Practical Implementations of Program Obfuscators
for Point Functions

Giovanni Di Crescenzo
Lisa Bahler, Brian Coan
Applied Communication Sciences
Basking Ridge, NJ, 07920, USA
Email: gdicrescenzo@appcomsci.com
Email: Ibahler@appcomsci.com
Email: bcoan@appcomsci.com

Abstract—Point function obfuscators have recently been shown
to be the first examples of program obfuscators provable under
hardness assumptions commonly used in cryptography. This
is remarkable, in light of early results in this area, showing
impossibility of a single obfuscation solution for all programs.
Point functions can be seen as functions that return 1 if the
input value is equal to a secret value stored in the program, and
0 otherwise. In this paper, we select representative point function
obfuscators from the literature, state their theoretical guarantees,
and report on their (slightly) optimized implementations. We
show that implementations of point function obfuscators, satis-
fying different obfuscation notions, can be used with practical
performance guarantees. Notable results due to our design and
implementation optimizations are very fast obfuscators based
on group theory, and obfuscators based on lattice theory with
running time below 10 seconds.

I. INTRODUCTION

The problem of program obfuscation is recently attracting a
significant amount of research in the cryptography literature,
as general solutions to this problem seem to have great
application potential. While early results in the area showed
impossibility with respect to constructing a single obfuscator
for all polynomial-time programs [1], most recent results
show the possibility of constructing obfuscators for restricted
families of functions, such as point functions (and extensions
of them), under commonly used hardness assumptions. In
the current research literature, there are a few theoretical
definitions of program obfuscation (see, e.g., [1], [2]), and
several constructions of point functions obfuscators based on
commonly used hardness assumptions, with different perfor-
mance and security features (see, e.g., [3], [4], [5], [2]).

In this paper, we first of all consider the theory-oriented def-
inition of program obfuscators and specialize it to a practice-
oriented version that is more suited for implementation, espe-
cially with respect to program obfuscators for a large class of
functions, including point functions. Then, we consider 4 of
the most used security notions for program obfuscators, based
on concepts like simulation of the adversary’s view or output,
and indistinguishability between an obfuscation of a real or
random secret. We sort out the intricate literature on this sub-
area to select 5 interesting point function obfuscators from [3],

Yuriy Polyakov, Kurt Rohloff
New Jersey Institute of Technology
Newark, NJ, 07102, USA
Email: polyakov@njit.edu
Email: rohloff @njit.edu

David B. Cousins
Raytheon BBN Technologies
Middletown, RI, 02842, USA

Email: dcousins@bbn.com

[4], [5], [2], including (a) at least one satisfying each of these
security notions; (b) at least one that is practically efficient and
provably secure based on group-thery and no random oracles;
(c) at least one based on a lattice-theory assumption, which
is resistant to quantum computation attacks. We then report
on their implementations, applying, wherever possible, both
design and coding optimizations. Among the former type of
optimizations, we replace the computations of certain values
with different and more efficient computations of almost
equally distributed values. In one case, we do not maintain a
similar distribution, but we can still perform the optimization
at the cost of a (much) stronger hardness assumption. Among
the second type of optimizations, in group-theory obfuscators,
we replace conventional modular exponentiation (often, the
most expensive operations in group-theoretic cryptography)
with modular exponentiation via pre-processing, combined
with Montgomery multiplication; in lattice-theory obfuscators,
we use parallelization and memory access techniques. Overall,
we show that implementations of point function obfuscators,
satisfying different obfuscation notions, can be used with prac-
tical performance guarantees. Notable results due to our design
and implementation optimizations are, based on inexpensive
computing resources:

1. a point function obfuscator based on a group-theory
hardness assumption, requiring storage less than 1MB,
and running time < 0.0139s for the obfuscated program;
2. a point function obfuscator (in 2 variants) based on a
lattice-theory hardness assumption, and satisfying:
running time < 2.6s and storage < 3.1GB, or
running time < 8s and storage < 68B,

where the latter variant is based on a strong hardness assump-
tion (which is true if a pseudo-random generator behaves like a
random oracles). Lessons learned include: (a) our definition of
program obfuscators, based on parameter passing, can be more
relevant to implementation than previous theoretical defini-
tions, based on maps between circuits; (b) shifting computation
to a pre-processing stage is a valid optimization paradigm for
typical applications, where the obfuscator is run much less
frequently than the obfuscated program.

II. DEFINITIONS AND PRELIMINARIES

We start this section by defining the family of point
functions. We then recall the theory-oriented definition of
program obfuscators, and modify it slightly into a practice-
oriented definition that better fits a large class of obfuscator
implementations (including ours for point functions).

Point functions. We consider families of functions as families
of maps from a domain to a range, where maps may be
parameterized by some values chosen according to some
distribution on a parameter set. Let pF' be a family of functions
fpar : Dom — Ran, where Dom = {0,1}", Ran = {0, 1},
and each function is parameterized by value par from a
parameter set Par = {0,1}", for some length parameter n.
We say that pF' is the family of point functions if on input
x € Dom, and secret value y € Par, the point function fp,,
returns 1 if x =y and 0 otherwise.

The theory-oriented definition. We say that a class of functions
F admits an obfuscator Obf if Obf is an efficient algorithm
that, on input a description of function f € F' and/or a circuit
Cy computing f € F, returns an (obfuscated) circuit oC',
such that the following two properties are satisfied:
1. (Almost exact functionality): For all f in F', and inputs
x, it holds that oCy(x) = f(x), except possibly with very
small probability.
2. (Polynomial slowdown): There exists a polynomial p
such that for all f in F, the running time of oC} is
< p(|Cy|), where |C| denotes the size of circuit CY.

