Implementation and Evaluation of Improved
Gaussian Sampling for Lattice Trapdoors *

Kamil Doruk Giir'2, Yuriy Polyakov?**, Kurt Rohloff?, Gerard W. Ryan?, and
Erkay Savas'?

1 Sabanci University
Istanbul, Turkey
{dgur,erkays}@sabanciuniv.edu
2 NJIT Cybersecurity Research Center
NJIT, Newark NJ, USA
{kg365,polyakov,rohloff,gwryan,savas}@njit.edu

Abstract. We report on our implementation of a new Gaussian sam-
pling algorithm for lattice trapdoors. Lattice trapdoors are used in a wide
array of lattice-based cryptographic schemes including digital signatures,
attributed-based encryption, program obfuscation and others. Our imple-
mentation provides Gaussian sampling for trapdoor lattices with prime
moduli, and supports both single- and multi-threaded execution. We ex-
perimentally evaluate our implementation through its use in the GPV
hash-and-sign digital signature scheme as a benchmark. We compare our
design and implementation with prior work reported in the literature.
Evaluation shows that our implementation 1) has smaller space require-
ments and faster runtime, 2) does not require multi-precision floating-
point arithmetic, and 3) can be used for a broader range of cryptographic
primitives than previous implementations.

Keywords: lattice-based cryptography - trapdoor - Gaussian sampling - ring-
LWE - digital signature

* Sponsored by the Defense Advanced Research Projects Agency (DARPA) and the
Army Research Laboratory (ARL) under Contract Numbers W911NF-15-C-0226
and W911NF-15-C-0233. The views expressed are those of the authors and do not
necessarily reflect the official policy or position of the Department of Defense or the
U.S. Government. Project sponsored by the National Security Agency under Grant
H98230-15-1-0274. This research is based upon work supported in part by the Office
of the Director of National Intelligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA). The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies, either express or implied, of ODNI, TARPA, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation therein.

** Corresponding Author

1 Introduction

Lattice-based cryptography is an increasingly common and important family of
cryptostystems [21,23,25]. A motivation for the use of lattice-based cryptogra-
phy is that lattice-based schemes are generally believed to be “post-quantum”,
meaning that they are resistant to quantum computing attacks [17,19, 24]. Be-
sides their security properties, lattice-based cryptographic schemes also have
very attractive functional properties, such as the ability to support homomor-
phic encryption [3, 10, 14], attribute-based encryption [2], cryptographic software
obfuscation [4], among many others. As such, lattice-based cryptography has be-
come a subject of much interest for efficient implementation and application [7,
9,15].

Lattice-based cryptographic protocols have been described as falling into two
classes [18].

The first class utilizes direct application of hard mathematical problems,
such as Learning With Errors (LWE) or the more efficient ring Learning With
Errors (ring-LWE) variation. This first class of protocols involves the sampling
of random polynomials and evaluation of linear functions to construct collision-
resistant hash functions and public-key encryption schemes [3, 10, 14].

The second class provides a wider array of advanced lattice-based crypto-
graphic schemes, such as “hash-and-sign” digital signatures [13], identity-based
encryption [13], attribute-based encryption [2], and conjunction obfuscation [4].
This second class of schemes relies on a concept of a strong lattice trapdoor, which
requires sampling from an m-dimensional lattice L with a Gaussian-like distri-
bution [13]. This lattice trapdoor sampling operation is space- and compute-
intensive and is often the primary computational bottleneck for implementations
of this second class of schemes [9, 11, 13, 18].

There have been recent theoretical approaches to design algorithms for effi-
cient Gaussian sampling [11], but there have been few attempts to implement
and experimentally evaluate Gaussian sampling methods for lattice trapdoors.

Our Contribution We implement in software a variation of trapdoor sam-
pling based on approaches in [11] for the case of power-of-two cyclotomic rings
with a prime modulus. We evaluate the scalability and runtime performance
of our implementation using the GPV hash-and-sign digital signature primitive
developed in [13].

Our trapdoor sampling implementation has the following advantages over
prior efforts:

— The trapdoor generation runtime is three orders of magnitude faster than
prior results [9]. Our preimage sampling is faster and has two orders of
magnitude smaller storage requirements.

— Our trapdoor implementation is based on cyclotomic rings with a prime
modulus (rather than a power-of-two modulus as in prior work.) This im-
plementation can be used for a broader range of cryptographic primitives [2,
4].

— Our trapdoor implementation does not rely on multiprecision floating-point
arithmetic and does not depend on any external libraries, such as GMP3
or MPFR*. All floating-point computations are performed using double-
precision arithmetic.

— Our implementation supports multi-threaded execution on commodity com-
puting hardware. We experimentally evaluate multi-threaded performance
of our implemented trapdoor sampling capabilities on a commercial-off-the-
shelf multi-core desktop computer.

— We are are adding our implementation as a trapdoor module to an open-
source lattice-based cryptography library, making it available for practical
use for applications such as digital signatures, identity-based encryption, and
attribute-based encryption systems.

2 Related Work

An early concept of strong lattice trapdoor based on Gaussian-sampling-like ap-
proaches is explored in [13]. This seminal work provides a trapdoor construction
which is arguably complex and not suitable for practical implementation.

Micciancio and Peikert [18] propose a more efficient trapdoor which uses
samples around a target point t in lattice L is performed via an intermediate
“primitive’ lattice G™. The lattice L is first mapped to G", then a Gaussian
sample is generated in G". The sample is then mapped back to L. The linear
function T" mapping G™ to L is used as the trapdoor. The main challenge of
this approach is that the mapping T produces a lattice point in L with an el-
lipsoidal Gaussian distribution and covariance dependent on the transformation
T. To generate spherical samples, the authors apply a perturbation technique
that adds noise with complimentary covariance to the target point t prior to us-
ing it as the center for G sampling. From an implementation perspective, this
approach decomposes the lattice trapdoor sampling into two phases: 1) a per-
turbation sampling stage, where target-independent perturbation vectors with a
covariance matrix defined by the trapdoor mapping T are generated, and 2) a
target-dependent stage where Gaussian samples are generated from lattice G".
The authors suggest that the first phase, usually referred to as perturbation gen-
eration [11], can be performed offline as it does not depend on the target point
t. The second stage, referred to as G-sampling [11], is performed online as it
depends on the target point.

