicating that the natural use

cases for these encrypted operations are exactly when time

is not critical and waiting several minutes for the result of a

computation is not an issue.

These linear regression and covariance computations are

non-trivially deep in their circuit representation and the ci-

phertext as we specified them can not support encrypted

operations deeper than the simple addition operations. As such,

we would need to use a special, computationally expensive

operation on the ciphertext called bootstrapping. A recent

efficient bootstrapping design is discussed in [20] and early

implementations of it are discussed in [13]. As such, boot-

strapping operations could be performed on the aggregated

ciphertexts so that we can perform linear regression and

covariance computations on them.

Discussions of concrete proof-of-concept implementations

and parameter for these HE building blocks are given in [13],

[15] and security proofs of the scheme is discussed in [10]. We

can also leverage further representation and noise management

optimizations from [21] which are applicable to our design.



Fig. 3. Secure Access Redelegation

B. Secure Access Delegation

We can augment the public key HE encryption scheme

we a capability to delegate data access with PRE. There are

existing PRE designs based on lattice encryption [16]. The

basic concept of operations for PRE as applied to a medical

scenario is in Figure 3. The starting point for the use of the

PRE scheme is the ciphertext resulting from the encrypted

computations on an originating data stored as discussed in

Subsection III-A. To illustrate the use of PRE, suppose the

patient changes doctor and the new doctor needs access the

patient’s prior data. Rather than decrypt all of the patient’s

data at the first doctor’s cloud provider and re-encrypting the

data for the second doctor’s provider, the second doctor could

generate her own encryption/decryption key pair. The second

doctor, using an out-of-band communication path, could send

the new decryption key to the first doctor. There are existing

security mechanisms to do this, such as using PGP public

key encryption technologies. The first doctor then generates a

“re-encryption” key from the two decryption keys. This re-

encryption key is sent to the first doctor’s cloud provider.

The cloud provider, using the PRE ReEncryption operation,

converts the encrypted data using the re-encryption key into a

new encryption that could only be accessed with the second

doctor’s decryption key. None of the cloud providers could use

the re-encryption key to decrypt any of the data, meaning that

the first doctor is securely delegating decryption access to the

second doctor without requiring the decryption (or bandwidth

expensive downloading) of the patient data.

As can be seen in [16], the recent lattice-based PRE scheme

uses a nearly identical key generation and encryption algorithm

as the HE scheme in [10], [13], resulting in using the same

decryption process:

• Dec(sk = f, c ∈ Rq): compute b̄ = f · c mod q, and lift

it to the integer polynomial b ∈ R with coefficients in

[−q/2, q/2). Output µ = b mod p.

We parameterize applications of the cryptosystem so that

the decryption operation is performed when there is a small

ciphertext moduli. Experimental results from [16] indicate

that the re-encryption process, using current designs and

implementations runs in seconds, while [13] indicates that

the decryption process runs in milliseconds. The prototype

results indicate the basic feasibility of these approaches even

for time-critical applications. The primary difference between

the encryption and key generation processes between the HE

and PRE schemes are the concrete parameter selection process.

This indicates that the primary goal approach to concrete

parameter selection would be one of guaranteeing that the

relative ciphertext noise in the ciphertext is adequate for

decryption at all times, even after encrypted computations

are performed. This approach with parameter tradeoffs are

discussed in [13].

An added approach of our integrated HE and PRE ap-

proach is that the PRE scheme is adequately generic and

straightforward to generalize beyond wearable medical device

data. For example, we could support the secure access del-

egation of encrypted unstructured data. Furthermore, the re-

encryption process could conceivably be repeated indefinitely

with the proper scheduling of the computationally expensive

bootstrapping operation to manage the decryption noise in the

ciphertext.

IV. INITIAL EXPERIMENTATION

We performed an initial implementation of the lattice-based

PRE cryptosystem in C++ using a hierarchical software ar-

chitecture to enable rapid prototyping and simplify integration

with embedded hardware. The design is modular and includes

three major layers: (1) crypto, (2) lattice, and (3) arithmetic

(primitive math). Encapsulation, low inter-module coupling,

high intra-module cohesion, and maximum code reuse soft-

ware engineering guidelines are followed when making any

library changes. Lattice operations are decomposed into prim-

itive arithmetic operations on integers, vectors, and matrices

that are implemented in the primitive math layer. Along with

basic modular operations, this layer includes efficient low-

level modular mathemtic algorithms. The primitive math layer

provides a high level of modularity allowing the library user

to integrate with an existing low-level libraries or a custom

hardware-specific implementation, such as an FPGA.

We ran initial experimentation on a commodity laptop

and and obtained initial experimental runtime results that

correspond to encrypting 1kb of data in 6.5ms, decrypt 1kb

of data in 9.0ms and perform access delegation operations for

1kb of data in 52ms, all at a level of security with a work

factor roughly corresponding to AES-128.

V. RELATED WORK

There has been previous efforts to design network security

architectures to reduce the risk of data leakage for health care

organizations. Prime examples of this is [22], [23]. Unlike

this prior work, a key feature of our proposed approach is

the use of end-to-end encryption, thus greatly simplifying

interactions between intermediate data hosts while also greatly

reducing the risks of data leakage due to nefarious insiders and

compromised devices. Thus, endpoint protection and endpoint

encryption key management, as discussed in [22], [23] remain

a key aspect of a security architecture because the endpoints

are the only locations where data is accessible unencrypted.



However, we provide a more secure framework where data is

protected by encryption at all locations and points in time.

Prior efforts such as [24] have similarly looked at issues

of privacy-preserving data aggregation, but from an enterprise

perspective where large organizations, such as hospitals, per-

formed shared computations on sensitive data. Our architecture

focuses on patient-level data security that support embedded

mobile devices where bandwidth is an issue. However, the ar-

chitecture we have designed can be generalized to support the

private, enterprise-wide aggregation of patient level data, and

then support the privacy-preserving inter-enterprise aggrega-

tion of that data. See for example [10] which provides a more

general (but not experimentally evaluated) approach for data

aggregation where participants perform a joint computation

with results only accessible by common agreement.

VI. CONCLUSION

We presented a design for a secure information architecture

which provides end-to-end encryption to protect data at all

times. Experimental results have shown that our approach ad-

dresses many of the evaluation measures we present in Section

II, and our approach focuses on privacy and confidentiality

concerns. Our approach can be further augmented to provide

important Integrity and Availability protections which form

the other two legs of the CIA triad. For example, broad use of

legacy cryptographic signing methods would bolster integrity

and service replication would also bolster availability against

denial-of-service attacks, for example.

However, a major benefit of our end-to-end encryption

approach to provide confidentiality is that this scheme can be

securely run on commodity cloud computing environments,

and also greatly reduce the incidence of pernicious insider

attacks. For example, even with encrypted computing hosted

on proprietary servers, the encryption technologies limit the

users who have access to the data to only the system admin-

istrators who have decryption key access. Taken together, this

could greatly reduce the operational costs of highly regulated

industries such as health-care where regulatory compliance

restricts the ability to outsource computation to low cost cloud

computing environments.

Looking forward, as HE becomes more practically capa-

ble, it is possible to see more general computations being

practically supported in our architecture. For example, early

results [21] shows the homomorphic evaluation of the AES

circuits to “convert” AES encrypted data to HE representations

without sharing keys in the clear. This would be a tremendous

capability to increase the ability to integrate with broad

legacy systems and result in additional end-to-end security

capabilities.
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