A practice-oriented definition. In practice, it can be unneces-
sarily complex to implement an obfuscator taking as input a
circuit that computes function f, and returns as output another
(obfuscated) circuit. Therefore, we perform syntax changes
to obtain a definition involving simpler algorithms, from the
point of view of implementation, and semantically-equivalent
for a large class of function families, including point functions.
Specifically, we view an obfuscator as a pair of efficient
algorithms: an obfuscation generator genO and an obfuscation
evaluator evalO, with the following syntax. On input function
parameters fpar, including a description of function f € F,
genO returns generator output gpar. On input a description
of function f € F, generator output gpar, and evaluator input
x, evalO returns evaluator output y. The pair of algorithms
(genO, evalO) satisfies the following two properties:

1. (Almost exact functionality): For any f in F, with
function parameters fpar, and any input z, the equality
y = f(x) holds with probability 1—4¢, for some negligible
(or very small) §, where y is generated by the following
probabilistic steps:

gpar < genO(fpar),
y < evalO(gpar,).

2. (Polynomial slowdown): There exists a polynomial p
such that for all f in F, the running time of evalO is
< p(|f]), where |f| denotes the size of the (smallest)
boolean circuit computing f.

Security notions. Obfuscators (in both the theory-oriented
and practice-oriented definition) can satisfy any one of the

following different obfuscation security notions (which have
to be valid for all inputs, all efficient adversary algorithms,
and except with negligible probability):

1. adversary view black-box simulation [1]: the adver-
sary’s view of the (executable) program evalO(gpar, -)
can be produced by an efficient algorithm, called the
simulator, with black-box access to function f;

2. adversary output black-box simulation [1]: the adver-
sary’s output bit, on input the (executable) program
evalO(gpar, -), can be guessed by an efficient algorithm,
called the simulator, with black-box access to function f;

3. strong indistinguishability [2]: the adversary’s output,
on input an obfuscation of the program computing func-
tion f, is indistinguishable from the adversary’s output,
on input an obfuscation of the program computing a
random function from family F'.

4. real-vs-random indistinguishability [2]: the adversary
cannot distinguish an obfuscation of the program com-
puting function f from an obfuscation of the program
computing a random function from family F'.

It is not hard to see that an obfuscator satisfying notion 1 also
satisfies notions 2,3,4. Moreover, in [2] it was proved that, for
the family of point functions, an obfuscator satisfying notion
3 also satisfies notion 4, and that the converse may not hold.

Known Point Function Obfuscators. We summarize some
bibliography on point function obfuscators. A first obfuscator,
satisfying adversary view black-box simulation, was given in
[3], under the random oracle assumption. A previous result of
[4], although formulated as a oracle hashing scheme, can be
restated as an obfuscator satisfying strong indistinguishability
under the Decisional Diffie Hellman assumption. The obfus-
cator in [5] satisfies adversary output black-box simulation
under the existence of a strong type of one-way permutations.
Finally, more obfuscators were given in [2], and one of these,
based on any deterministic encryption scheme, satisfies real-
vs-random indistinguishability, and happens to have several
instantiations. This is due to the fact that deterministic encryp-
tion schemes can be built using lattices [6] or lossy trapdoor
functions [7], and the latter have been built using any one of
many group-theoretic assumptions (see, e.g., [8]). In the next
5 sections, we report on our implementation of (optimized
versions of) the obfuscators in [3], [4], [5], one obtained
combining [2], [7], [8], and two variants of one obtained
combining [2], [6].

III. AN OBFUSCATOR FROM CRYPTOGRAPHIC HASHING

We describe a first obfuscator, denoted as (genO;,evalO),
for the family of point functions, based on collision-resistant
hashing, modeled in the security analysis as random oracles.

Informal description: This construction is based on a technique
often used to store passwords in certain operating systems,
which has recently been re-interpreted as an obfuscation of the
password verification algorithm. Informally, it goes as follows.
The obfuscation generator first concatenates the secret value
with a sufficiently-long random string, then applies a crypto-
graphic hash function on this concatenated value, and finally

returns the computed hash tag. The obfuscation evaluator does
essentially the same computations on the input point (instead
of the secret value), and returns 1 if the computed hash tag is
equal to the hash tag returned by the obfuscation generator or
0 otherwise. A formal description follows.

Formal description: Let | denote string concatenation, and let
H denote a collision-resistant hash function (i.e., a function
mapping an arbitrary-length input string to a fixed-length
output string, such that it is hard for any efficient adversary
to find two preimages of the same function output). A formal
description of (genOq,evalO;) follows.

Input to genO;: security parameters 17, 1%, length parameter
1¢, secret value z € {0, 1},

Instructions for genO;:

1) Uniformly and independently choose r € {0, 1}
2) Compute v = H(r|z), where v € {0,1}"
3) Set gpar = (r,v) and return: gpar.

Input to evalO;: security parameter 17, length parameter 1°,
r € {0,1}% and v € {0,1}", input value = € {0,1}*
Instructions for evalO;:

1) compute v/ = H(r|x), where v’ € {0,1}"

2) if v/ = v return 1 else return 0

Theoretical result. Assuming H behaves like a random ora-
cle, (genO,evalO;) is an obfuscator of the family of point
functions, satisfying the adversary view black-box simulation
notion. In [3], it was first stated that if H behaves like a ran-
dom oracle, the value H(z) is a (not composable) obfuscation
of secret value z. The known technique of concatenating z
with a sufficiently long random string r before hashing makes
the scheme composable (i.e., secure even if executed many
times, on input related secret strings).