Micciancio and Peikert [18] also provide an efficient algorithm for G-sampling
for the case when the modulus ¢ is a power of two. This approach runs in O (log q)
for lattices over the cyclotomic ring with dimension n. (The full complexity is
O (nlog q) but the n factor can be dropped because all n integers can be sampled
independently, i.e., in parallel.) At the same time for this approach, the G-
sampling algorithm for an arbitrary modulus, such as for a prime modulus, has
the computational complexity of O (log3 q) (or O (1og2 q) for the on-line stage

3 https://gmplib.org/
* http://www.mpfr.org/

when using pre-computation and additional large storage.) Their G-sampling
algorithm for perturbation generation requires a pre-computation complexity of
(@) (n3 log® q) and storage of O (n2 log? q) for the Cholesky decomposition matrix
composed of multi-precision floating-points numbers. The time complexity of
the main perturbation sampling computations in this case is O (n2 log? q). The
Cholesky decomposition matrix is the key time/space bottleneck of the lattice
trapdoor sampling developed in [18]. We utilize a sampling approach which does
not compute and store the Cholesky decomposition of the perturbation matrix
and is hence much more time and space efficient.

Ducas and Nguyen [8] develop a more efficient perturbation generation algo-
rithm for the power-of-two cyclotomic rings. This prior work uses a combination
of lazy floating-point techniques and special square-root numerical algorithms
(different from the Cholesky decomposition) that improves the expected run-
ning time of computations from quadratic to quasilinear. However, this method
requires substantial pre-computation effort and significant storage (up to O(n?)
bits) to store the result of the precomputation. Perturbation generation opti-
mization techniques are presented in Section 6 of [8] at a high level, but the
authors do not provide adequate detail to implement this perturbation method
in software.

Bansarkhani and Buchmann [9] implement both matrix and ring versions of
the trapdoor construction of [18] for the case when the modulus is a power of
two. The trapdoor construction was used as part of the hash-and-sign digital
signature primitive originally proposed in [13]. The authors also optimized the
perturbation generation algorithm to work with a Cholesky decomposition ma-
trix of size 2n x 2n rather than (k+ 2)n x (k + 2)n, where k = log, ¢ (the latter
was used in [18]). The ring construction had a better computational and spatial
efficiency compared to the matrix version. To the best of our knowledge, the ring
implementation presented in [9] is the most efficient lattice trapdoor implemen-
tation available in literature and will be used as a benchmark to evaluate our
implementation. We discuss designs and implementations of approaches which
are more efficient than the results shown in [9], and do not rely on moduli which
are a power of two.

Our designs and implementation build from the algorithms presented in
[11]. This recent work substantially improves upon prior algorithms for both
G-sampling and perturbation sampling. The G-sampling algorithm in [11] sup-
ports an abitrary modulus and has the same complexity, i.e., O (logq), as the
algorithm developed in [18] for the case when ¢ is a power of two. This allows
one to apply the trapdoor construction to more advanced cryprographic prim-
itives based on prime moduli, for example, the entropic ring-LWE conjunction
obfuscator introduced in [4]. The perturbation generation algorithm from [11]
for power-of-two cyclotomic rings (generalizable to arbitrary cyclotomic rings)
takes full advantage of the algebraic structure of ring lattices to reduce the com-
putational complexity to quasilinear, and does not require any precomputations
or additional storage, in contrast to the methods developed in [8,9,18]. Both

algorithms from [11] are modified and implemented in this work and discussed
in more detail in Section 3.

We implement in software a variation of trapdoor sampling algorithms devel-
oped in [11] for the case of power-of-two cyclotomic rings with a prime modulus.
Our implementation of perturbation generation operation does not require any
pre-processing and additional storage to store the result of precomputations in
contrast to the Cholesky decomposition matrix that grows quadratically with
ring dimension n. As a result, the trapdoor generation time is smaller by mul-
tiple orders of magnitude and the preimage sampling time has dramatically
smaller storage requirements, as compared to the results reported in [9]. Our
trapdoor implementation does not rely on multiprecision floating-point arith-
metic and does not depend on any external libraries, such as GMP or MPFR. All
floating-point computations are performed using double-precision arithmetic. In
contrast to [9], our implementation supports multi-threaded execution on com-
modity computing hardware.

Table 1 compares runtimes achieved using our implementation with those
reported in [9]. Both implementations used quad-core CPUs with comparable
single-threaded performance (based on standard CPU benchmarks). Our key
generation and verification runtimes are at least one order of magnitude faster
for the case of single-thread execution. Our signing time is only slightly faster but
our implementation supports parallelization. For the multi-threaded execution
on a 4-core CPU we were able to achieve additional runtime improvement, which
matches the number of cores in the case of batch parallelization. It should also
be noted that our perturbation sampling implementation implicitly works the
perturbation matrix, thus avoiding a storage of a large matrix of floating-point
numbers, which is already 16MB for a practical digital signature setting of n =
1024.

