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Designing an FPGA-Accelerated Homomorphic
Encryption Co-Processor

David Bruce Cousins,Kurt Rohloff,Daniel Sumorok

Abstract—In this paper we report on our advances designing and implementing an FPGA-based computation accelerator as part of a
Homomorphic Encryption Processing Unit (HEPU) co-processor. This hardware accelerator technology improves the practicality of
computing on encrypted data by reducing the computational bottlenecks of lattice encryption primitives that support homomorphic
encryption schemes. We focus on accelerating the Chinese Remainder Transform (CRT) and inverse Chinese Remainder Transform
(iCRT) for power-of-2 cyclotomic rings, but also accelerate other basic ring arithmetic such as Ring Addition, Ring Subtraction and Ring
Multiplication. We instantiate this capability in a Xilinx Virtex-7 FPGA that can attach to a host computer through either a PCI-Express
port or Ethernet. We focus our experimental performance analysis on the NTRU-based LTV Homomorphic Encryption scheme. This is
a leveled homomorphic encryption scheme, but our accelerator is compatible with other lattice-based schemes and recent improved
bootstrapping designs to support arbitrary depth computation. We experimentally compare performance with a reference software
implementations of the CRT and iCRT bottlenecks and when used in a practical application of encrypted string comparison.

Index Terms—Applied Cryptography, Hardware Acceleration, Homomorphic Encryption

F

1 INTRODUCTION

R ECENT advances in lattice-based Homomorphic En-
cryption (HE) have shown that it can be practical to

securely run arbitrary computations over encrypted data [1],
[2]. In addition to supporting encrypted computing, lattice-
based HE schemes are attractive because they are post-
quantum public-key schemes [3], meaning they are resistant
to quantum computing attacks. Despite recent advances, HE
is still not widely practical, partially because of computa-
tional bottlenecks in lattice-based HE schemes when run on
commodity CPU-based computation devices. It would be
valuable to accelerate the execution of core HE operations,
possibly in a low-cost but computationally efficient and
highly optimized hardware co-processor.

We discuss our experience designing and implementing
an FPGA-based computation accelerator and co-processor
for lattice-based Homomorphic Encryption (HE). We instan-
tiate this capability in Xilinx Virtex-7 FPGAs that attach to a
host computer through a PCI-Express port as Homomorphic
Encryption Processing Unit (HEPU) co-processors.

Our design is intended to be adaptable and extensible,
with a modular software architecture that supports rapid
prototyping with alternative HE schemes, easier integration
of the HEPU into broader computing infrastructures, and
increased parallelism for efficient execution performance.
While prior HE implementations have reduced absolute
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runtime, we focus on system engineering issues to improve
overall performance when supporting broader system inte-
gration and practical application.

Although we experimentally evaluate performance with
respect to the LTV scheme [4], which is itself a variant of the
NTRU cryptosystem [5], our co-processor is also applicable
to other lattice-based schemes such as the BGV [6] and GSW
[7] designs. There has been some early work in the area
of FPGA implementations of circuits that support lattice-
based HE [8], [9], [10], [11], but little research into end-to-
end workflows for a co-processor design.

Our strategy is to accelerate key computational bottle-
necks common across HE schemes which can be much more
rapidly executed on FPGA architectures. We particularly
focus on the Chinese Remainder Transform (CRT) and in-
verse Chinese Remainder Transform (iCRT) for power-of-2
cyclotomics. We also accelerate lesser bottlenecks, including
basic ring arithmetic: Ring Addition, Ring Subtraction and
Ring Multiplication. Our approach yields experimentally 2
orders-of-magnitude improvement in runtime, as compared
to a reference CPU-based implementation, for both the core
CRT and iCRT performance bottlenecks and a real-world
use case for encrypted ASCII string comparison.

The paper is organized as follows. In Section 2 we de-
scribe our representational LTV-based HE cryptosystem that
motivates our design choices in the hardware accelerator.
Section 3 discusses the design of the FPGA circuits for our
lattice encryption primitives. Section 4 discusses the overall
architecture of the FPGA based HE accelerator. Section 5
discusses communications between the host and hardware
accelerator for more efficient integration of the HEPU into
a computational workflow. Section 6 discusses experimental
evaluation of the FPGA accelerator as compared to CPU
based computation. Section 7 discusses related work. We
provide a concluding discussion in Section 8.
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2 NTRU REPRESENTATIONAL CRYPTOSYSTEM

We provide a brief overview of the LTV cryptosystem,
defined with proofs of correctness and security in [4], to
identify a workflow of primitive computational operations
needed to support level homomorphic encryption. A more
extensive reference deign and software implementation is
discussed in [12].

For mathematical preliminaries, for the ring dimension
n, we define the ring R = Z[x]/(xn+1) (i.e., integer polyno-
mials modulo xn + 1). For the ciphertext modulus q, define
the ciphertext space Rq = R/qR (i.e., integer polynomials
modulo xn + 1, represented as length n vectors with mod-
q coefficients). The plaintext space is Rp, so plaintexts are
represented as length-n vectors of integers modulus p.

The modulus q is often very large for non-trivial com-
putations. Representing a ciphertext c can require hundreds
of bits of precision for every integer coefficient and incurs
a very high computational overhead. We counter this with
a double-CRT representation where a ciphertext c is a col-
lection of t vectors {c1, · · · , ct} where vector ci is an n-
element vector of mod-qi integers for i ∈ {1, . . . , t} [1]. This
allows us to represent a large integer q by a collection of
smaller residues, that can each fit within a conventional 64-
bit integer.

We convert data into the double-CRT representation
with the core computational primitive called the “Chinese
Remainder Transform” (or CRT for short) [13]. The CRT
is a modulo arithmetic variation of the Discrete Fourier
Transform (DFT) [14]. The primary design decision is to
exclusively support power-of-2 cyclotomics so that plaintext
and ciphertext vectors are of length n which is a power-
of-2. This design decision enables more efficient hardware
and software implementation at the expense of less effi-
cient bootstrapping operations (needed to provide arbitrary-
depth Fully Homomorphic Encryption (FHE) capabilities).

To support key generation and encryption operations,
we often need to generate samples from a discrete Gaus-
sian distribution over Rq with a distribution parameter r,
denoted as χr

Rq
. We do this using techniques in [15] to make

n independent samples from a scalar discrete Gaussian
distribution χr with a distribution parameter r = 6, and
use the CRT to convert to the double-CRT representation.

