
1

Scalable, Practical VoIP Teleconferencing with
End-to-End Homomorphic Encryption
Kurt Rohloff, Member, IEEE, David Bruce Cousins, Senior Member, IEEE,

Daniel Sumorok, Member, IEEE

F

Abstract—We present an approach to scalable, secure Voice
over IP (VoIP) teleconferencing on commodity mobile devices
and data networks with end-to-end Homomorphic Encryption
(HE). We assume an honest-but-curious threat model where
an adversary, despite observing all communications between all
teleconference participants and having full access to teleconfer-
encing servers, is unable to obtain unencrypted data and subse-
quently listen to the conversation. Prior secure VoIP teleconfer-
encing services have relied on 1) all teleconferencing clients to
maintain point-to-point encrypted links with other clients or 2) a
teleconferencing server which can access and manipulate VoIP
streams unencrypted. Our approach mixes VoIP data streams
at a single VoIP teleconferencing server only while encrypted
and data streams are never decrypted at the teleconferencing
server. Our approach is based on a previously known encryption
scheme we implement. Innovation in our approach comes from
a novel efficient VoIP encoding scheme to greatly reduce the
circuit depth needed to support homomorphic mixing of the en-
crypted VoIP data, parameterization for relatively low bandwidth
usage and implementation and integration of our designs into
an existing open-source VoIP infrastructure. We experimentally
evaluate our end-to-end encrypted VoIP teleconferencing ap-
plication running on commodity iPhones, mixing at the VoIP
servers on the lowest-cost Amazon AWS cloud server instances
and communicating on commercial data networks with com-
mercial cellular data and commodity 802.11n wireless access
points.

• K. Rohloff is with the Cybersecurity Research Center in the Col-
lege of Computing Sciences, New Jersey Institute of Technology,
Newark, NJ, 07102.
E-mail: rohloff@njit.edu

• D. Cousins and D. Sumorok are with Raytheon BBN Technolo-
gies, Cambridge, MA, 02138.
E-mail: {dcousins,dsumorok}@bbn.com

Sponsored by the Defense Advanced Research Projects Agency
(DARPA) and the Air Force Research Laboratory (AFRL) under
Contract No. FA8750-11-C-0098. The views expressed are those of
the authors and do not necessarily reflect the official policy or position
of the Department of Defense or the U.S. Government. Distribution
Statement “A” (Approved for Public Release, Distribution Unlim-
ited.)

1 INTRODUCTION

Teleconferencing is an important aspect of mod-
ern professional life that supports long-distance
commerce and collaboration. With the increased
prevalence and reliance on teleconferencing tech-
nologies, there is an increased need to provide se-
cure, scalable teleconferencing technologies. Voice-
over-IP (VoIP) teleconferencing is becoming increas-
ingly important due to the prevalence of low-cost
portable computing device and easy, economical
data network access. There is a perceived risk that
compromised data networks or VoIP servers could
be used by adversaries to steal and leak sensitive
information communicated through VoIP in tele-
conferences.

Secure VoIP teleconferencing has been partially
served through point-to-point communication links
which are made secure with point-to-point encryp-
tion technologies [1], [2]. This approach does not
scale. When there are more than a handful of partic-
ipants in a teleconference call, O(n2) point-to-point
encryption links are needed, leading to bandwidth
issues which degrades the quality of user experi-
ences. To address the scaling limitation, voice sig-
nals could be sent to a centralized teleconferencing
server that mixes VoIP signals to support interactive
teleconferencing and the mixed signals are returned
to the participants.

Up to now, VoIP signals on a teleconference
server needed to be mixed in the clear, mean-
ing that VoIP signals need to be unencrypted at
the server. VoIP teleconferencing servers are often
hosted in a semi-secure environment, such as by
commodity cloud providers such as Amazon AWS
1 or Microsoft Azure 2. This creates opportunity

1. https://aws.amazon.com/
2. https://azure.microsoft.com/



2

for adversaries to snoop on VoIP data such that if
the server is compromised, voice data could leak
to adversaries. As such, teleconferencing solutions
have been vulnerable to man-in-the-middle attacks
of various types [3].

Taken together, there is a need for a VoIP tele-
conferencing capability with end-to-end encryption
where VoIP signals are never accessible in the clear
except by clients with decryption keys. We address
these limitation to provide a teleconferencing ap-
proach where data is mixed while encrypted. This
approach prevents an adversary from obtaining the
communications of teleconference participants even
if the adversary observes all communication and
data manipulations performed by the teleconfer-
ence server.