Table 1. Comparison of our implementation for single- and multi-threaded runtimes
to the results reported in [9]

. Runtime [ms] .
Implementation n |k Koy generation|Signing| Verifcation Pert. matrix [kB|
Single-threaded for ¢ = 2* from [9][512[24] 4562 [27 [3 4,100 \
Single-threaded for prime ¢ 512 |24 9.5 27 0.33 0
Multi-threaded with loop parallel | 512 |24 6.5 21 0.35 0
Multi-threaded with batch parallel| 512 |24 6.9 8.9 0.066 0
| Single-thread for ¢ = 2" from [9] [1024]27] 28,074 [74 [10 16,392
Single-threaded for prime ¢ 102427 17.2 62.5 0.68 0
Multi-threaded with loop parallel [1024|27 7.8 45.6 0.72 0
Multi-threaded with batch parallel|1024|27 7.8 19.8 0.15 0

3 Lattice Trapdoor Sampling Algorithms

3.1 Preliminaries

Our implementation utilizes cyclotomic polynomial rings R = Z[z]|/ (z" + 1)
and Ry = Zy[x]/ (z™ + 1), a special class of ideal lattices, where n is a power of
2 and ¢ is prime. The order of cyclotomic polynomial @,,(z) = 2"+ 1 is m = 2n.
The elements in these rings can be represented in coefficient or evaluation repre-
sentation. The coefficient representation of polynomial a(x) =3, _, a;x’ treats
the polynomial as a list of all coefficients a = (ag, a1, ...,an—1) € (Z/qZ)". The
evaluation representation, often also referred to as Chinese Remainder Transform
(CRT) representation, computes the values of polynomial a(x) at all primitive
m-th roots of unity modulo g, i.e., b; = a(¢*) mod q for i € (Z/mZ)". These cy-
clotomic rings support fast polynomial multiplication by transforming the poly-
nomials from coefficient representation to the evaluation one in O(nlogn) time
using Fermat Theoretic Transform (FTT) and then performing component-wise
multiplication.

The perturbation generation algorithm also utilizes cyclotomic fields Ko, =
Q[z]/ (™ + 1), which are similar in their properties to the cyclotomic rings ex-
cept that the coefficients/values of the polynomials in this case are rationals
rather than integers. The elements of the cyclotomic fields also have coefficient
and evaluation (CRT) representation, and support fast polynomial multiplica-
tion using variants of the Fast Fourier Transform (FFT). At the same time, the
evaluation representation of such rational polynomials in our implementation
works with complex primitive roots of unity rather than the modular ones.

Lattice sampling uses n-th dimensional discrete Gaussian distributions over
lattice A C R™ denoted as Dy ¢ o, where ¢ € R™ is the center and o is the distri-
bution parameter. At the most primitive level, the lattice sampling algorithms
work with discrete Gaussian distribution Dz ., over integers with floating-point
center ¢ and distribution parameter o. If the center c¢ is omitted, it is assumed to
be set to zero. In the pseudocode we present, we use a subroutine SAMPLEZ (o, ¢)
which returns a sample statistically close to Dz .. More details on our imple-
mentation of SAMPLEZ are provided in Section 4.2.

We use U to denote discrete uniform distribution over Z,.

In the ring setting, preimage sampling is the procedure to generate a vector
x € R} of sample polynomials such that Ax = u, where A € R}*™ is the
public key, u € R, is the target syndrome, and dimension m depends on the
specific trapdoor construction.

We use the ring-LWE trapdoor construction proposed in [9] (depicted in
Algorithm 1). In the pseudocode, k = |log,(g) + 1] is the bitwidth of modulus
q, T and é are the row vectors of secret trapdoor polynomials generated using
discrete Gaussian distribution, A is the public key, and g' = {g1,92,.--, 9k} is
the primitive row vector corresponding to the primitive lattice G™. The latter is
often denoted as simply G because it is the orthogonal sum of n copies of a low
dimensional lattice G. In our implementation, gt = {1,2,22, .. .,2’“}. For this
trapdoor construction, m = 2 + k.

Algorithm 1 Trapdoor generation using ring-LWE [9]
function TRAPGEN

a <y Rq
1= [f1,...,7] < SAMPLEZ(0) € RE*F
&:=[é1,...,ék] + SAMPLEZ(0) € Ry*"

A:=[1,a,g1 — (a1 +é1),..., 0k — (afk + é)] € RyEHH
return (A, (%, é))
end function

Algorithm 2 describes the high-level procedure for Gaussian preimage sam-
pling. It calls perturbation generation function SampleP, and SAMPLEG as
subroutines. The perturbation vector p is introduced to transform ellipsoidal
Gaussian samples into spherical ones.

Algorithm 2 Gaussian preimage sampling [18]

function GaussSAMP(A, (F,€),u,0,s)

p < SampleP ,(n,q, s, 20, (T, &)) > SampleP , is defined in Algorithm 4
z <+ SAMPLEG(o,u — Ap, q) > SAMPLEG is defined in Algorithm 3
convert z € ZF*" to 2 € Rf; > CRT operations can be executed in parallel
X = [p1 + €2, p2 + ¥2,p3 + 21, ..., Prt2 + 2k

return x

end function

3.2 Sampling G-lattices

The G-lattice sampling problem, i.e., the problem of sampling the discrete Gaus-
sian distribution on a lattice coset, is formulated as

/1f;(gt)z{ZGZ’“:gtz:Umodq}7

where ¢ < b*,v € Z and g = (1,b,0%,...,b""1). In our implementation, we use
b = 2. The G-sampling problem is formulated for a single integer v rather than
n-dimensional lattice because each of the n integers can be sampled in parallel.

We modify and implement a variation of the G-sampling algorithm developed
in [11]. Algorithm 3 (seen in the appendix) shows our pseudocode variation of the
G-sampling algorithm from [11] which we modify for more efficient implemen-
tation and easier translation into software as compared to the original design.
Our variation from [11] reduces the number of calls to CRT operations and in-
creases opportunities for parallel execution. Although our modification does not
necessarily improve the computational complexity of the algorithm, it improves
runtime in single- and multi-threaded modes of execution.

Algorithm 3 has complexity O (loggq) for an arbitrary modulus. The main
idea of the algorithm is not to sample A (g*) directly, but to express the lattice

basis B, = TD as the image (using a transformation T) of a matrix D with a
sparse, triangular structure. This technique requires adding a perturbation with
a complementary covariance to obtain a spherical Gaussian distribution, as in
the case of the GaussSamp procedure described in Algorithm 2. In this prior
work the authors select an appropriate instantiation of D that is sparse and
triangular, and has a complementary covariance matrix with simple Cholesky
decomposition Xy = L - L, where L is an upper triangular matrix, and find the
entries of the L matrix in closed form.