With these preliminaries, the following functions are
then defined in our scheme:

KeyGenKeyGenKeyGen: Sample f ∈ χr
Rq

such that f = 1 mod p and
f is invertible modulo q1, · · · , qt. Sample g ∈ χr

Rq
. The

double-CRT representations of f−1i (modulo qi) is the mod-
qi inverse of fi. Output the secret key sk = f and public
key pk = h = g · f−1.

Enc(pk = h, µ ∈ Rp)Enc(pk = h, µ ∈ Rp)Enc(pk = h, µ ∈ Rp): Sample e, s ∈ χr
Rq

. Output c =
p · e · h+ p · s+ µ, in double-CRT representation.

Dec(sk = f, c ∈ Rq)Dec(sk = f, c ∈ Rq)Dec(sk = f, c ∈ Rq): Compute b̄ = f · c and lift it to the
integer polynomial b ∈ R with coefficients in [−q/2, q/2).
Output µ = b mod p.

From [4], the scheme natively supports the homomor-
phic operations:

EvalAdd(c0, c1)EvalAdd(c0, c1)EvalAdd(c0, c1): Output c = c0 + c1.
EvalMult(c0, c1)EvalMult(c0, c1)EvalMult(c0, c1): Output c = c0 · c1.

2.1 Supporting Operations
We improve upon this basic HE scheme with HEPU-
accelerated supporting operations:

• Key switching to reduce the complexity of key coor-
dination during coordination [6].

• Modulus reductions to decrease noise growth and
increase the size of computation supported without
compromising security [6].

• Ring switching to keep ciphertexts smaller and com-
putations more efficient [16].

Key switching converts a ciphertext of degree at most d,
encrypted under secret key f1, into a degree-1 ciphertext c2
encrypted under a secret key f2. We perform this operation
after every EvalMult to ensure the ciphertexts are decrypted
by the same secret key that is independent of the depth of
computation performed. This requires a “hint”:

KeySwitchHintGen(f1, f2)KeySwitchHintGen(f1, f2)KeySwitchHintGen(f1, f2): Output a1→2 = (p ·e+1) ·f21 ·
f−12 for a Gaussian-distributed e.

We define key switch as:
KeySwitch(c1, a1→2)KeySwitch(c1, a1→2)KeySwitch(c1, a1→2): Output c2 = a1→2 · c1
Modulus reduction reduces noise growth in ciphertexts.

It is performed after every KeySwitch operation after the
EvalMult operations and converts a ciphertext c that is a
double-CRT collection of t vectors {c1, · · · , ct} into a cipher-
text c′ that is a collection of t − 1 vectors {c′1, · · · , c′t−1}.
We do this by adding a small integer multiple of p that is
congruent to −c mod qt. This ensures that the underlying
noise remains small, that the plaintext remains unchanged,
and that the resulting ciphertext is divisible by qt. Then
we can divide both the ciphertext and modulus by qt,
which reduces the underlying noise term by a qt factor
as well. To implement this we use the independent value
v = (qt)

−1 mod p, which we compute in advance:
ModReduce(c)ModReduce(c)ModReduce(c):

1) Compute d = c mod qt.
2) Let d′ = (vqt−1)·d mod (pqt), with all of d′’s entries

in [−pqt/2, pqt/2).
3) Let dt = c+ d′ mod q.
4) Output (dt/qt) ∈ R(q/qt).

Computing d = c mod qt is most efficiently done in
coefficient form, which means inverting the mod-qt CRT
on the vector of mod-qt components of c. Computing d′

is done by multiplying the coefficients of d by the fixed
scalar (vqt − 1) modulo pqt. Adding d′ to c is done by
computing the double-CRT representation of d′ (i.e., ap-
plying each mod-qi CRT to d′), and adding it entry-wise
to c’s double-CRT representation. Computing dt/qt is done
by multiplying every mod-qi component of d′ by the fixed
scalar q−1t mod qi, which is computed in advance.

Ring reduction maps a ciphertext from ring n to smaller
ring n′ = n/2 by first key-switching the ciphertext a
“sparse” secret key sk, whose only nonzero entries in the
evaluation domain are at even indices.

RingReduce(c)RingReduce(c)RingReduce(c): Output {c′1, · · · , c′t} for each i =
0, . . . , w − 1 where c′i consists of the even entries of ci.

We group the key switching, modulus reduction and
ring reduction operations into a “Composed” Evaluation
Multiply (CompEvalMult) operation which includes a se-
quence EvalMult, KeySwitch and ModReduce every time
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TABLE 1
Bits of moduli qi vs. ring dimension for p = 2.

Ring dimension n 512 1024 2048 4096 8192 16384
Bit length log2(qi) 44 45 47 48 50 51

CompEvalMult is called. From [12] running a modulus
reduction operation results in a more secure ciphertext,
but ring reduction reduces security. Starting from a fresh
ciphertext cwith security level δ, we perform CompEvalMult
operations until the security of running ring reduction
would result in a ciphertext at least as secure as the original
ciphertext c. The equation we use to estimate a bound on δ
and schedule RingReduce is seen in Subsection 2.2.

Our scheme also supports a recent more efficient boot-
strapping operation [17] called after t CompEvalMult opera-
tions to obtain a refreshed ciphertext and support arbitrary
depth computation. We do not target our HEPU design to
optimize a full bootstrapping execution because of a core
bootstrapping step that requires a larger ciphertext modulus
than we can support in the HEPU hardware. However, our
HEPU accelerates internal bootstrapping operations includ-
ing CRT and iCRT bottlenecks.

2.2 Parameter Selection
From a correctness perspective in [4], we choose the smallest
modulus q1 so that it satisfies the expression q1 > 4prn1/2w
to ensure successful decryption as the last double-CRT
ciphertext modulus after all possible modulus reduction
operations have been performed. The parameter w ≈ 6 rep-
resents an “assurance” measure for correct decryption. We
select the remaining {q2, . . . , qt} such that qi > 4p2r5n1.5w5

so modulus reduction by a factor of qi sufficiently reduces
the noise after a (CompEvalMult) operation to allow success-
ful decryption after the modulus reduction operations. For
all reasonable parameter selections, q1 < {q2, . . . , qt}, so the
size of 4p2r5n1.5w5 is critical in the HEPU design. Table 1
shows the maximum number of bits required to represent
{q2, . . . , qt} for varying ring dimensions for p = 2. We can
attain potentially large performance optimizations in the
HEPU because the moduli use less than 64 bits.