Parameter and primitive settings. Parameter ¢ can be set as
needed in the specific application. Parameter n can be set
as > 256, to guarantee security against generic “birthday-
type” collision attacks; our implementation sets it = 512.
Parameter ¢ is also set as = 512. H can be any cryptographic
hash function that is believed to be secure enough in light of
a significant amount of cryptanalysis efforts; thus, including
SHA?2 and SHA3. Our implementation uses SHA512, which
is SHA2 when set it to return n = 512 bits as output.

Performance analysis. We used a Dell 2950 processor (Intel(R)
Xeon(R) 8 cores: CPU E5405 @ 2.00GHz, 16GB RAM), with-
out parallelism. Performance numbers for our implementation
of (genO;, evalO;) are summarized below.

Table 1: Performance of scheme (genO;, evalO).

Input length ¢ | Time(genO1) | Time(evalOy)

2048 .0004 s .0002 s
16384 .0004 s .0002 s
131072 .0005 s .0003 s
1048576 .0012 s .0011 s

Not surprisingly, this obfuscator is extremely efficient, even
without optimizations. It is also useful as a comparison stan-

dard to evaluate the efficiency of other techniques. Still, con-
structions provably secure without the random oracle assump-
tion are much more desirable, when possible. Even though
practitioners sometimes rely on this assumption, we recall
that in [9], it was proved that the random oracle assumption
is in general unreliable, in the following sense: there are
specific cryptographic schemes secure assuming a random
oracle exists, but which become almost certainly insecure for
any instantiation of the random oracle from a polynomial-time
computable family of functions.

IV. AN OBFUSCATOR BASED ON DECISIONAL DH

In this section we describe an obfuscator, denoted as
(genOg,evalOs), for the family of point functions, based on the
Decisional Diffie-Hellman (DH) assumption. We first briefly
recall this assumption and the notions of faster computation of
modular exponentiation via preprocessing, and then describe
the obfuscator and its properties.

Decisional DH assumption: Let p and ¢ be primes such
that p = 2¢+ 1 and |gf = n + 1, and let g be a
generator of the g-order subgroup G, of Z,. The Deci-
sional DH problem asks to efficiently distinguish, given
p,q,9, a triple (g% mod p, g mod p, g°® mod p) from a triple
(9 mod p, g® mod p, g° mod p), for uniformly and indepen-
dently chosen elements a,b,c from Z,. The Decisional DH
assumption says that no efficient algorithm can distinguish
these two distributions, except with negligible probability.

Modular exponentiation with preprocessing: A pair of algo-
rithms (ModExpPreproc, ModExpCompute) is used to denote
a scheme for faster computation of modular exponentiation,
using preprocessing, defined as follows. On input a base u and
a modulus p, the algorithm ModExpPreproc computes some
auxiliary information auz,, ;. On input a base u, a modulus p,
an exponent d, and auxiliary information auz,,, the algorithm
ModExpCompute computes a value v, such that v = u% mod p.
Here, the goal is to use auxiliary information auz,, to
compute v faster than using a standard modular exponentiation
algorithm. A survey of such methods was given in [10]. Some
of these methods, and in particular the ones selected here,
reduce exponentiation to an arbitrary exponent to a sequence of
multiplications of simpler and pre-computed exponentiations
to specific exponents. We further optimized one of this method
by performing Montgomery modular multiplications.

Informal description: The basic idea of the scheme is as in
[4]: first, the obfuscation generator computes a first value
as a random power of generator g, a second value as an
exponentiation of the first value to the secret value, and returns
both values; then, the obfuscation evaluator exponentiates the
first value to the input point (instead of the secret value),
and returns 1 if the computed group element is equal to the
second value or O otherwise. We extend this basic idea by
replacing one modular exponentiation with a random subgroup
value computable using only one modular multiplication in the
chosen group, and by computing all other exponentiations by

carefully distributing the technique of exponentiation with pre-
processing between the obfuscation generator and evaluator.
We now give a formal description of (genOs,evalO-).
Input to genOs: length parameter 1™, secret value z € {0,1}"
Instructions for genQOs:

1) Randomly choose primes p, ¢ such that p = 2¢g+1, |q| =

n+1

2) Rand. choose generator g of g-order subgroup G, of Z,

3) Randomly choose u € G, and r € {0,...,¢ — 1};

4) Compute (aux,,) = ModExpPreproc(u, p)

5) Consider z as an element of G,

6) Compute v = ModExpCompute(u, p, z, auZy,)

7) Return: (auzy p, (u,v)).

Input to evalOy: security parameter 17, input value x €
{0,1}™ and the output from genO, containing auxiliary in-
formation aux,, for faster computation of exponentiation
modulo p in base u, and pair (u,v).
Instructions for evalOs:

1) Consider x as an element of G|,

2) Compute v' = ModExpCompute(u, p, T, GUTy, p)

3) If v/ = v then return: 1 else return: 0.