We show the case of b = 2 in the G-sampling procedure in Algorithm 3.
Further details and derivation of the original algorithm are in [11].

3.3 Perturbation sampling

The lattice preimage sampling algorithm developed in [18] requires the genera-
tion of n(2 + k)-dimensional Gaussian perturbation vectors p with covariance

Ep::S2'I—042 {}‘}-[TtI],

where T € Z?>"*"* is a matrix with small entries serving as a lattice trapdoor,
s is the upper bound on the spectral normal of o[T?, I]t and « is a small factor
discussed in the parameter selection section below.

When working with algebraic lattices, the trapdoor T can be compactly
represented by a matrix T € R2*¥ where n denotes the rank (dimension) of the
ring R,. In our case, this corresponds to the cyclotomic ring of order m = 2n. For
the ring-LWE trapdoor construction used in our implementation (Algorithm 1),
the trapdoor T is computed as (7, €). The main challenge with the perturbation
sampling techniques developed in [9, 18] is the direct computation of a Cholesky
decomposition of X, that destroys the ring structure of the compact trapdoor
and operates on matrices over R.

Genise and Micciancio [11] provide an algorithm that leverages the ring struc-
ture of R,, and performs all computations either in cyclotomic rings or fields over
Dy, (z) = 2™ + 1. The algorithm does not require any preprocessing/storage and
runs with time and space complexity quasi-linear in n. The perturbation sam-
pling algorithm can be summarized in a modular way as a combination of three
steps [11]:

1. The problem of sampling a n(2 + k)-dimensional Gaussian perturbation
vector with covariance Y, is reduced to the problem of sampling a 2n-
dimensional integer vector with covariance expressed by a 2 x 2 matrix over
R,.

2. The problem of sampling with covariance in R2*? is reduced to sampling
two n-dimensional vectors with covariance in R,,.

3. The sampling problem with covariance in R, is reduced to sampling n-
dimensional perturbation with covariance expressed by a 2 x 2 matrix over
the smaller ring R,, /> using an FFT-like approach.

The pseudocode for the perturbation generation algorithm with implemen-
tation notes are provided in Algorithm 4. As with Algorithm 3, we modify and
implement a variation of the perturbation generation algorithm developed in
[11]. Algorithm 4 (seen in the appendix) shows our pseudocode variation of the
perturbation generation algorithm from [11] which we modify for more efficient
implementation and easier translation into software as compared to the original
design. Our variation from [11] reduces the number of calls to CRT operations
and increases opportunities for parallel execution. Although our modification
does not necessarily improve the computational complexity of the algorithm,
it improves runtime in single- and multi-threaded modes of execution. Further
details and the complete derivation of the algorithm can be found in [11].

4 Implementation

4.1 Cyclotomic rings and fields

The multiplication of elements in cyclotomic rings R, and fields Ko, is performed
using the Chinese Remainder Transform (CRT) [16].

For the case of R, we use an implementation of Fermat Theoretic Transform
(FTT) described in [1]. We implemented FTT with Number Theretic Trans-
form (NTT) as a subroutine. For NTT, the iterative Cooley-Tukey algorithm
with optimized butterfly operations was applied. We use native data types in
our implementation whenever possible. When large ring moduli ¢ are needed
that exceed 32-bit representations, we use a generalized Barrett modulo reduc-
tion algorithm [6] for modulo reduction operations. This approach requires one
pre-computation per NTT run and converts modulo reduction to roughly two
multiplications.

For multiplications in K, we use the iterative Cooley-Tukey FTT algorithm
over complex primitive roots of unity.

To convert elements of rings to fields, we switch the polynomials from the
evaluation representation to the coefficient one as an intermediate step because
the CRTs for rings operate with modular primitive roots of unity and CRTs for
fields deal with complex primitive roots of unity.

Element transposition for a polynomial f(z) = fo + fizx + -+ + f_12" !
over cyclotomic polynomial x™ + 1 is expressed as f'(x) = fo — fo_12 — - —
fiz™~ 1. This transposition technique was used for both rings and fields. In our
implementation the transposition operation is performed directly in evaluation

representation by applying an automorphism from f(Ca,) to f(¢3771).

4.2 Integer sampling

Both G-sampling and perturbation algorithms call the integer sampling sub-
routine SAMPLEZ (o, ¢) that returns a sample statistically close to Dz . ,. When
the center ¢ does not change, our SAMPLEZ implementation uses the inversion
sampling method developed in [22]. When the center ¢ varies, the rejection sam-
pling method proposed in section 4.1 of [13] is applied. The inversion method is

significantly faster as it is based on a table lookup while the rejection method
requires a computation of Gaussian Probability Distribution Function (PDF) for
each integer sampling call, often multiple times.

A major bottleneck of integer sampling operations in lattice-based cryptog-
raphy is associated with the use of multiprecision floating-point numbers, where
the number of bits in the mantissa should roughly match the number of secu-
rity bits supported by the cryptographic protocol. A recent theoretical result in
[20] suggests that both the G-sampling and perturbation generation algorithms
that are used in our implementation can support at least 100 bits of security
using double-precision floating point arithmetic. More specifically, Lemma 3.2
in [20] states that /2 significant bits in a floating-point number is sufficient to
maintain x bits of security. As our goal is to support 100 bits of security, the
significand precision of 53 bits provided by double-precision floating numbers is
sufficient to achieve our security target.

We also perform the comparison of our implementation with the one de-
scribed in [9] for the case when the G-sampling procedure of [11] and the per-
turbation generation procedure of [9] are used for sampling the lattices with a
prime modulus. In this case we use quad-precision floating numbers in the com-
putations related to the Cholesky decomposition matrix, which are exposed as
__FLOAT128 in GCC, and lazy floating-point techniques from [8], which reduce
most of the computations to double-precision floating-point arithmetic.