To ensure security, we use the standard “root Her-
mite factor” δ as the security parameter. Experimental evi-
dence [18] suggests that δ = 1.007 requires roughly 240 core-
years on recent Intel Xeon processors to break. This setting
is currently believed to be adequately secure and provide
at least 80 bits of security [19]. Using estimates from [20],
[21], we need to ensure that n ≥ lg(q1 · · · qt)/(4 lg(δ)). Based
on tradeoff analysis in [12], we would need to use ring di-
mension n = 16324 to support depth d = 13 computations
securely without bootstrapping. A depth d = 13 is adequate
for many practical applications, such as secure encrypted
ASCII text comparison, which we explore experimentally
below.

Recent results have shown weaknesses in the NTRU
scheme when there is a large composite ciphertext modulus
q [22], [23]. In particular, there are known polynomial time
attacks against this NTRU scheme when q is larger than
2
√
n, which provides an additional constraint on the choice

of the ring dimension and modulus. However, despite these

recent findings, security of our experimental settings and
the validity of our acceleration are not impacted, and these
results do not impact the security of other schemes the
HEPU could support such as the BGV [6] scheme, among
others.

3 FPGA BASED CIRCUITS FOR HE MODULO
ARITHMETIC RING OPERATIONS

3.1 Pipelined VHDL for Fast Modulus Arithmetic

We implemented elementary operations in the form of ring
operations in Matlab and Simulink using the Fixed Point
toolbox. Matlab programs are coded into Simulink discrete
models, adding pipeline stages in the process (modeled as
unit delays and described in detail below). The resulting
Simulink is compared against the initial Matlab implemen-
tation to verify correctness. VHDL code is then generated
automatically using Mathworks’ HDL Coder tool. The re-
sulting VHDL can be validated against the original models
using the HDL Verifier tool.

Software implementations of the modulus operation
usually use some form of trial division to determine a
remainder. Implementing efficient modulus arithmetic re-
quires special numerical algorithms, such as Montgomery
Reduction [24], and Barrett Reduction [25]. These algorithms
avoid naı̈ve division by qi by scaling the integers so divi-
sions can be performed by a powers of 2, requiring only
simple bit shifts.

We implement the CRT and iCRT operations as an
EvalMult of the input with a “CRT twiddle table” vector
of length n, followed by a pipelined Number Theoretic
Transform (NTT) based on an Fast Fourier Transform (FFT)
circuit [26]. This NTT uses modulo integer instead of com-
plex arithmetic and uses a standard radix 2 “Butterfly”
operations which consists of one addition, one subtraction
and one multiply, all modulo the residue qi. Thus we need to
implement modulo subtraction in hardware as well. Taken
together, the CRT twiddle EvalMult and the NTT transform
an input ring into a form that allows an equivalent of
efficient polynomial multiplication, by simply performing
an EvalMult of the transformed inputs. The iCRT is a similar
combination of circuits, though connected in reverse order
(as discussed below.)

All the circuits we developed were heavily pipelined
to increase the maximum synthesizable clock speed, i.e.
there is a pipeline of many stages of arithmetic or logical
operations separated by clocked registers. Additionally, the
circuits are designed to operate on a stream of inputs.
For example, with our RingAdd, RingSub and RingMul
circuits, one element of each input ring is fed as input into
the operation, and one output is generated each clock cycle.
Each circuit is built with an input port which will pass a
modulus table index i along with the two input values,
selecting a particular modulus qi for the operation. This
requires us to fix the values of qi in a lookup table at FPGA
compile time. In operation, we concatenate all values of each
double-CRT ciphertext into their respective input streams
along with the appropriate t index, and thus can achieve
a steady state where one modulus operation is performed
each clock cycle. We process streams of input with several
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thousand entries, so the extra processing latency needed to
fill the pipeline is trivial as compared to total execution time.

3.1.1 Pipelined RingAdd and RingSub Circuits

implements: 
c = a+b; 
cgteq = (c>=q); 
cgte2q = (c>=(q+q)); 
c(cgte2q)= c(cgte2q) -q; 
c(cgteq)= c(cgteq) -q; 

Internal block diagram of Pipelined RingAdd Internal block diagram of Pipelined RingAdd 
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Fig. 1. Structure of RingAdd streaming modulo addition circuit imple-
mented using Simulink fixed point arithmetic for VHDL synthesis

When the inputs to the modulo add and subtract oper-
ations are bounded by the modulus qi, the two operations
simplify dramatically and do not require Montgomery or
Barret reductions.

Figure 1 shows the Matlab code for for EvalAdd and the
resulting RingAdd pipelined Simulink model. The circuit
has a latency of four clock cycles. The modulo subtraction
operation and RingSub circuits are designed similarly with
the addition of some conditional logic in the pipeline to
handle “negative” modulo values.

3.1.2 Pipelined RingMul Circuit

Modulo multiplication is a much more complicated opera-
tion than either addition or subtraction, even if the input
multiplier and multiplicand are bounded by qi. This is be-
cause the range of the output of the latter two are bounded
by a small integer multiple of qi, and can be adjusted
within the range of [0 . . . qi − 1] by simple comparisons
and subtraction of qi. For multiplication the product is
approximately twice the bit width of qi. Furthermore, large
bit width multiplications can severely restrict the resulting
clock rates of the circuits. To address these constraints, we
adopted an interleaved modular multiplication based on a
generalized Barrett reduction [27]. This multiplier has the
following properties:

• Long words of bit length L can be represented by N
smaller words of bit length S (i.e. four 16 bit words
to represent a 64 bit modulus).

• The multiplication is performed in N stages, where
each stage performs one modulo multiplication that
is L + S bits long. The stage can be pipelined to
perform one modulo multiply per clock cycle.

• Each stage has a Barrett modulus performed on the
partial product, which reduces overall bit growth of
the partial products to L + S. Each stage requires 3
multiplies, and all divisions required by the Barrett
algorithm are implemented as simple bit shifts.