To use the cryptosystem, teleconferencing clients
encode their voice samples with an additive encod-
ing scheme, encrypt their encoded voice data under
an additive homomorphic encryption scheme, send
their encrypted voice samples to a VoIP telecon-
ferencing server. The VoIP teleconferencing server
performs an encrypted signal mixing operation on
the encrypted VoIP signals. In our scheme, this en-
crypted mixing operation consists of homomorphic
addition on the encrypted voice signals. The tele-
conference server sends the result of the encrypted
mixing back to the clients. The clients then decrypt,
decode and play back the result. Our scheme relies
on the pre-sharing of a common private key for our
additive homomorphic encryption scheme.

The encoding operation converts raw VoIP sig-
nal into a data representation which is natively
encrypted by the additive homomorphic encryp-
tion scheme. Our homomorphic scheme natively
encrypts the integer coefficients of a polynomial,
and the encode operation converts raw floating-
point VoIP signals into the integer coefficients of a
polynomial. The decode operation is the inverse of
the encode operation.

In modern VoIP teleconferencing schemes, the
mixing operation merges VoIP signals. In partic-
ular, a mixing operation takes the encoded VoIP
signals, each representing a single client speaking,
and outputs a single signal that encodes all of the
clients’ voices. Different VoIP encoding schemes use
different encoding approaches.

Innovation in our approach comes from:

• A novel efficient VoIP encoding scheme that
greatly reduces the circuit depth needed to
support homomorphic mixing of the en-
crypted VoIP data.

• A homomorphic mixing operation that
solely uses homomorphic additions on en-
crypted data.

• An additive homomorphic encryption that
is a simplification of a prior well-known
scheme.

• Parameterizations to provide security, high
voice quality and relatively low bandwidth
usage.

• Implementation and integration of our de-
signs into an existing open-source VoIP in-
frastructure.

• Experimentation of our prototype on low-
cost mobile and cloud computing infrastruc-
ture and commercial data networks.

The cryptographic basis of our approach is an
efficient implementation of an additive homomor-
phic encryption scheme. The cryptosystem builds
from recent advances in practical homomorphic
encryption [4]. In particular, our approach is based
on recent advances in lattice-based homomorphic
encryption and is a simplification of the LTV scheme
[5] which is itself an NTRU-like cryptosystem [6].

Many modern VoIP communication systems rely
on logarithmic encoding schemes which dedicate
more bits of the encoding to the most significant
bits of the encoded data. Our approach relies on
an additive encoding scheme which greatly reduces
the circuit depth of the VoIP mixing operation.

We integrate our voice data encoding and en-
cryption implementations with the existing Mum-
ble/Murmur open-source VoIP teleconferencing
framework 3. We experimentally evaluate our end-
to-end encrypted VoIP teleconferencing application
running on commodity iOS-based clients such as
iPod Touches and iPhones, mixing on the lowest-
cost Amazon AWS cloud server instances and
commercial cellular data networks or commodity
802.11n wireless access points.

A high-level overview of our approach is men-
tioned in [7]. The underlying cryptosystem without
implementation is presented in [5] and an early
implementation of this cryptosystem without appli-
cation to VoIP is in [4].

The paper is organized as follows. Section 2
discusses related teleconferencing approaches and
applied homomorphic encryption efforts. Section
3 discusses our security model, assumptions we
make of the adversary and design goals for our
scalable VoIP teleconferencing capability with end-
to-end encryption. Section 4 discusses the overall

3. http://www.mumble.info/



3

architecture of our end-to-end encrypted VoIP tele-
conferencing capability. In Section 5 we describe
our simplification of the LTV-based homomorphic
cryptosystem [5] that we build from. We introduce
our custom VoIP coding scheme in Section 6 and
the homomorphic mixing operation in Section 7. In
Section 8 we describe integrating the cryptosystem
with the Mumble open-source VoIP framework.
Section 9 discusses our engineering trade-offs in
parameterizing the coding scheme, the cryptosys-
tem and the VoIP mixer. In Section 10 we discuss
experimentation. We present a security analysis in
Section 11. We conclude the paper with a discussion
of our insights and future work in Section 12.