4.3 Parameter selection

To meet the ring-LWE security requirements for the trapdoor construction, we
select the values of n and ¢ using the inequality derived in [12], namely,

log, (q/0)
> e »

Here, o refers to the distribution parameter used in sampling the trapdoor
(r,é) and J is the root Hermite factor, a measure of lattice security that can be
mapped to the number of bits of security. The value of § < 1.006 corresponds to
at least 100 bits of security [5].

The smoothing (distribution) parameter o can be estimated as

o~ +/In(2n,, /€) /7,

where n,, is the maximum ring dimension and ¢ is the bound on the statistical
error introduced by each randomized-rounding operation [18]. For n,, < 24 and
€ > 2780 the value of o ~ 4.578.

The value of « is taken as 20 [18].

For the spectral norm parameter s we use [9, 18]:

s> s1(X) a,

where X is a subgaussian random matrix with parameter s.

10

Lemma 2.9 of [18] states that
51(X)<Cp-o- <Vnk+\/2n—|—t) ,

where C is a constant and t is at most 4.7.
We can now rewrite s as

s>c-a2.(¢@+\/ﬁ+4.7),

where C' = 2CY is a constant that can be found empirically. In our experiments
we used C' = 1.80.

4.4 GPYV signature as a benchmark

To evaluate the performance of our implementation of trapdoor sampling, we
use the GPV hash-and-sign digital signature developed in [13] and implemented
for the ring-LWE constuction in [9].

The key generation for this ring variant of the GPV scheme is exactly the
same as the trapdoor generation depicted in Algorithm 1. In this case, the veri-
fication key is the public key A and the signing key is the trapdoor (&, é).

The signing operation of the GPV scheme is the Gaussian preimage sampling
described in Algorithm 2. In this case, the syndrome u = H(u) , where p is
the message being signed and H(p) is the hash of the message, computed in
our implementation by SHA-256 padded with random strings generated using a
Pseudo-Random Number Generation (PRNG).

The verification operation is to check whether Ax = H (u). If the equivalence
relation is true, the verification is successful.

The GPV scheme is convenient for benchmarking because it wraps around
the lattice trapdoor operations, and does not introduce any other compute- or
space-intensive steps (the overhead of SHA-256 and random padding is negligible
compared to the Gaussian preimage sampling).

4.5 Software implementation

We implement the trapdoor sampling algorithms and GPV scheme in a general-
purpose portable multi-threaded C++ library. We design this library to be mod-
ular and provide three major software layers, each of which includes a collection
of C++ classes to provide encapsulation, low inter-module coupling and high
intra-module cohesion. The software layers are the (1) cryptographic primitives,
(2) lattice constructs, and (3) arithmetic (primitive math) layers.

— The cryptographic primitives layer houses digital signature schemes through
calls to objects in the lower layers.

— The lattice constructs layer provides support for power-of-two cyclotomic
rings and fields (coefficient and CRT representations). Lattice operations
are decomposed into primitive arithmetic operations on integers, vectors,
and matrices in the arithmetic layer.

11

— The arithmetic layer provides basic modular operations, implementations of
Number-Theoretic Transforms (NTT), Fermat-Theoretic Transform (FTT)
and the Discrete Fourier Transform (DFT). Our discrete Gaussian samplers
are implemented in this layer.

Our software library uses both native 64-bit math backend and a custom
multi-precision math backend. For experiments with modulus ¢ under 32 bits,
we used the backend wrapped around the native C++ 64-bit unsigned integer
data type. For computations dealing with the modulus higher than 32 bits, we
relied on a custom multiprecision backend without external dependencies.

5 Experimental Results

5.1 Test bed

We conducted all experiments on a commodity desktop computing environment.
The evaluation environment used an Intel Core i7-3770 CPU with four cores
(eight logical processors) rated at 3.40GHz and 16GB of memory running Cen-
tOS 7.

We performed our experiments for five values of ring dimension n from 512
to 8192. This range covers most of the cryptography protocols based on strong
lattice trapdoors. For n = 512 and n = 1024, we used the same modulus bit
width as in [9]. For higher values of n, we used the median bit widths satisfying
the security constraint § < 1.006 discussed in Section 4.3.

In the experiments for n = 512 and n = 1024, we used the native 64-bit
mathematical backend. For higher values of ring dimension n, we relied on a
custom multiprecision mathematical backend.

5.2 Single-threaded experiments

Table 2. Runtime and space requirements for single-threaded experiments

n | & Runtime [ms] Size [kB]
Key generation[Signing[\/eriﬁcation Public key[Private key[Signature
512 | 24 9.5 27 0.33 73 57 55
1024| 27 17.2 62.5 0.68 173 120 135
2048| 55 283 629 23 1,439 489 587
4096{108 2,052 3,940 166 11,100 1,921 2,456
8192|214 16,560 28,360 1,236 87,160 7,613 10,351

The runtimes of key generation (TRAPGEN), signing (GAUSSSAMP), and
verification, and the file sizes of public/private keys and signature x for single-
threaded experiments, are listed in Table 2. The file sizes were computed based
on the serialized representation of the keys and signature. The values of n = 512

12

(&)
o
1

N
o
1

w
o
1

N
o
1

-
o
1

N S—

T T T
CRT Products
Operation in GaussSamp

o

Percentage of GaussSamp CPU time

T T
SamplePz SampleG

Fig. 1. Profile of the signing (preimage sampling) runtime for n = 1024 (native 64-bit
mathematical backend)

and n = 1024 correspond to approximately 100-bit secure digital signatures. The
higher values of n correspond to more advanced cryptographic protocols, such
as attribute-based encryption and conjunction obfuscation.

Table 2 suggests that the signing (preimage sampling) time is the main run-
time bottleneck, and public key requires the largest storage. Key generation is
a one-time operation that runs quickly and requires no extra storage (for the
Cholesky decomposition) in contrast to the results reported in [9]. Verification,
which is based on a single inner product of vectors of polynomials, is more than
one order of magnitude faster than the signing time.