• We chose to implement this circuit with L = 64, S =
16 resulting in an N = 4 stage implementation as
shown in Figure 2.

The algorithm from [27] is in the form of a loop that
executes N times. We unroll that loop and perform the
operations in a pipeline N stages long.

Figure 2 merits discussion to clarify the modular mul-
tiplication. Data flows into the circuit from left to right,
through the N = 4 stages of the RingMul modulo mul-
tiplier, each shown by the large component box labeled
with pipeline_Barrett_Mult ?[0 . . . 3]. Each stage is
pipelined and takes 47 clocks for the data to pass through.
On each clock, a new set of input data is presented, so that
at any point in time there are 47 inputs in various stages of
being processed by each block.

Below each stage is a set of 47 step shift registers (in-
dicated by z47) to propagate the inputs to the next stage.
Note that the shift registers ensure that data arriving on
each clock stay synchronized throughout the pipeline. The
input x_in is passed subsequently to each stage. The other
input y_in is divided up into 16 bit words, with the most
significant word passed to the first stage, the next 16 to
the second stage and so on. Finally, each staqe is identical,
incrementally accumulating the contribution of the product
of input x_in with one of the 16 bit words derived from
input y_in. The input to each stage, z_in is an 80 bit
accumulator that is initially set to zero, processed and then
sent as z_out to be used as the z_in for the next stage. Each
stage also has an output value out, which is ignored in all
stages but the last one, where it provides the final output
(x ∗ y) mod qi.

The circuit can support a full tower of multiple moduli
since all modulus related variables are stored in lookup
tables (i.e. constant coefficients mui, moduli qi and bit shift
sizes as discussed below) and are indexed by the input q_in
in the same manner as our RingAdd circuit. A constraint of
our Mathworks tool-chain is that all integer values be at
most 128 bits wide. Our selection of the algorithm word
sizes ensures that no single operation output exceeds this
limit. The details of a single stage of the modulo multiplier
are shown in Figure 3. This stage performs one iteration
of the loop from the algorithm in [27]. Readers are referred
to that source for full details of the algorithm. The circuit is
heavily pipelined and consists of seven internal stages:

1) A left shift of z_in and simultaneous product of
z_in and 16 bits of y_in;

2) The accumulation the shifted z_in and the product
and a subsequent right shift by a specific number
of bits determined by the bit size of the modulus
selected;

3) Another 128 bit product of the shifted result and a
pre-computed value mu_i based on the modulus;

4) Another right shift (based on the modulus) to form
the term q′ in the algorithm;

5) A final multiply of q′ and the selected modulus qi;
6) The subtraction of this product from the accumu-

lated z of the second stage, generating z_out;
7) A final stage that adjusts the value of out if z_out≤

qi.
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note, each stage is input registered, so we  

do not need registers between zin and zout 

Internal block diagram of RingMul 
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Fig. 2. The top level structure of the four-stage Barrett 64x64 bit RingMul streaming modulo multiply circuit
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The three 128-bit multipliers in Figure 3 are themselves
further pipelined in order to operate at a faster clock rate
than a non-pipelined version would. These components
were re-implemented as four parallel 32 × 32 bit products
of combinations of the upper and lower 32 bits of the
two inputs, with a pipelined accumulation of partial sums.
Adding additional pipelines of length four, both before
and after each resulting smaller product block allowed the
VHDL compiler, and place and route optimizer to map
these product blocks onto multiple hardware multipliers in
a distributed fashion. The resulting the RingMul circuit will
run at clock speeds in excess of 350 MHz. However, memory
access constraints limit the operation of the circuit to a
much lower rate, as will be seen later. The implementation
is agnostic to the particular FPGA technology used, and is
tunable for different FPGA technologies. The implementa-
tion results in total of 47 pipeline stages for each of the four
multiplier stages, for a total pipeline latency of 188 clock
cycles for the Barrett modulo multiplier. Considering our
system operates on large vectors of data, and that each clock
cycle can support any of the 32 moduli defined in the tower,
the impact of the pipeline latency is minimal.

3.2 VHDL Fast Forward and Inverse CRT

3.2.1 Pipelined NTT Circuit
We developed a pipelined circuit for performing a fast
CRT. We implemented the NTT using a standard pipeline
decimation in frequency FFT architecture known as the
Radix 2, Multipath Delay Commutator [28]. The fundamen-
tal structure of the Simulink model that performs the NTT
is identical to a complex version that computes the standard
FFT. The only difference is the use of modulo vs. complex
arithmetic in the radix 2 butterfly, and the replacement of the
complex roots of unity (known as the FFT twiddle factors)
with the modulus roots of unity. Specifically, in an full N
point FFT, each stage of the FFT requires a subset of the
N complex roots of unity for use in its specific butterfly
stages according to a fixed relationship of input index
k ∈ [0 . . . N − 1]. In the first stage, all N twiddle factors are
required (i.e. t(k) = exp (−2jπk/N)). Consequent stages
each require half of the twiddles used in the previous stage
(as will be seen later). Similarly, the NTT uses N twiddles
t s.t. tN mod q = 1 and tk mod q 6= 1 for k < N . There
is a one for one mapping of complex to modulo roots of
unity. The flexibility of our model-based approach allows
us to debug the code using complex input and complex
butterflies, and then use the same exact structure for the
NTT with only a change to the arithmetic in the butterfly
block. One additional design consideration, is that while the
forward and inverse NTT each have identical structures,
each requires a different set of twiddles (corresponding
exactly to the differences between the forward and inverse
FFT, as detailed in [26]). Thus, an input logic line dir_in
is propagated through the circuit to select between the two
sets of twiddle tables within each butterfly circuit.