2 RELATED WORK

Advances in secure VoIP technologies have focused
on providing security for data in transit [2], address-
ing identity and key management [8], among many
other security issues [9].

There has been some recent work to address
these prior challenges, including using Secure
Multi-Party Computation (SMC) [10] to mix en-
crypted VoIP signals over multiple servers, with
the restriction that each client needs to trust a
server. This prior SMC-based approach is exper-
imentally demonstrated by integrated with the
Mumble/Murmur software, and our team shared
integration and implementation advice with the
authors of [10].

The basis of our approach builds on lattice-based
Homomorphic Encryption (HE) which has previ-
ously been considered inefficient for broad practical
use [11]. Solutions to HE runtime challenges have
been explored through several means, including by
improving the theoretical efficiency of the under-
lying scheme [12], [13], and by developing more
efficient implementations of these schemes [14]–
[18]. Despite these advances in HE schemes and
implementations, there are few applications of these
technologies.

Besides the runtime challenges of HE designs,
there is limited experience with data structures and
representations of homomorphic encrypted data
[19]. Modern lattice-based HE provides a very dif-
ferent computation model as compared to the more
well understood RAM compute models. The port-
ing of familiar data structures and algorithms (such
as for VoIP mixing) for efficient use with HE is
an ongoing challenge, especially for highly efficient
encrypted execution of these algorithms over the

encrypted input data. We expand beyond single-
bit-per-ciphertext encodings by placing entire VoIP
data frames into each ciphertext. These designs are
in some sense much simpler than existing current
industry practice, such as the mu-law encoders [20]
which are common in modern VoIP systems.

3 THREAT MODEL AND FUNCTIONAL GOALS

To frame the functional and security goals of our
end-to-end encrypted VoIP teleconferencing con-
cept, we present our high-level design considera-
tions:

1) Encryption Work Factor: We should pro-
vide an encryption work factor adequate
to protect teleconferences. For our lattice-
based scheme, current security estimates
indicate that a root Hermite factor δ < 1.007
generally provides 80 bits of security and an
adequate work factor [21].

2) Server Compromise: The confidentiality of
the data should be preserved even if the
server is fully compromised by an honest-
but-curious adversary who observes all in-
ternal server operations.

3) Latency: There should usable end-to-end
latency of less than 150 ms, which is con-
sidered acceptable in practice [22].

4) Sound Quality: There should be acceptable
sound quality, preferably with full-duplex
so users could listen while simultaneously
speaking.

5) Scalability: The teleconferencing capability
should scale to support more than two par-
ticipants without noticeable degradation in
sound quality or latency.

6) Bandwidth Usage: The end-to-end en-
crypted VoIP teleconferencing capability
should ideally require less than an order
of magnitude ciphertext expansion over un-
encrypted or even current AES-encrypted
approaches.

7) Wide Geographic Area: The capability
should operate over a wide geographic
area, ideally trans-continental if not inter-
continental, without an unacceptable degra-
dation in sound quality or latency.

4 END-TO-END ENCRYPTED VOIP TELECON-
FERENCING ARCHITECTURE

We now describe the high-level architecture of our
end-to-end encrypted VoIP teleconferencing capa-



4

Fig. 1: VoIP Encoding

Fig. 2: VoIP Decoding

bility. Multiple clients, possibly from multiple ac-
cess points, connect over a commodity data net-
work, such as the public Internet, to a VoIP server.
Each client samples a stream of voice data, encodes
the voice data stream and encrypts it. The client
sends its stream of encrypted VoIP data to the
VoIP server. The VoIP server receives the encrypted
VoIP streams from multiple clients. The VoIP server
performs homomorphic mixing operations on the en-
crypted voice streams and sends the encrypted re-
sults back to the clients. The mixed encrypted VoIP
data received by each client is then decrypted by
the clients, decoded and played back to the clients’
users.

Figure 2 shows how the returning stream of
encrypted VoIP data is decrypted into plaintext, and
the plaintext is decoded into a stream of digitized
audio samples. The audio samples are then played
back to the user through the devices’ speakers.