Theoretical result. Under the Decisional DH assumption,
(genOs,evalO,) is an obfuscator of the family of point func-
tions with (almost) uniformly distributed secret values, ac-
cording to strong indistinguishability obfuscation notion of [2]
(which generalizes the oracle hashing secrecy from [4]). This
follows by a generalization of the proof from [4] that the basic
version of this construction is an oracle hashing scheme for
random secret inputs under the Decisional DH assumption.

Parameter and primitive setting. Parameter n can be set
as = 2048, to guarantee security against known dis-
crete logarithm finding algorithms. In algorithm initO,,
to perform the generation of prime p, along with prime
g, and of generator g for the g-order subgroup G, of
Z,, we used procedures from the OpenSSL library. The
scheme (ModExpPreproc, ModExpCompute) can be any pair
of algorithms from [10]. In one such schemes, algorithm
ModExpPreproc precomputes exponentiations modulo p in the
same base u and for specific exponents (e.g., powers of 2 and
combinations of thems). Later, based on these pre-computed
values, algorithm ModExpCompute computes exponentiations
modulo p in the same base u and for an arbitrary exponent,
as a suitable sequence of multiplications modulo p.

Performance analysis. We used the same processor as for
the previously described obfuscator. Schemes used to perform
modular exponentiation with preprocessing exhibit tradeoffs
between stored data (containing pre-computed exponentiations
modulo specific exponents) and running time of the algorithm
(taking as input an arbitrary exponent). As an example tradeoff
setting, by keeping stored data less than 1MB, our implemen-

tation achieved:
1. runtime of .0734s for genO-, including .0465s for pre-
computation related to exponentiation and .0269s for the

rest of the obfuscation,;

2. runtime of .0139s for evalOs.

V. AN OBFUSCATOR BASED ON DISCRETE LOGARITHMS

In this section we present an obfuscator, denoted as
(genOg,evalO3), for the family of point functions, based on
the Discrete Logarithm assumption. First, we briefly recall
this assumption, and then describe the obfuscator and its
properties.

Discrete Logarithm assumption: Let p,q be primes such that
p=2¢+1,|g] =n+1, and let g be a generator of the
group Z,. The Discrete Logarithm problem asks to compute
x, given p,g,y such that y = ¢"modp, for a random
x € {0,...,p — 1}. The Discrete Logarithm assumption says
that no efficient algorithm can compute x with more than
negligible, in n, probability. For any = € {0,...,p — 1}, the
function MostSigBit(z) returns 0if 1 <z < (p—1)/2 and 1 if
(p—1)/2 < x < p—1. As for the obfuscator from Section IV,
we use scheme (ModExpPreproc, ModExpCompute) for faster
computation of modular exponentiation.

Informal and formal description: The starting idea of this
scheme is as in [5]. The obfuscation generator works in 3n
iterations, and computes at each iteration the output of a
one-way permutation on input the output from the previous
iteration, and a hard-core bit associated with the current
evaluation. The input in the first iteration is the secret value
z. At the end of all iterations, it returns the 3n hard-core bits.
The obfuscation evaluator performs the same computation of
3n hard-core bits, using as input in the first iteration the input
value z. At the end, it returns 1 if the computed hard-core bits
are equal to those returned by the obfuscation generator or 0
otherwise. We instantiate this basic idea by setting the one-
way permutation as exponentiation modulo a prime p (which
is often conjectured to be a one-way permutation over Z),
and by setting the hard-core bit as the most significant bit of
the discrete logarithm exponent. We then compute all mod-
ular exponentiations by carefully distributing the technique
of modular exponentiation with preprocessing between the
obfuscation generator and evaluator, similarly as done for our
obfuscator in Section IV.
We now give a formal description of (genOs,evalOg).

Input to genOs: length parameter 17, secret value z € {0,1}".

Instructions for genOs:

1) Randomly choose prime p € {0, 1}"+1

2) Randomly choose a generator g of Z,,

3) Compute aux,, = ModExpPreproc(g, p)

4) Consider z as an element of Z, and set wy = 2

5) Fori=1,...,3n,
compute w;41 = ModExpCompute(g, p, w;, auzg,p)
compute v; = MostSigBit(w;11)

6) Set v = (vi|--|vsn)

7) Return: (auzg p,v).

Input to evalO3: security parameter 17, input value = € {0, 1}
and the output from genO, containing auxiliary information
auxgy, p for faster computation of exponentiation modulo p in
base g, and 3n-bit vector v.

Instructions for evalOs:
1) Consider = as an element of Z and set w} = x
2) Fort=1,...,3n,
compute w; ; = ModExpCompute(g, p, w;, auzg,,)
compute v; = MostSigBit(w;,)
3) Set v’ = (0] - [v},)
4) If v' = v then return 1 else return: 0.

Theoretical results. Under the Discrete Logarithm assumption,
(genOj3,evalOs3) is an obfuscator of the family of point func-
tions, according to (a weak version of) the adversary output
black-box simulation notion [1]. This follows by combining
the following: (1) the proof in [5] that the generalized con-
struction is an obfuscator under a strong one-way permutation
assumption; (2) an instantiation of the strong one-way per-
mutation using exponentiation modulo a large prime, based
on the Discrete Logarithm assumption; (3) an instantiation
of the hard-core predicate for the one-way permutation using
the most significant bit, based on the Discrete Logarithm
assumption and a result from [11].

Parameter and primitive setting. To guarantee security against
known discrete logarithm finding algorithms, we set n = 2048.
In algorithm nitOs, to perform the generation of prime p and
generator g for Z!, we used procedures from the OpenSSL
library. The scheme (ModExpPreproc, ModExpCompute) can
be any scheme from [10].