The design trades off area for processing speed on the
chip, in that a pair of input values are read in and a pair
of output values written out each clock cycle, with no
stalling of the pipeline. Figure 4 shows the circuit for an
N = 64 point transform, where log2(N) radix 2 Butterflies
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Fig. 5. The structure of a single stage in pipelined NTT circuit (W = 16)

are required, though the last butterfly does not require
multiplies. This circuit simply requires the addition of a
new stage for every power of two added to the ring size.
Each stage is written so that one parameter W (related to a
power of 2) controls the size of all tables and delay lines in
each stage. A single stage is shown in Figure 5, consisting
of a computation section (left) and a shuffle block (right).
The computation section is shown in Figure 6 consisting of
a RingButterfly and switching logic driven by dir_in
to select the appropriate forward or inverse twiddle table
(thus, the same circuit computes either a forward or inverse
NTT). The RingButterfly is a modulo arithmetic version
of the FFT butterfly, and is shown in Figure 7, consisting
of a RingAdd, RingSub, and a RingMul, appropriately
pipelined. Inputs a_in, b_in, c_in, and qix_in, are the
two inputs to the butterfly, the current twiddle factor and
the selector for the modulus to use, respectively. In addition
to the computation block, each stage has a shuffle block as
shown in Figure 8. Note that 3/2N − 2 delay elements are
required for the shuffle blocks. The shuffle block enables
on-the-fly reordering of the input vectors, and is a direct
implementation of the commutator detailed in [28]. A key
point is that this implementation results in the fastest pos-
sible computation rate of the NTT, with one pair of output
samples being generated every clock cycle. By concatenating
input vectors sequentially, we keep the pipeline full without
stalling.

3.2.2 Hand Optimizations
The only difference between the forward and inverse CRT
is whether the NTT is pre- or post-multiplied with a special
“CRT Twiddle vector” (different from the NTT/FFT twid-
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dles). We programmed our VHDL wrapper that feeds the
data to the NTT and RingMul circuits so that this pre- or
post-multiplication is done in a pipelined manner. The input
and output data needs to be presented to the circuit in two
parallel streams, with the top stream containing the first
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stage. count_in is used to drive the shuffle selection circuit

half of the input vector and the bottom stream containing
the second half. The resulting output is in bit reverse order.
Rather than implement this in Simulink we incorporated
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these data manipulations into the VHDL wrapper around
the NTT portion of the CRT. These wrappers use double
buffering to keep the pipeline full.

Shortcomings of this design is that it utilizes a large
FPGA area, and each stage has its own “NTT Twiddle mem-
ory”. In practice, every stage’s twiddle memory is composed
of exactly the same even entries in the twiddle memory
preceding it in the pipeline. Duplicating this memory in
each stage is inefficient.

Each stage’s Twiddle memory is a Read Only Memory
(ROM) table, implemented with FPGA block RAM. The
first stage has the largest table, and each successive stage’s
twiddle table is half the size of the previous stage’s twiddle
table. To reduce wasting critical FPGA block RAM, the first
four stages share a table. One reason this is possible is
that the twiddle tables have been designed so each twiddle
table contains the same values as the values at the even
addresses in the previous stage’s table. The twiddle table
for the first stage contains the values for all the other tables.
The reason each stage needs its own table, however, is that
each stage needs to access its table simultaneously in order
for the CRT module to achieve the desired data throughput.
Fortunately, the FPGA Block RAM primitives are Dual Port,
which means that it possible to simultaneously read from
two independent addresses. By clocking the dual port block
RAM at twice the rate (200 MHz) of the rest of the CRT
logic (100 MHz), we are able to construct a virtual quad port
block RAM. For each cycle of the CRT clock (100 MHz), two
addresses are presented to each port of the large twiddle
table, one on each cycle of its faster clock (200 MHz). As a
result, the large twiddle table is able to sustain a throughput
of four independent reads per clock cycle, and saves the
resources required by the twiddle tables for stages 2048,
1024, and 512, as shown in Figure 9. After these savings,
our design still uses 98% of the available FPGA Block RAM
(BRAM) resources of our selected FPGA.

Top / Bottom 
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1024 
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Twiddle 256 

Twiddle 1 

Twiddle 0 

… … 
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64 
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64 64 Stage Logic 

Stage with bypass 

Twiddle 

Fig. 9. VHDL wrapper that performs required I/O reordering, sharing of
twiddle ROM and stage bypass in the NTT.

3.3 Pipelined RingRound Circuit

In addition to our implemented ring and CRT opera-
tions, we implemented a function used in our Com-
posed Eval Mult (CompEvalMult) called RingRound. The
CompEvalMult function is implemented as a C function that
calls several FPGA primitives. Since RingRound requires

modulus operations using 2 ∗ qi instead of qi it is neces-
sary to implement it in hardware with its own RingMul
dedicated to this new set of moduli. Figure 10 shows the
Simulink Model of RingRound which consists of a modified
RingMul circuit (with a modified set of moduli 2qi), and a
pair of operations selected by the range of the result which
ensure the output is bounded within the appropriate range.
The operations are all performed with pipelined circuits.
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Fig. 10. Structure of RingRound circuit

3.4 Further VHDL Optimization
Xilinx advises that selecting synchronous vs. asynchronous
reset in the Simulink HDL generation parameters will result
in VHDL that is mapped more efficiently onto the the
DSP48E blocks on the Virtex 7 FPGA, resulting in faster
clock rates [29]. Most of our circuits utilize lookup tables,
both for storing the moduli qi and for storing various NTT
twiddle table entries. Our initial implementation of the table
lookup using the Simulink Lookup block maps the resulting
ROM directly into FPGA gate circuitry. This can increase
the place and route time drastically for very large tables,
and also can result in slower circuits. Placing an additional
delay line, with a “ResetType = none” HDL property lets
the Xilinx tools map the table to block ram in the FPGA, for
more efficient resource utilization [29].

A possible way to increase performance is to increase
clock rates. It would be possible to increase the clock rate
with some re-design, but this is nontrivial engineering task
that would require additional design effort. Cycle time is
constrained by the critical path, which is the path with
the longest delay between two flip flops. The critical path
depends on many factors, including fanout, routing density
and the amount of logic between flip flops. The fact that we
are able to run the lookup tables at twice the clock rate does
not reduce the critical path in our design, and even further
constrains the placement and routing.

3.5 FPGA Hardware Selection
We identified that we needed an off-the-shelf FPGA with
evaluation board that provides a large number of hardware
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multipliers and large amount of block RAM on the chip so
that accelerator would be both capable and low-cost. We
selected the Virtex 7 VC707 evaluation board as a solution
that met our FPGA sizing requirements. Our largest ring
size of 214 requires 87% of DSP48 blocks and 98% of block
RAM on the board’s Virtex 7 485T chip. This evaluation
board has a PCI Express (PCIe) interface for connecting
with the host PC motherboard when hosted in the same
PC chassis. Additionally, during development, the on-board
DDR3 memory was used for storage of encrypted variables,
and high speed Ethernet was used for connecting the board
with multiple PC hosts in the development environment.