A common approach to merge digital audio
signals in a teleconference session at the server is
to add the encoded samples of unencrypted (plain-
text) digital audio signals from the client. The func-
tion which merges the encoded, but unencrypted,
sampled digital audio signals at the teleconference
server is called the Mix function. Although this
design relies on nontrivial encoding and decod-
ing processes, the Mix function can be a simple,
low-depth operation at the teleconference server.
This suggests an approach to encrypted VoIP tele-
conferencing to design a homomorphic encrypted
version of the plaintext Mix function. We call this
homomorphic encryption version of the Mix func-
tion as the EvalMix function, and the design of
Mix suggests that EvalMix could be built by solely
homomorphically adding encrypted audio signals.
Hence, both an additive homomorphic encryption

scheme and an additive encoding scheme would
be needed for this to approach to work. (We say
that an encoding scheme Encode() is additive if
Encode(a+ b) = Encode(a) + Encode(b).)

A primary challenge is then to design a ho-
momorphic evaluation function EvalMix such that
for two voice samples v1 and v2 and their respec-
tive encodings Enc(pk, v1) and Enc(pk, v2), we know
that the result of mixing the signals, Mix(v1, v2)
is equal to Dec(sk,EvalMix(Enc(pk, v1),Enc(pk, v2)))
for an encoding of the digital audio stream into
plaintext. We should be able to parameterize the
Enc and EvalMix operations so that they are suffi-
ciently secure and resource efficient to make end-
to-end encrypted VoIP teleconferencing practical. If
{Enc(pk, v1),Enc(pk, v2),Enc(pk, v3)} are encrypted
audio blocks received by the server at a specific time
from three clients, then the server should return to
client 1 a ciphertext c′1 that when decrypted equals
Mix(v2, v3).

5 ADDITIVE HOMOMORPHIC LATTICE-BASED
CRYPTOSYSTEM

Our design builds on a recent efficient FHE design
[5] and an implementation [4]. Our approach is a
lattice-based cryptographic scheme. Mathematical
preliminaries for lattice-based cryptography can be
found in [23], and a general survey on the design of
lattice-based schemes can be found in [24].

Our HE cryptosystem provides the core pub-
lic key encryption primitives of Key Generation
(KeyGen → (pk, sk)), Encryption (Enc(pk, µ) → c)
and Decryption (Dec(sk, c) → µ) where pk is a
public key, sk is a secret key, µ is a plaintext
and c is a ciphertext. Our scheme is defined to
be an additive homomorphic encryption scheme
because it provides an Evaluation Addition oper-
ation (EvalAdd(c1, c2)→ c3) where Dec(Enc(a+ b)) =
Dec(EvalAdd(Enc(a),Enc(b))) if the scheme is prop-
erly parameterized to satisfy its correctness con-
straints.

Our primary simplification of the scheme in
[4], [5] is that we remove the ability to support
Evaluation Multiplication (EvalMult). Because we
simplify the scheme in this way, the correctness
and security constraints for the general scheme in
[4], [5] hold for our simplified scheme, and we are
able to choose smaller concrete parameters while
maintaining security and correctness.

5.1 Plaintext and Ciphertext Representation
Concretely, we represent our plaintext and cipher-
text as vectors of unsigned integers. We use power-



5

of-2 cyclotomics, meaning that plaintext and cipher-
text vectors represent the coefficients of integer mod
p polynomials of degree 2x [23]. Almost all of the
operations we need to support on the plaintext and
ciphertext are linear transforms, and by restricting
ourselves to power-of-2 dimensions, we greatly re-
duce the implementation complexity required in
our cryptosystem. Reduced implementation com-
plexity translates directly into more efficient imple-
mentation. Current HE implementations designed
for non-power-of-2 cyclotomics can support more
general capabilities, but we intentionally choose to
focus on a simpler scheme for improved runtime
and reduced ciphertext expansion for limited-depth
applications.

For n a power of 2, we define the ring R =
Z[x]/(xn + 1) (i.e., integer polynomials modulo xn +
1) where, for any positive integer q, define the ci-
phertext space Rq = R/qR (i.e., integer polynomials
modulo xn + 1, with mod-q coefficients). Additional
details on mathematical preliminaries can be found
in [23]. The plaintext space is Rp for some integer
p ≥ 2, meaning that plaintext are length-n vectors
of integers modulus p. Typically p is much smaller
than 264 and we typically choose p to be between
2 and 212. Except for special applications, such as
for our secure VoIP application, we often need on
the order of several hundred bits to represent q to
support deep computations at a reasonable level of
security.