Our key generation runtime is approximately 3 orders of magnitude smaller
then the one reported in [9] (Table 1 includes both numbers). Our signing time
is the same for n = 512 and slightly faster for n = 1024. Our verification time is
approximately one order of magnitude smaller. Note that the implementation in
[9] used a power-of-two modulus because an efficient algorithm for G-sampling in
the case of a non-power-of-two modulus was not available. Although a power-of-
two modulus can be used for the GPV signature, many advanced cryptographic
primitives, such as attribute-based encryption [2] and conjunction obfuscation
[4], are formulated for a prime modulus.

13

(&)
o
1

N
o
1

w
o
1

N
o
1

-
o
1

o

Percentage of GaussSamp CPU time

T T
CRT Products

Operation in GaussSamp

T T
SamplePz SampleG

Fig. 2. Profile of the signing (preimage sampling) runtime for n = 4096 (multiprecision
mathematical backend)

To the best of our knowledge, there are no benchmarks in literature for
lattice trapdoor operations relying on n > 1024. Experiments for larger n would
require significant storage for the Cholesky decomposition matrix when using
the perturbation sampling methods developed in [18,9].

As the preimage sampling GAUSSSAMP is the main bottleneck in lattice trap-
door operations, we profiled it using Callgrind® for the cases of n = 1024 and
n = 4096, which correspond to the native 64-bit and multiprecision mathemati-
cal backends, respectively. The profiles are depicted in Figures 1 and 2. As can
be seen in Algorithm 2, the preimage sampling operation can be broken down
into four major components: SAMPLEP , SAMPLEG, CRT operations when con-
verting z to z, and three polynomials products, namely, Ap, &z, and 2. The
combined contribution of these four components to preimage sampling in all our
experiments was always above 95%.

Figure 1 shows that the perturbation sampling SAMPLEP z accounts for 43%
of GAUSSSAMP in the case of the native 64-bit mathematical backend. It should
be noted that this operation is considered offline in [18] since it does not depend
on the syndrome, i.e., a hash in the case of the GPV digital signature. This

® http://valgrind.org/docs/manual /cl-manual.html

14

operation can be performed independently, and the perturbation vectors can be
fed to the preimage sampler on demand.

The G-sampling operation accounts for 50% of the GAUSSSAMP runtime.
Further analysis shows that 34% (with respect to GAussSAMP) of CPU time
is consumed by rejection sampling. This suggests that a more efficient integer
sampling method, such as the one recently proposed in [20], can substantially
improve the performance of G-sampling in this case. A further improvement
can be achieved using loop parallelization. As noted in Algorithm 3, all coeffi-
cients in the sampled polynomial can be generated in parallel, thus creating an
opportunity for loop parallelization in a multi-threaded configuration.

The combined contribution of CRT operations and polynomial products is
only 4% as all modular arithmetic operations are performed using the native
C++ UINT64_T integer data type.

Figure 2 provides a different profile for the case of multiprecision mathe-
matical backend. Although the contribution of SAMPLEP z is approximately the
same (52%), the contribution of G-sampling is much smaller (only 10%) and the
contributions of CRT and polynomial products operations are much larger, that
is, 24% and 12%, respectively. This implies that further improvement can be
achieved by optimizing the modular arithmetic operations of the multiprecision
mathematical backend. Another opportunity is to explore loop parallelization
for the CRT step in GAUSSSAMP as the NTT operation is performed for k inde-
pendent polynomials.

We also performed experiments for the case when the G-sampling procedure
of [11] and the perturbation generation procedure of [9] are used for sampling
the lattices with a prime modulus. Our results for n < 1024 showed that the
runtime of G-sampling for lattices with a prime modulus was comparable to the
one reported in [9] for a power-of-two modulus (the prime modulus variant was
approximately three times slower than the power-of-two one). This supports the
claim made in [11] that the complexity and expected runtime of their G-sampling
for an arbitrary modulus is comparable to the G-sampling for a power-of-two
modulus developed in [18].

5.3 Multi-threaded experiments

Multi-threading of our implementation was performed using OpenMP 4.06. There
are two approaches to parallelization of lattice trapdoor operations via multi-
threading. The first one, which we call loop parallelization, focuses on the paral-
lelization inside individual trapdoor generation, preimage sampling, and verifica-
tion operations. The second approach, which we call batch parallelization, relies
on parallel processing of a batch of preimage sampling or verification operations.

Loop parallelization inside lattice trapdoor operations The loop paral-
lelization inside individual lattice trapdoor operations allows one to reduce the

5 http://www.openmp.org/

15

actual runtime of a single trapdoor generation or preimage sampling on a multi-
core machine. This approach to parallelization can be used for any cryptographic
primitive based on lattice trapdoors.

In Algorithms 1 and 2 we identified two loops that deal with a large num-
ber of CRT operations that can be performed in parallel. In Algorithm 1, two
row vectors of polynomials r and € need to be converted from the coefficient
representation to the evaluation one. Each row vector contains k independent
polynomials. In Algorithm 2 the conversion of z to z requires k independent
CRT operations. We used the OpenMP parallelization for these loops.

As the sampling for each coefficient of the syndrome u in Algorithm 3 can
be performed in parallel, we used the OpenMP parallelization for this loop.

Figure 3 shows the effect of increasing the number of threads on the pre-
image sampling runtime on a 4-core machine with 8 threads. It can be seen that
the maximum runtime reduction observed on a 4-core machine was by a factor
of 2 (for n = 2048 . ..8192). The runtime reduction for the cases of n < 1024 was
roughly by one-fourth. The latter can be explained using Figure 1. In the case
of n < 1024, the loop optimization primarly affected SAMPLEG, and the CRT
parallelization had a little effect as its contribution to GAUSSSAMP is relatively
small. Thus we observe only a net effect of the parallelization of SAMPLEG,
which is only 50% of the GAUSSSAMP execution time.

In the case of larger n, the contribution of CRT operations becomes more
significant, as can be seen in Figure 2. The net effect of CRT directly in GAUSS-
SAMP is 24%. Another CRT for a vector of the same size is performed inside
SAMPLEP z. So the total contribution of CRT operations is roughly 50%. More-
over, SAMPLEG accounts for additional 10%. Coupled with substantially larger
running times for parallelized subroutines (primarily CRT), this provides a bet-
ter runtime reduction.