4 HEPU ARCHITECTURE

4.1 System Architecture
The HEPU was designed to operate as an attached processor
to accelerate HE primitive operations. We wanted flexibility
to operate as either a stand-alone network attached proces-
sor or as a PCIe-based device in a host computer. This gives
the most flexibility in the use of the device, but PCIe-based
is more efficient.

We designed and developed an attached processor in
which a software programmable micro controller would
manage I/O communications with the host via Ethernet or
PCIe memory map, manage on board data storage in the
form of an encrypted register file, and manage data transfer
to and from the HE primitive modules in as efficient manner
as possible. We used the Xilinx Platform Studio Microblaze
soft core processor and AXI4 interconnect architecture to
implement the HE processor. Figure 11 shows a system
block diagram of the FPGA system for both the Ethernet
and PCIe hosted configurations. The Xilinx platform studio
enables us to implement our HE primitives as streaming co-
processors on the AXI bus. An AXI4 lite bus is used to set
control parameters of our Ring operation circuits, such as
ring size and tower size.
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Fig. 11. System Block Diagram showing major components and the
AXI4 interconnect for the various implementations of the HEPU. The
components inside the dotted boxes are included for the network at-
tached co-processor build and removed for the PCIe hosted build.

A high level diagram of the PCIe hosted HE accelerator
architecture is shown in Figure 12. At the top of the diagram

Fig. 12. HE hardware accelerator system architecture

is a block labeled “Applications”. This represents user appli-
cations that use the HE accelerator by communicating with
the HE Kernel Driver, which exposes a Linux “character
device”. The user application sends commands and data to
the HE Kernel driver by writing packets of data to the HE
character device, and likewise the user application receives
responses and status via data packets from the HE character
device. The packet packed-based communication protocol
allows the user application to be agnostic to whether the
HE Accelerator is on a local PCIe bus, on separate network-
connected device.

The core HE Kernel Driver is written in C. The same
code runs in the Linux kernel or on a soft-core Microblaze
processor inside the FPGA depending on if it is configured
for PCIe or ethernet operation respectively. This portable
driver code instantiates a set registers, in memory, which
store the HE input and output data, as well as intermediate
results. When the code runs on Microblaze, these registers
exist in the FPGA board’s DDR3 RAM. When the code runs
in the Linux Kernel, these register exist in PC memory.

In Figure 12 the (AXI Full Interface) arrow between
the Input DMA module and the PCIe interface originates
at the DMA module, even though the data flows in the
other direction. This is because the DMA modules are both
a Master, meaning they initiate the data transfers. One
DMA Master (Input) reads from PC memory, and the other
(Output) writes to PC memory. The DMA modules also have
an AXI slave port, for control, which is written to and from
by the PC (via the PCIe interface). Communications packets
(described below) are sent between the application and the
Kernel Driver. In the PCIe implementation this is a direct
memory socket whereas in the Ethernet implementation
data packets are sent via Gigabit Ethernet rather than to
mapped PCIe memory. We do not describe the Ethernet im-
plementation in detail because it was used for development
purposes only.

4.2 Control of HE Circuits
Figure 13 depicts the interior of the HE Processing Unit
module. An HE Primitives module is fed by two 256-bit
wide data streams (each containing four sequential 64 bit
words) in the AXI clock domain, but internally processes
two 64-bit streams in a different clock domain called the
“math clock” domain. The conversion from 256 to 64 bit
words are done using a simple de-multiplexing circuit,
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Fig. 13. Integration of HE Core containing primitives with the AXI stream
I/O data streams

converting one 256 bit word into four 64 bit words clocked
sequentially into the HE domain). The large I/O bitwidth
was selected to maximize the data in and out of the HE
Primitives module. In this design, the math clock runs at
100 Mhz, and the AXI clock runs at 125 MHz. Separating
the HE math clock domain from the PCIe clock domain
give design flexibility. The frequency of the AXI clock is
determined by the speed of the PCIe interface. The math
clock frequency can be set to the maximum supportable
HE Core logic clock frequency. We are conservative with
the math clock frequency because we have internal (NTT
twiddle) memories that are run at twice this frequency.
As the HE core circuits are improved and become more
efficient, we will be able to increase the rate of the math
clock. The AXI clock may also be doubled if we move to a
PCIe Gen 3 architecture, something we were not able to do
within the project budget. When running with Ethernet, the
main AXI4 interconnects remain a 256 bit bus connecting
the DDR3 RAM with the HE core. In this mode, the I/O rate
into and out of DDR3 memory limits the overall processing
speed of the system. The memory controller used was the
standard Xilinx Virtex 7 IP block configured for 256-bit
wide data access to the DDR3 RAM present on our VC707
evaluation board.

Figure 14 shows the internal structure of the HE core and
how the inputs and output streams are routed to the various
HE primitive functions. The core HE block is configured
by control lines and performs one of several operations
on the data using the RingAdd, RingSub, RingMul, NTT,
or RingRound circuits. For forward CRTs, the NTT block
is fed with input In0, and the NTT module’s output is
then multiplied with input In1 using the RingMul module.
Similarly, for inverse CRTs, inputs In0 and In1 are fed into
the RingMul module, and that output is fed into the NTT
module. This architecture conserves FPGA resources since
the RingMul inputs for CRT operations (the CRT twiddle
vector) arrive from In1 (via DMA from DDR3 ram or PC
memory depending on hosting) and do not need to be
stored locally as ROM tables in the FPGA. This reduces the
amount of FPGA block memory used by the design. Each of
the operations in Figure 14 receives their input data pipe-
lined first by ring elements, then by tower indices. Thus all
input and output for a complete double CRT representation

Fig. 14. HE Core

TABLE 2
Application Level Control Protocol Keywords

Keyword Function
LOAD Transfer the contents of the message (ASCII)

into a particular Input register.
GET Request the contents of an output register to be

loaded into a message buffer and sent to host.
STATUS Generates a short report on the FPGA board

console for debugging register contents and pro-
gram loaded.

PROG Loads a sequence of operations to be performed
on the register data.

RUN Starts a software Finite State Machine to run the
stored program to completion.