Performance analysis. We used the same processor as for the
previously described obfuscators. Performance numbers for
our implementation of (genOs, evalO3), when n = 2048, are
summarized below.

Table 2: Performance of scheme (genOjs, evalOs).

Storage (in Bytes) £ | Time(genO3) | Time(evalOgz)

4160 110.5831 s 110.6973 s
648208 60.5575 s 60.9090 s
969776 455783 s 46.2278 s
2414944 28.7626 s 28.5533 s
20509168 19.8536 s 15.7760 s
65872016 29.4014 s 13.1885 s
120233632 44,9399 s 12.4013 s
219817984 76.4558 s 12.0895 s
406573616 141.5508 s 12.4832 s

Some of the theoretically desirable design features of this ob-
fuscator (e.g., the provability of a strong obfuscation property
under general hardness assumptions, and the production of
only one output bit per execution of the underlying crypto-
graphic primitive) certainly did not help achieving high per-
formance. Still, this is the only point function obfuscator that
satisfies this important obfuscation notion without a random
oracle assumption, and thus it was of interest to optimize it.
Using less than 0.22GB storage, we achieved just above 12s
of evaluation time (2nd to last line in Table 2), which is almost
one order of magnitude faster than the unoptimized evaluation
time (first line in Table 2).

VI. AN OBFUSCATOR FROM DECISIONAL RESIDUOSITY

In this section we present an obfuscator, denoted as
(gen0Oy,evalOQy), for the family of point functions, based on

the Decisional Residuosity (DR) assumption. We first briefly
recall this assumption, and then describe the obfuscator and
its properties.

DR assumption: Let p, q be (-bit primes and let N = pq. The
DR (modulo N?) problem asks to efficiently distinguish, given
N, arandom value in Z}, from a random n-th residue in Z ,
(i.e., a value y = =¥ mod N2, for some random z € Z5). The
DR assumption says that no efficient algorithm can distinguish
the two distributions, except with negligible probability.

Informal description: The starting idea of this scheme com-
bines results in [2], [7], where a point function obfuscator
is constructed from any deterministic encryption [2], and
the latter is constructed from any pairwise-independent hash
function and lossy trapdoor function [7]. Finally, we use
the construction of a lossy trapdoor function from [8], in
turn based on Damgaard-Jurik’s cryptosystem [12] (a variant
of Paillier’s cryptosystem [13]). The resulting obfuscation
evaluator only performs two modular exponentiations, and we
can compute one of them using preprocessing, similarly as
done in Section IV.

Formal description: For any x, let minH (x) denote the min
entropy of string x; that is, x is sampled from a distribution
that returns no value with probability > 27¢. We now give a
formal description of (genOg,evalOy).

Input to genQy: security parameter 1™, length parameter 1,
accuracy parameter e, secret value z € {0,1}¢, and min-
entropy parameter ¢, such that minH (z) > t > n + 2¢, and
{=(n—2)s+n/2—1, for some integer s > 1.
Instructions for genQOy:
1) Randomly choose primes p, g such that |p| = |¢| = n/2
2) Set N = pq
3) Randomly choose r € Z};
4) Set ¢ = (1 + N)rV" mod N*+!
5) Write z as (ug,u1), where ug € Zy= and u; € Z}
6) Randomly choose pairwise indep. hash function piH :
Lins X L3, = Lins X Ly,
7) Set (vo,v1) = piH (ug,u1), where vy € Zy- and vy €
Ziy
8) Set aux, ys+1 = ModExpPreproc(c, N*T1)
9) Set wy = ModExpCompute(c, N*, v, au, ys+1)
10) Set w = wo(v)N mod N*+!
11) Return: (¢,piH, €, ¢, N, s, w)

Input to evalOy: security parameter 17, length parameter 1,
input value x € {0, 1}¢ and the output from genO,, containing
min-entropy parameter ¢, pairwise independent hash function
piH, accuracy parameter €, auxiliary information auz,. s+
for faster computation of exponentiation modulo N**! in base
¢, value ¢ € Zys+1, integer N, integer s, and value w €
ZN5+1.
Instructions for evalOy:

1) Write z as (u(, u}), where ug € Zy- and uy € Z%

2) Set (v(,v}) = piHa(u,u}), where vy € Zy- and v] €

Ly
3) Set wj, = ModExpCompute(c, Nt v), auz, pet1)

4) Set w' = wh(v})N" mod N5+1
5) If w’ = w then return 1 else return 0.

Theoretical properties. Under the Decisional Residuosity
(modulo N**!) assumption, the pair (genOy,evalOy) is an
obfuscator for the family of point functions, according to the
real-vs-random obfuscation indistinguishability definition of
[2], and where the point has min entropy at least n + 2e.
This is obtained by combining the following: (1) the proof
in [2] that an obfuscator based on any deterministic encryp-
tion scheme satisfies the real-vs-random indistinguishability
obfuscation notion; (2) the result in [7] saying that a deter-
ministic encryption scheme can be obtained by applying a
pairwise-independent hash function to the input, and then a
lossy trapdoor function to its output; (3) the construction in
[8] of a lossy trapdoor function based on Damgaard-Jurik’s
cryptosystem [12] (a variant of Paillier’s cryptosystem [13]).
The pairwise-independent hash function is used to apply the
Leftover Hash Lemma from [14].