Table 3 lists the runtimes for the optimal mode corresponding to 4 threads.
The key generation time gets reduced more than by a factor of 2 for n > 2048 and
by a factor of 1.5 for n < 1024. The verification runtime is mostly unaffected by
loop parallelization because it does not contain any loop-parallelized operations.

Table 3. Runtime in the multi-threaded mode with loop parallelization inside lattice
operations. All experiments were conducted for 4 threads (equal to number of cores),
which is optimal for the loop parallelization mode

n |k Runtime [ms]
Key generation[Signing[Veriﬁcation
512 | 24 6.5 21 0.35
1024| 27 7.8 45.6 0.72
2048| 55 127 366 22.9
4096(108 815 2,135 160
8192|214 6,161 14,885| 1,235

16

Dimensionless GaussSamp runtime

Threads

Fig. 3. Runtime improvement with increasing number of threads for the loop paral-
lelization mode

Batch parallelization Batch parallelization deals with processing multiple
preimage sampling or verification operations in parallel. This parallelization does
not decrease the runtime of each individual operation but increases the through-
put. This approach to parallelization can be used effectively when a batch of
signatures is being generated or verified. It can also be used in lattice-based
cryptography protocols that operate with matrices of private keys, such as con-
junction obfuscation [4].

Figure 4 illustrates the effect of batch parallelization on preimage sampling
time for different numbers of threads and ring dimensions. It can be seen that
for n > 2048 we observe almost perfect runtime reduction (by a factor of 4 for
a 4-core machine). The runtime reduction is slightly smaller for n < 1024 most
likely due to inefficiencies in the PRNG used for integer sampling (a PRNG
singleton is used by our implementation).

Table 4 lists the runtime for 8 threads, which is the optimal mode in the case
of batch parallelization. The parallelization was only applied to the preimage
sampling and verification operations. It can be seen that verification runtime
also reduces by approximately a factor of 4.

17

Dimensionless GaussSamp runtime

Threads

Fig. 4. Runtime improvement with increasing number of threads for the batch paral-
lelization mode

Table 4. Runtime in the multi-threaded mode with batching of signing/verification
operations. All experiments were conducted for 8 threads (equal to number of logical
processors), which is optimal for the batch mode of parallelization

- Normalized runtime [ms]
Key generation[Signing[Veriﬁcation
512 | 24 6.9 8.9 0.066
1024 27 7.8 19.8 0.15
2048| 55 127 169 6.2
4096(108 820 1,063 45
8192|214 6,160 7,740 359

6 Concluding remarks

In this paper we implement in software a variation of trapdoor sampling based
on approaches in [11] for the case of power-of-two cyclotomic rings with a prime
modulus. We evaluate the scalability and runtime performance of our implemen-
tation using the GPV hash-and-sign digital signature primitive developed in [13].
Our runtimes are substantially faster and storage requirements are dramatically
smaller than for prior implementations [9].

18

Our experimental results for larger values of ring dimension and moduli sug-
gest that this implementation can be applied to many other lattice cryptographic
protocols based on power-of-two cyclotomic rings with prime moduli, including
identity-based encryption [13], attribute-based encryption [2], and conjunction
obfuscation [4].

Our analysis implies that the runtime performance of preimage sampling
can be further improved by using faster integer sampling methods, such as the
ones recently proposed in [20], more efficient multiprecision modular arithmetic
implementations, and multi-threaded parallelization at a lower implementation
level, for instance, by parallelizing vector operations. As our implementation
operates on double-precision floating-point numbers and has no external depen-
dencies, it can be applied to GPU systems to achieve a dramatic improvement
in preimaging runtime.

Our implementation can be extended to support arbitrary moduli and rings
over arbitrary cyclotomic polynomials as the underlying algorithms [11] support
this more general configuration.

7 Acknolwedgements
We would like to gratefully acknowledge helpful input and feedback from Daniele

Micciancio, Nicholas Genise and Michael Walter of University of California San
Diego.

19

References

10.

11.

12.

13.

14.

15.
16.

Aysu, A., Patterson, C., Schaumont, P.: Low-cost and area-efficient fpga implemen-
tations of lattice-based cryptography. In: Hardware-Oriented Security and Trust
(HOST), 2013 IEEE International Symposium on. pp. 81-86 (June 2013)

Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully Key-Homomorphic Encryption, Arith-
metic Circuit ABE and Compact Garbled Circuits, pp. 533-556. Springer Berlin
Heidelberg, Berlin, Heidelberg (2014)

Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryp-
tion without bootstrapping. ACM Transactions on Computation Theory (TOCT)
6(3), 13 (2014)

Brakerski, Z., Vaikuntanathan, V., Wee, H., Wichs, D.: Obfuscating conjunctions
under entropic ring LWE. In: Proceedings of the 2016 ACM Conference on Innova-
tions in Theoretical Computer Science. pp. 147-156. ITCS '16, ACM, New York,
NY, USA (2016)

Chen, Y., Nguyen, P.Q.: BKZ 2.0: Better lattice security estimates. In: ASI-
ACRYPT. Lecture Notes in Computer Science, vol. 7073, pp. 1-20. Springer (2011)
Dhem, J.F., Quisquater, J.J.: Recent results on modular multiplications for smart
cards. In: Quisquater, J.J., Schneier, B. (eds.) Smart Card Research and Applica-
tions, Lecture Notes in Computer Science, vol. 1820, pp. 336-352. Springer Berlin
Heidelberg (2000)

Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Nachrig, M., Wernsing, J.:
Manual for using homomorphic encryption for bioinformatics. Microsoft Research
(2015)

Ducas, L., Nguyen, P.Q.: Faster Gaussian Lattice Sampling Using Lazy Floating-
Point Arithmetic, pp. 415-432. Springer Berlin Heidelberg, Berlin, Heidelberg
(2012)