CRT, ICRT, CEM A single command that will LOAD two regis-
ters, perform a forward CRT, inverse CRT or
CompEvalMult on them and GET the output.

RESET Resets the system to its original state.

is streamed in one operation. The CRT operation requires
slightly different interfaces that change the order of the
input and output data.

5 HEPU COMMUNICATION PROTOCOLS

A Linux Driver is used to interface with the user Applica-
tion code. It translates the Application Level text interface
messages to a binary format message and handles all I/O to
the FPGA board. The software controlling the system on the
Microblaze is written in C code. Registers are allocated out
of the PCIe Kernel memory. All Microblaze code is executed
in Linux Kernel Space.

5.1 Application Level Programming Interface
The communication protocol between the user application
code and Linux Driver is ASCII message based. Messages
can contain multiple instructions separated by a newline
sequence. Each instruction starts with a keyword that de-
fines the rest of the instruction format. The list of allowed
keywords are shown in Table 2. The user application can
string commands together to program the FPGA to operate
on several pieces of encrypted data in the form of an assem-
bly language. The FPGA accelerators assembly language has
the syntax shown in Table 3.

An example simple program in now given in Algo-
rithm 1. The program first moves encrypted data from input
register 0, to scratch register 0, then repeats the process for
a second input variable to register 1. It then computes a
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TABLE 3
Table of Available Opcodes for Application Program

Opcode Description
LOAD Moves data from an input register to scratch register, all

active tower elements are moved.
STORE Moves data from a scratch register to output register, all

active tower elements are moved.
RADD Sets up DMAs of the two input and one output registers

to the RingAdd circuit. All active tower elements are
processed in one large data flow.

RSUB Same as RADD, except the RingSub circuit is the target
of the DMAs.

RMUL Same as RADD, except the RingMul circuit is the target
of the DMAs.

CRT Sets up DMAs of the one input and one output reg-
isters to the CRT circuit. All active tower elements are
processed in one large data flow.

ICRT Same as CRT except an inverse CRT circuit is used.
EMULC Executes a CompEvalMult, in software which in turn

executes several ring primitives. Output register is one
tower smaller than the input registers.

RingAdd and RingMul using the two inputs, and storing
the result in scratch registers 2 and 3. It then stores those
three results in output registers 0 and 1.

R0 = LOAD(In0)
R1 = LOAD(In1)
R2 = RADD(R0,R1)
R3 = RMUL(R0,R1)
Out0 = STORE(R2)
Out1 = STORE(R3)

Algorithm 1: Sample HEPU Program

Once the program is loaded, typical system operation
would be for the user to execute two LOAD commands to
load the contents of input registers 0 and 1 with encrypted
data (the encryption being done on the secure host). The
user then executes a RUN command to allow the Homomor-
phic operations to be run on the unsecured FPGA processor.
Then subsequent calls to GET commands will transfer the
resulting encrypted result data back to the host. Finally
decryption would be done on the secure host.

6 PERFORMANCE EVALUATION

We evaluated the performance of our FPGA co-processor
of the bottleneck CRT operation, for the core Composed
Evaluation Mmultiply (CompEvalMult) and a broader use-
case for encrypted string comparison. We made apples-to-
apples experimental comparisons between these operations
implemented in:

1) Native Matlab run in the Matlab interpreter.
2) Compiled C run on a commodity Linux desktop.
3) Our PCIe-based FPGA co-processor accelerator with

operations called from Matlab.

We also compare performance with recent comparable work
on LTV implementations and lattice crypto hardware accel-
erators, inclusive of [10], [11], [30], [31]

We ran our Matlab and compiled implementations on a
single core on a server with 2.1GHz Intel Xeon processors
and 1TB of RAM in a CentOS environment. Although we

had access to many resources, we used at most 10 GB of
memory. We on purpose do not include FPGA setup time
in our analysis as this is amortized over long-term com-
putations using the FPGA accelerator. We developed soft-
ware reference implementations in the Mathworks Matlab
environment and used the Matlab coder toolkit to generate
single-threaded ANSI C representation of our implementa-
tion [12].

6.1 Evaluating CRT Performance

Experimental results on CRT execution times for various
ring dimensions can be seen in Figure 15. There is more than
one and a half orders of magnitude performance improve-
ment by offloading CRT computations from the CPU to the
FPGA, even though we include the round trip call time time
for the CRT operation on the FPGA in our experimental
analysis to increase operational reality. The FPGA curve
has a distinct “J” shape with slightly increased runtimes at
smaller ring dimensions on the FPGA. This is a result of
the FPGA communication time overhead and is a common
artifact of PCIe bus co-processor behavior.

Fig. 15. Runtimes of CRT in various CPU and FPGA Accelerator Con-
figurations

In Table 4, we provider further comparison between the
experimentatal observations of CRT runtimes in the FPGA-
based HEPU and our reference software implementation
run on a CPU, with the runtimes of related hardware-
accelerated CRT implementations in [10], [11], [31]. As can
be seen in the table, [10], [11] are difficult to compare to
our results as experimental results from this prior work is
run at a higher ring dimension than our largest experiments
on the HEPU. However, although the ring dimensions for
results in [10], [11] are double the maximum ring dimension
we experimentally support, the runtimes of the HEPU are
lower than the prior reported results from all of these three
prior works. There is a chance that [10] may report runtimes
comparable to results from our HEPU implementation at
ring dimension 16384 if run at that level.

6.2 Evaluating CompEvalMult Performance

When designing circuits for programs run over homomor-
phic encryption schemes, especially LTV implementations,
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TABLE 4
Table of Comparative CRT Performance.

Ring
Dimen-
sion

Compiled
CPU
Run-
time

FPGA
Run-
time

Runtime
Re-
ported
in [10]

Runtime
Re-
ported
in [11]

Runtime
Re-
ported
in [31]

512 2.32 0.239 NA NA NA
1024 3.87 NA NA NA NA
2048 6.48 0.399 NA NA NA
16384 52.3 1.457 NA NA 4
32768 NA NA 5.743 89 NA

TABLE 5
Table of Comparative CompEvalMult Performance.