Parameter and primitive setting. Parameter s can be set
depending on what £ is needed in the specific application, and
our implementation only requires an essentially unrestricted
¢ < 231 Parameter € can be set as 128, to guarantee that the
statistical distance between the distribution of piH’s output
and a uniformly distributed string of the same length, is
< 27128 Parameter ¢ can be set as t = n + 2¢. For the
generation of n/2-bit primes p, g, we used procedures from
the OpenSSL library. Function p:H can be any pairwise-
independent hash function, including the 1-degree polynomial
over GF(2%) [15].

Performance analysis. We used the same processor as for
the previously described obfuscators. As an example setting
balancing a storage-computation tradeoff, by keeping less than
2.4MB stored data, our implementation achieved runtime of
.1317s for genO,4 and of .1005s for evalO,.

VII. AN OBFUSCATOR BASED ON THE LWR PROBLEM

In this section we present two variants of an obfuscator,
denoted as (genOs ;,evalOs;), for ¢ = 0,1, for the family
of point functions, based on a recently introduced problem
on lattices, called Learning With Rounding (LWR). We first
briefly recall this problem and its related assumption, and then
present the obfuscator and its properties.

Learning With Rounding assumption. Let AT denote the
transpose of matrix or vector A. Let p, ¢ be primes, and, for
any vector v = (v1, ..., Un), let |v], denote the vector whose
i-th element is the closest integer to (q/p)v;, fori =1,... ,m.
Let Zg™ denote the set of n x m-matrix with elements in
{0,...,¢ — 1}, and let Z? = Z!, for any positive integers
n, m. Consider the following two distributions:

L. Dy ={A« Zy™; s« L0 b= | ATs], : (A,b)}

2. Dy ={A < Zy™ b Ly (Ab)}
The LWR problem asks to efficiently distinguish, whether a
sample (A,b) came from Dy or D;. The LWR assumption
says that the distributions Dy and D; are indistinguishable
to any efficient algorithm, except with negligible probability.

In [16] it is conjectured that in light of known algorithmic
attacks, the LWR assumption seems to hold if ¢/p > /n is
an integer and p is polynomial in n.

A. Description of a First Variant

Informal Description. First, we use the obfuscator from any
deterministic encryption scheme, as described in [2], and then
instantiate the deterministic encryption scheme with the one
from [6], based on the Lattice with Rounding assumption. We
performed two design optimizations to this construction: first,
the key generation for the deterministic encryption algorithm
only generates the public key, and not the secret key, since the
latter is never used by the obfuscator; second, we generate a
uniformly distributed public key, instead of the one returned
by the scheme in [6], in turn based on lattice key generation
approaches from [17]. The latter simplification is possible
since the distribution of the public key was proved in [17]
to be statistically indistinguishable from uniform.

Formal description: Let - denote matrix/vector product mod q.
We now give a formal description of (genOs g,evalOs o).

Input to genOs o: dimension parameters 1,1™, domain pa-
rameters t, 19, factor parameter J, rounding prime p, and secret
vector z € {0,...,t — 1}", such that ¢t < gq.

Instructions for genOs o:

1) Randomly choose M from Z;""
2) Compute vector u =M - z

3) Compute rounded vector v = |u],
4) Return: (M, v)

Input to evalOs : dimension parameters 1™,1"*, domain pa-
rameters ¢, 19, factor parameter §, rounding parameter p, input
vector z € {0,...,t — 1}", such that ¢ < ¢, and the output
from genOs, containing M € Zfln’”, and v € ZZI".

Instructions for evalOs o:

1) Compute vector v’ = M - x
2) Compute rounded vector v/ = [u'],
3) If v/ = v then return 1 else return: 0.

Theoretical results. Assuming the hardness of the LWR prob-
lem, (genOsg,evalO5) is an obfuscator for the family of
point functions, according to the real-vs-random obfuscation
indistinguishability definition of [2]. This is obtained by com-
bining the following: (1) the proof in [2] that an obfuscator
based on deterministic encryption satisfies the real-vs-random
indistinguishability obfuscation notion; (2) the result in [6]
saying that a deterministic encryption scheme can be obtained
assuming the hardness of the LWR problem.

Primitive setting. For primality testing, we used a procedure
from the Palisade lattice crypto library. The 64-bit Mersenne
Twister was used for pseudo-random generation of the matrix
M, the seed being generated by a call to /dev/random.

B. Description of a Second Variant

Informal Description. This scheme is a variant of the pre-
vious scheme, trying to first minimize stored data, and then

computation time. The main difference is in the timing of the
generation of the matrix M returned by the obfuscator. In the
previous variant, M was pseudo-randomly chosen, returned
by the obfuscator, and taken as input by the evaluator. In this
variant, M is pseudo-randomly generated by both obfuscator
and evaluator, using the same short random seed, which is
returned by the obfuscator to the evaluator. On one hand,
this considerably reduces storage as the obfuscator outputs a
short seed instead of a huge matrix M. On the other hand,
in the security analysis, we are forced to make a quite strong
assumption; namely, that the LWR problem does not become
significantly simpler when the seed s generating M is known.
One final modification to further reduce storage is that the
obfuscator stores H(v) instead of v, where H is a collision-
resistant hash function, and the evaluator will do an analogue
computation before checking for equality.

Formal description: Let H be a collision-resistant hash func-
tion. We now give a formal description of (genOs 1,evalOs 1).

Input to genOs ;: dimension parameters 1,1™, domain pa-
rameters t, 19, factor parameter §, rounding parameter p, and
secret vector z € {0,1}10,... ¢ —1}", such that ¢ < q.