5.2 LTV-based Scheme with LSB Encoding
Based on the mathematical preliminaries, we now
provide a description of our simplified LTV scheme
[5]. Concrete implementation and parameter discus-
sions are given after the mathematical sketches.

In lattice-based encryption schemes, plaintext,
ciphertext and other ring elements can be repre-
sented in either evaluation or Chinese Remainder
Transform (CRT) representation [23]. These rep-
resentations are equivalent. A ring element can
be converted from an evaluation representation to
a CRT representation by application of a special
Number Theoretic Transform called the Chinese Re-
mainder Transform (CRT) [23]. More explicitly, we
can convert a ciphertext from its evaluation repre-
sentation ce to its CRT representation ccrt computing
ccrt = CRTq(ce) for appropriately chosen parame-
terizations of the CRT as in [14]. The inverse CRT
(CRT-1) converts ring Elements from the CRT repre-
sentation back to the evaluation representation. In
this case, ce can be recovered from ccrt by applying
the inverse CRT transform, ce = CRT-1

q(ccrt).

Our simplified LTV encryption scheme is ag-
nostic with respect to the representation of the ci-
phertext. We describe the operation of this scheme
assuming a CRT representation of ciphertext un-
less otherwise stated. It is advantageous to keep
ciphertext in CRT representation because additions
and multiplications on ciphertext are performed
element-wise in this representation. Otherwise, in
evaluation representation, ciphertext multiplication
requires an operation similar to a convolution oper-
ation to perform.

Our cryptosystem operations are described as
follows:

• KeyGen: choose a “short” f ∈ R such that
f = 1 mod p and f is invertible modulo q.
Concretely, f is a vector of n integers and f
is invertible modulo q if and only if each of
its mod-q CRT evaluations is nonzero. The
“short” elements f can be chosen from dis-
crete Gaussians. E.g., we can let f = p · f ′+ 1
(where 1 is a length-n with all entries set
to 1) for some Gaussian-distributed f ′. the
Gaussian distribution is zero-centered with a
distribution parameter denoted as r. We out-
put sk = f . The secret key, as defined above,
is most efficiently represented in its eval-
uation representation. Similarly, we choose
a “short” g ∈ R, possibly from discrete
Gaussians. The g is sampled in it evaluation
representation, but then converted to its CRT
representation. The CRT representations of
f−11 (modulo q) is the mod-q inverse of f1. We
output pk = h = g · f−1 mod q in its double-
CRT representation.

• Enc(pk = h, µ ∈ Rp): choose a “short”
r ∈ R and a “short” m ∈ R such that
m = µ mod p. The vectors r and m are sam-
pled in their evaluation representations, but
then converted to their CRT representations.
We output c = p · r · h+m mod q. Concretely,
m can be chosen as m = p · m′ + µ for a
Gaussian-distributed m′ sampled in its eval-
uation representation, then converted to its
CRT representation.

• Dec(sk = f, c ∈ Rq): compute b̄ = f · c mod q,
and lift it to the integer polynomial b ∈ R
with coefficients in [−q/2, q/2). Output µ =
b mod p. The key multiplication operation
can be performed in either the evaluation or
CRT representation.

The scheme supports the additive homomorphic



6

operation:

EvalAdd(c0, c1) = c0 + c1 mod q

The EvalAdd operation can be performed using both
evaluation or CRT representations, but our imple-
mentation always uses a CRT representation so the
scheme supports expected forward compatibility
with additional encrypted operations supported on
the ciphertext.

5.3 Security of Scheme

The proofs of security in [5] are directly applicable
to the simpler additive homomorphic scheme we
discuss here. In particular, Lemma 3.6 in [5] demon-
strates the security of this scheme, and we do not
provide a detailed security proofs. In Section 9 we
leverage further parameter selection and noise man-
agement optimizations from [21], [25]–[27] which
do not affect the security proofs given in [5].

6 VOIP SIGNAL MIXER AND ADDITIVE EN-
CODING

We consider the sampled and digitized representa-
tion of VoIP audio signals as being a sequence of y-
bit integers [v1, v2, . . .]. Define vi = [vi1, v

i
2, . . . , v

i
m] to

represent a block of samples, Encode([vi1, . . . , v
i
m]) =

[zi1, . . . , z
i
n] = zi where zi is a mod p plaintext and

Enc([zi1, . . . , z
i
n]) = [ci1, . . . , c

i
n] = ci where ci is a mod

q ciphertext.
We define the Mix function as the function which

takes unencrypted encoded sampled audio signals
as input and outputs a single audio signal in which
all input signals are overlayed on one another and
can be heard. The most common (and simplest)
mixing functions in deployed VoIP systems is a
sample-adder, and we use this as our model plain-
text mixing operation which we define here.