. El Bansarkhani, R., Buchmann, J.: Improvement and Efficient Implementation of

a Lattice-Based Signature Scheme, pp. 48—67. Springer Berlin Heidelberg, Berlin,
Heidelberg (2014)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryp-
tology ePrint Archive, Report 2012/144 (2012), http://eprint.iacr.org/

Genise, N., Micciancio, D.: Faster Gaussian sampling for trapdoor lattices with
arbitrary modulus. http://cseweb.ucsd.edu/ daniele/papers/Sampling.pdf (2017),
In Preparation. Accessed: 2017-03-15

Gentry, C., Halevi, S., Smart, N.: Homomorphic evaluation of the AES circuit.
In: Safavi-Naini, R., Canetti, R. (eds.) Advances in Cryptology—CRYPTO 2012,
Lecture Notes in Computer Science, vol. 7417, pp. 850-867. Springer Berlin /
Heidelberg (2012)

Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sym-
posium on Theory of Computing. pp. 197-206. STOC ’08, ACM, New York, NY,
USA (2008)

Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In: Advances
in Cryptology—CRYPTO 2013, pp. 75-92. Springer (2013)

Halevi, S., Shoup, V.: Helib-an implementation of homomorphic encryption (2014)
Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: EUROCRYPT. vol. 7881, pp. 35-54. Springer (2013)

20

17.

18.

19.

20.

21.

22.

23.

24.

25.

Micciancio, D.: Lattice-based cryptography. In: Encyclopedia of Cryptography and
Security, pp. 713-715. Springer (2011)

Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: EUROCRYPT. pp. 700-718 (2012)

Micciancio, D., Regev, O.: Lattice-based Cryptography, pp. 147-191. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009)

Micciancio, D., Walter, M.: Gaussian sampling over the integers: Efficient, generic,
constant-time. In preparation (2017), personal communication

Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Proceedings of the forty-first annual ACM symposium on Theory of computing.
pp. 333-342. ACM (2009)

Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: CRYPTO.
pp. 80-97 (2010)

Peikert, C.: A decade of lattice cryptography. Foundations and Trends®) in Theo-
retical Computer Science 10(4), 283-424 (2016)

Regev, O.: Quantum computation and lattice problems. STAM J. Comput. 33(3),
738-760 (2004), preliminary version in FOCS 2002

Regev, O.: Lattice-based cryptography. In: Annual International Cryptology Con-
ference. pp. 131-141. Springer (2006)

Appendix

21

Algorithm 3 G-sampling [11]

function SAMPLEG (s, u, q) >q= [q};c is the vector of bits in modulus ¢
o:=s/3
lo:=+2(1+1/k)+1
ho =0
d() = q0/2
fori=1.k—1do
li=+20141/(k—1)) > l;, h; are entries in sparse triangular matrix L
hii= 20— 1/ {k— -1}
di == (di-1 +qi) /2 > d; are entries in the last column of matrix D
end for
Define Z € ZF*" > this vector will store the result of G-sampling

for i =0.n—1do > Iterate through all coefficients of polynomial. This loop
can be parallelized.
v = u(i) > v = [v]5 is the vector of bits in coefficient u(i) € Z,
p <+ PERTURB(0, 1, h) >peZF:lheRF
co := (vo — po)/2
for j=1..k—1do
cj = (¢j-1+v; —p;)/2
end for
z + SAMPLED (0, ¢, d) bzeZFcdeRF
to:=2-20+qo-2k—1+ 0
for j=1..k—2do
tj =22z —zj-1+¢q; 2k—1+vj

end for

tk—1 = qr—1" 2k—1 — Zk—2 + Vp—1

Z(:,0) =t >t = (to,t1,...,th 1) € Z"
end for
return Z

end function

function PERTURB(0, 1, h) > 1, h € R® are the entries in matrix L
B:=0
for i =0..k—1do
Ci = /B/lz and o; := O’/li
Zi <= SAMPLEZ(0;, ;i)
Bi = —zih;
end for
Po :=Hzo + 221
fori=1.k—2do
i =2 (zi—1 + 22 + zig1)
end for
Pr—1:=2(2k—2 + 22K_1)
return p >p=(po,p1,...,ps_1) € ZF
end function

function SAMPLED (o, c,d) > Sample from the lattice generated by matrix D

Z—1 < SAMPLEZ(O‘Z'/dkfl, —Ck71/dk71)

c:=c—zp_1d

for i = 0..k — 2 do

2; 4 SAMPLEZ(c, —¢;)

end for 29

return z l>z:(zo,21,...,zk_1)€Zk
end function

Algorithm 4 Perturbation generation [11]

function SAMPLEP z(n, q, s, «, (£, €))
(2 —2\—1
z:=(a"?=577)

k At A
a:=s—z3 " Pl >a € Kan
k At A
bi=—237, Ple; >be Kan
ko osts
di=s—2z3" élé >de Kan

for i =0.nk — 1 do
gi < SAMPLEZ(V/s? — a?)

end for

convert q € Z**™ to § € R'; > CRT operations can be executed in parallel
ci=—7%; [2] a > € K3,
p <+ SAMPLE27 (a, b, d, c) > p € Z>"

convert p € Z**™ to p € Rg
return (p,q)
end function

function SAMPLE2z(a,b,d,c)
let ¢ = (co,c1)
g1 < SAMPLEF z(d, ¢1) >q €27
convert q1 € Z" to ¢y € Kan
co = co + bd~t (q} — C1)
qo + SAMPLEF z(a — bd™'b", ¢o) > qo € Z™
return (qo, q1)

end function

function SAMPLEF z(f,c)
if dim(f) = 1 then return SAMPLEZ (v/f, c)

else
let f(z) = fo(2?) +x- fi(z?) > Extract even and odd componets of f(x)
¢’ = Pstriae(c) > Pstride permutes coefficients (ao, a1, ..., an-1) to

> (ao, az,...,Qnp—-2,0a1,0a3,..., an_l)
(Q(), ql) < SAMPLE?Z (f(), f1, f(),C/)
let q(z) = qo(a¢?) + = - qu(z?)
return q
end if
end function

23