Instructions for genOs 1:

1) Pseudo-randomly choose M from Z;"" starting from a
random seed s

2) Compute vector u = M - z

3) Compute rounded vector v = |u],

4) Compute tag w = H(v)

5) Return: (s, w)

Input to evalOs ;: dimension parameters 1™,1™, domain pa-
rameters ¢, 19, factor parameter 4, rounding parameter p, input
vector z € {0,...,¢t — 1}, such that ¢t < ¢, and the output
from genOs 1, containing seed s and w € {0, 1},

Instructions for evalOs ;:

1) Pseudo-randomly generate M’ € Zyg"™ using seed s
2) Compute vector v’ = M’ -z

3) Compute rounded vector v = |u'],

4) Compute tag w’' = H(v')

5) If w’ = w then return 1 else return: 0.

Theoretical results. Assuming the hardness of the LWR prob-
lem even when M is pseudo-randomly generated with a
publicly available seed, and that H is a collision-intractable
hash function, (genOs 1,evalOs5 1) is an obfuscator for the
family of point functions, according to the real-vs-random ob-
fuscation indistinguishability definition of [2]. This is obtained
by combining the proof of the result for (genOs ;,evalOs 1)
with the modified assumption on the LWR problem and the
assumption on . We caution the reader that the only intuition
we have as to why the modified LWR assumption might
be true or false is the following: we can prove that if the
pseudo-random generator acts like a random oracle, then this
assumption is true, based on the original LWR assumption.
However, we already discussed for our first obfuscator why
random oracle assumptions may not be reliable.

Primitive setting. In addition to the primitives as in the
previous variant, we set H as SHAS512.

C. Analysis of Both Variants

Parameter setting. The deterministic encryption scheme in [6]
sets all parameters we need as a function of the dimension
n and a parameter §. We determine settings for n,d so to
approximately minimize other parameters, as well as perfor-
mance metrics, while subject to the following two constraints:
1. n >=1log(q/c) * 33.1, for ¢ = 5, and
2. q/p is an integer > /n.

Constraint 1 is based on analysis in [18], which provides a
lower bound on n, guaranteeing that the strongest known at-
tacks to the related and much more studied Learning with Error
(LWE) problem, and also applicable to LWR, are as successful
as breaking a 128-bit cryptographic primitive. Constraint 2
is based on a conjecture in [16], saying that, in light of the
strongest known attacks, LWR seems a hard problem as long
as q/p > +/n is an integer and p is polynomial in n. (Should
this conjecture appear too optimist in the future, an alternative
constraint on parameters could be based on analogue con-
jectures for the LWE problem, combined with more recent
research that provides provable reductions between LWE and
LWR that are more efficient than that in [16].) The resulting
settings are: n = 1336, 6 = 0.521, t = 1, m = 285707
(the dimension of the ciphertext), p = 170396512836 and
q = 6304670974932, where ¢/p = 37. Interestingly, these
settings facilitate storing the elements of the encryption matrix
and ciphertext vector into variables of unsigned long long type,
thus avoiding special large integer operation libraries.

Practical Implementation issues: loop ordering and threading.
The matrix-vector multiplication involves nested for loops, one
looping over the rows and one over the columns, where there
are many more rows than columns. The loop order makes little
difference to performance for either the obfuscation generator
or the evaluator. However, with an eye to adding parallelization
to the code, doing the loops in row-column order allows a
whole ciphertext element to be calculated in entirety with each
iteration of the outer loop. Thus, a thread is solely responsible
for calculating a particular element of the ciphertext vector.
In the parallel version of the first variant, different threads
divide the work of the outer loop over the rows, each thread
writing to their own file. The relative order of the files is not
known, and within any file, all that is known is that the matrix
row numbers are increasing, but there can be skips. For this
reason, when the matrix is written out it needs to be self-
describing, with the data for each row preceded by its row
id. When the evaluator later reads the matrix data in, it can
reconstitute the same matrix that the obfuscation generator had
used. In the parallel version of the second variant, both the
obfuscation generator and evaluator use the same seed as input
to a pseudo-random number generator, to generate the matrix
elements. Because each row is handled completely by one
thread, then if there is a seed per row used to seed a random
number generator on a row-by-row basis, then the evaluator

will be able to generate the same matrix as the obfuscation
generator in the face of threads. For this reason, the initial
seed that the obfuscation generator creates and stores in a file
is used to create a family of seeds in a deterministic way for
all the rows of the matrix. These row-specific seeds are used
to seed the random number generators for each row.

Performance analysis: storage. In the first variant, the ob-
fuscation generator stores the matrix, in one or more files
in a known folder. Assuming 8-byte matrix elements, and a
285707 x 1336 matrix, this yields 3.05 GB of data. Further,
to accommodate threading, 285707 4-byte row ids are also
stored; this is relatively small, though, and the rounded result
is still 3.05 GB. In this variant, it was elected to store the
complete ciphertext vector. This is 285707 x 8 bytes, or 2.29
MB. In the second variant, the obfuscation generator stores, in
one file, only the 4-byte seed and the 64-byte SHA512 hash
of the cipher vector, for a total of 68 bytes.

Performance analysis: running time. We used a 2-core x86_64
machine, with 2.5 CPU GHz and 4988.71 BogoMIPS, and
an 8-core x86_64 machine, with 2 CPU GHz and 3990.05
BogoMIPS, with varying numbers of threads enabled. For any
given setting, 10 runs of a program were made and the results
averaged. Average times are reported here for both variants of
these point function obfuscators, with the thread count set to
1 and 8, the number of cores.