Ring
Dimension

Compiled
CPU
Runtime

FPGA Run-
time

Runtime
Reported in
[30]

512 16.03 3.7 NA
1024 29.15 8.7 92
2048 49.17 15.5 NA
16384 463.92 105 NA

the primary practical bottleneck at a circuit program level is
the CompEvalMult operation. One of our goals in designing
the HEPU was to accelerate the CompEvalMult operation,
primarily by outsourcing the CRT and its inverse operations
in the ModReduce operation to the HEPU, in addition to
other supporting operations as possible.

Our experimental results on the CompEvalMult opera-
tion can be seen in Table 5. We show experimental results
from our reference software implementation run on a com-
modity CPU, our HEPU runtimes supported by an FPGA,
and experimental results from another LTV software as a
basis for comparison. We are unaware of prior publications
on hardware accelerators with comparable reported experi-
mental results for the LTV CompEvalMult operation.

Note that the results reported in [30] are slightly slower
than the experimental results from our software reference
implementation. This gives some confidence that our refer-
ence software implementation is relatively effecicient and
is a reasonable basis of comparison for the relative per-
formance of hardware-accelerated homomorphic encryption
operations in our HEPU.

6.3 Evaluating String Comparison Performance
We evaluate performance improvement with the more op-
erationally relevant encrypted string comparison operation
EvalCompare() from [32]. We run the encrypted string
matching algorithm with n = 16384 and p = 2, over a
range of signature lengths t. This provides a operationally
realistic level of security (δ < 1.007), which is currently
believed to be adequately secure and provide at least 80 bits
of security [19]. The results of the performance comparison
can be seen in Figure 16. Similar with the CRT results, our
FPGA-accelerated implementation is more than two orders
of magnitude faster than the other implementations.

7 RELATED WORK

Our work is driven by recent advances in Fully Homomor-
phic Encryption (FHE), inclusive of theoretical and protocol

Fig. 16. Encrypted Signature Comparison Runtime vs. Signature Length
for Various Computation Devices

advances [4], [6], and implementation advances in software
[2] and hardware [8], [9], [10], [11], [31], [33], [34]. Early
discussions of our design methodologies are in [35], but
earlier papers did not discuss the an HEPU co-processor
design, experimental results or provide a detailed discus-
sion of the encryption system design. There has been some
prior public work on FPGA implementations for HE which
focus on improving efficiency in CRT circuits [9], [10], [11],
[31], [33]. This most relevant prior work are specialized to
specific classes of operations, rather than as a co-processor.

Despite advances in HE implementations, there has been
little published on the application. The design of encrypted
string search method we use here as a benchmark is dis-
cussed in more depth in [32]. It is also common to use AES
circuits as benchmarks for HE implementations instead of
the more general CRT operation [36], [37].

8 DISCUSSION AND ONGOING ACTIVITIES

As general lattice encryption and specifically HE technology
matures, native high performance implementations in hard-
ware co-processors can be increasingly optimized and will
increasingly allow for easier practical adoption of encrypted
computing technologies. After designing an FPGA-based
lattice encryption accelerator and co-processor, we identify
several areas for further advanced refinement. Specifically,
our design decision on double-CRT ring element representa-
tions with a maximum tower size of 32 is larger than what is
needed for viable bootstrapping at high security. Reducing
this number will allow use of smaller FPGA chips, at lower
cost. The system currently runs 8lane x8 PCIe Gen1, which
provides approximately 2 Gb/sec per lane for a total 16
Gb/sec throughput. If we moved to using PCIe Gen2, the
throughput would double to 4 Gb/sec per lane. While our
current hardware supports Gen2 PCIe, however the PCIe IP
block used did not. It should be possible to further optimize
by moving to Gen2 PCIe by upgrading the FPGA tools or
developing new PCIe interface logic.
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As an alternative hardware acceleration approach, dra-
matic recent improvement in usable GPU technology has
brought wider bit width operations needed for secure and
practical HE closer to reality. GPUs have a deeper pene-
tration into the cloud computing commodity market than
FPGAs currently have, and as such, may prove a valuable
implementation platform for acceleration of HE. There have
been some successful early efforts to support homomorphic
encryption with GPU-based implementation [31], [37], [38].
Future steps include expanding upon this prior work to
support GPU-computing arrays, where homomorphic en-
cryption operations are performed on parallel GPU devices.
A research challenge in this area is entailed by potential
inter-process communication between GPU devices, and the
need to coordinate and schedule operations across GPU
devices to minimize interprocess communication, reduce
possible interprocess communication bottlenecks and maxi-
mize overall processing throughput.
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APPENDIX
HOMOMORPHIC ENCRYPTION INTRODUCTION

In this appendix, we provide a brief introduction to homo-
morphic encryption. More extensive introductory material
on homomorphic encryption can be found in [39], [40]. A
survey of recent relevant implementation efforts can also be
found here [41].

Homomorphic encryption schemes, like all encryption
schemes, make it computationally difficult to recover any
partial information about a plaintext from its encrypted
ciphertext (under precisely formulated hardness assump-
tions) [42]. This is no different from any modern encryption
scheme such as AES and RSA. Unlike other modern encryp-
tions schemes, homomorphic encryption enables computing
on encrypted data without decrypting it.

Homomorphic encryption can be used to:

• Encrypt plaintext data into ciphertext.
• Perform special algebraic operations on the cipher-

text to obtain new ciphertexts.
• Decrypt the resulting output ciphertext into new

plaintext.
• The decrypted output plaintext is equivalent to run-

ning special algebraic operations corresponding to
the algebraic operations performed on the ciphertext.

Homomorphic encryption can thus be used to perform
computations on encrypted data, without exposing the data
itself. Examples of homomorphic encryption schemes in-
clude the ElGamal [43] and Paillier [44] encryption schemes.
ElGamal is multiplicatively homomorphic, in that the de-
crypted product of two ciphertexts is equal to the product
of the corresponding plaintext. Paillier is additively homo-
morphic, in that the decrypted product of two ciphertexts is
equal to the sum of the corresponding plaintext.

The lattice-based encryption schemes which we can sup-
port with our HEPU can support arbitrary computations,

beyond just addition or multiplication operations. Examples
of these lattice-based homomorphic schemes include [4], [6],
[7]. These more general homomorphic encryption scheme
provide a circuit-style computation model with EvalAdd and
EvalMult as the core operations performed on ciphertext,
with the corresponding plaintext operations being polyno-
mial addition and multiplication, respectively.