Table 3: Performance of scheme (genOs , evalOs).

Time(genOs,0) |
37.65 s; 8 cores; 1 thread
47.85 s; 2 cores; 2 threads
46.79 s; 2 cores; 1 thread

Time(evalOs o)
4.44 s; 8 cores; 1 thread
6.89 s; 2 cores; 2 threads
2.54 s; 2 cores; 1 thread

Table 4: Performance of scheme (genOs i, evalOs 7).

Time(genOs,1) |
9.42 s; 8 cores; 8 threads
7.71 s; 2 cores; 2 threads
12.19 s; 2 cores; 1 thread

Time(evalOs, 1)
9.54 s; 8 cores; 8 threads
7.59 s; 2 cores; 2 threads
12.13 s; 2 cores; 1 thread

Using a single thread is preferable for the first variant, but
using a number of threads equal to the number of cores is
optimal for the second variant.

VIII. CONCLUSION

While early results in the area of provable program obfus-
cation showed impossibility of a single obfuscation solution
for all programs, more recent research has generated several
constructions of program obfuscators for point functions. In
this paper, we carefully selected representative point func-
tion obfuscators from the literature, applied a number of
design and implementation optimizations, stated their theo-
retical guarantees, and reported on their (slightly) optimized
implementations. A basic conclusion is that implementations
of point function obfuscators, satisfying different obfuscation
notions, can be used with practical performance guarantees
and without need for specialized computing resources. We
also observed that a definition of program obfuscators, based

on parameter passing, can be more relevant to implementation
than the known theoretical definition, based on maps between
circuits. Finally, we showed that shifting computation to a pre-
processing stage is a valid optimization paradigm for typical
applications of program obfuscators.

ACKNOWLEDGMENT

This work was supported by the Defense Advanced Research
Projects Agency (DARPA) via U.S. Army Research Office (ARO),
contract number W911NF-15-C-0233. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright annotation hereon. Disclaimer:
The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of DARPA,
ARO or the U.S. Government.

REFERENCES

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. P.
Vadhan, and K. Yang, “On the (im)possibility of obfuscating programs,”
in Proc. of CRYPTO 2001, 2001, pp. 1-18.

[2] M. Bellare and I. Stepanovs, “Point-function obfuscation: A framework
and generic constructions,” in Proc. of TCC 2016-A2, 2016, pp. 565—
594.

[3] B. Lynn, M. Prabhakaran, and A. Sahai, “Positive results and techniques
for obfuscation,” in Proc. of EUROCRYPT 2004, 2004, pp. 20-39.

[4] R. Canetti, “Towards realizing random oracles: Hash functions that hide
all partial information,” in Proc. of CRYPTO 97, 1997, pp. 455-469.

[5] H. Wee, “On obfuscating point functions,” in Proc. of 37th ACM STOC
2005, 2005, pp. 523-532.

[6] X. Xie, R. Xue, and R. Zhang, “Deterministic public key encryption and
identity-based encryption from lattices in the auxiliary-input setting,” in
Proc. of SCN 2012, 2012, pp. 1-18.

[71 A. Boldyreva, S. Fehr, and A. O’Neill, “On notions of security for
deterministic encryption, and efficient constructions without random
oracles,” in Proc. of CRYPTO 2008, 2008, pp. 335-359.

[8] D. M. Freeman, O. Goldreich, E. Kiltz, A. Rosen, and G. Segev, “More
constructions of lossy and correlation-secure trapdoor functions,” in
Proc. of PKC 2010, 2010, pp. 279-295.

[9] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle methodol-

ogy, revisited (preliminary version),” in Proc. of 30th ACM STOC, 1998,

pp- 209-218.

D. M. Gordon, “A survey of fast exponentiation methods,” J. Algorithms,

vol. 27, no. 1, pp. 129-146, 1998.

M. Blum and S. Micali, “How to generate cryptographically strong

sequences of pseudo random bits,” in Proc. of 23rd IEEE FOCS 1982,

1982, pp. 112-117.

I. Damgard and M. Jurik, “A generalisation, a simplification and some

applications of paillier’s probabilistic public-key system,” in Proc. of

PKC 2001, 2001, pp. 119-136.

P. Paillier, “Public-key cryptosystems based on composite degree resid-

uosity classes,” in Proc. of EUROCRYPT 99, 1999, pp. 223-238.

J. Hastad, R. Impagliazzo, L. A. Levin, and M. Luby, “A pseudorandom

generator from any one-way function,” SIAM J. Comput., vol. 28, no. 4,

pp- 1364-1396, 1999.

L. Carter and M. N. Wegman, “Universal classes of hash functions,”

J. Comput. Syst. Sci., vol. 18, no. 2, pp. 143-154, 1979. [Online].

Available: http://dx.doi.org/10.1016/0022-0000(79)90044-8

A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and

lattices,” in Proc. of EUROCRYPT 2012, 2012, pp. 719-737.

D. Micciancio and C. Peikert, “Trapdoors for lattices: Simpler, tighter,

faster, smaller,” in Proc. of EUROCRYPT 2012, 2012, pp. 700-718.

C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic evaluation of the

AES circuit,” in Proc. of CRYPTO 2012 (see also updated version on

eprint), 2012, pp. 850-867.

(10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