Definition 1. Mix: We define the Mix operation as
follows where j = bt/2c:

Mix(z1, . . . , zt) =
z1, if t = 1

Mix(c1, . . . , zj)+

Mix(zj+1, . . . , zt), otherwise

Our goal is to show that for our Encode and
Decode functions, when used in conjunction with
the Mix, the following property holds for proper pa-
rameterizations and arbitrary samples v1, v2, . . . , vt

where t is a variable that represents the number of
active speakers:

Decode
(
Mix

(
Encode(v1), . . . ,Encode(vt)

))
(1)

= v1 + v2 + · · ·+ vt

When designing the Encode and Decode opera-
tions, wrap-around in the plaintext signal should
be avoided when the Mix function is applied to
encoded (but not encrypted) plaintext data. Specifi-
cally, for the plaintext samples z1j , z

2
j , . . ., if

∑
i z

i
j > p

for some j, then the encoded plaintext data output
by the Mix operation wraps around p. If this wrap-
around occurs on the plaintext data, there will be
distortion in the resulting mixed audio signal, even
if there is no decryption. If this distortion occurs in
the plaintext data, then the distortion will also be
present in encrypted output signal resulting from
applying the EvalMix operation to the encrypted
input signal due to the property of Equation 2.

To guarantee there is no distortion due to plain-
text wrap-around, we design Encode and Decode
to guarantee that Equation 1 always holds when
used with our defined EvalMix operation under the
assumption that there are no more than t telecon-
ference participants speaking simultaneously. Note
that t is a variable which can be changed as the VoIP
capability is used, as long as clients agree on a t
value to guarantee a common encoding and decod-
ing operation. We design the Encode and Decode to
operate with any arbitrarily chosen t. Our vision is
that the parameter t will be set for every session. We
experimentally evaluate scenarios below for various
values of t and where that are more than t active
speakers on a session to investigate the effect this
variable has on the usability of the scheme.

Definition 2. Encode: We assume without loss of
generality that the input is sampled mod 2y. We
define the Encode operation as [z1, z2, . . . , zn] :=
Encode([v1, v2, . . . , vm]) where

zi =
∑

j∈{kn+i|0≤c,kn+i≤m}

vj ∗ 2k(y+s) mod p

Note that we use (y + s)-bit representations of
the data samples in the encoding, even though we
assume the samples from the audio source have y-
bit representations. This is to add extra padding bits
so that when we add encoded samples of up to t ≤
2s speakers, we have extra most-significant bits to
avoid

∑
i z

i
j > p for some j. Generally we set t to

be a power of 2, so that for a scenario where we
support up to 4 active speakers in a session, we set
t = 4, so s = 2.



7

Fig. 3: Encrypted VoIP Encoding

A graphical representation of this scheme can
be seen in Figure 3, with the following concrete
execution steps:
- We start by splitting the length m VoIP digitized
audio sample input [v1, v2, . . . , vm] into blocks
[v1, v2, . . . , vn], [vn+1, vn+2, . . . , v2n], . . . , [v1+kn, . . . , vm].
Each block has n samples except for the last block
which is of length m mod n if m mod n > 0, and
the last block is of length n otherwise. This means
that unless m is a multiple of n, the last block of
< n samples is the leftover samples which are not
fit into the first length-n samples.
- For the ith block, we multiply all samples in the
block by 2k(y+s) so that in a binary representation,
the k(y+ s) least significant bits are all zero and the
y most significant bits is a left-shift of the original
sample, with two padding bits.
- We add all of the samples for each index in the
blocks.

Note that we can encode (y + s) integer inputs
to the Encode function the way it is formulated. In a
binary representation of the encoded data element
zi, the bits in locations [k(y + s) + 1 : k(y + s) + y]
represents the (kn + i)th sample. For the sake of
notational simplicity, we say that zij [a, b] represents
the ath through bth bits in the j entry of plaintext
encoding vector zi where the least significant bit is
the 1st bit. We insert additional binary 00 padding
between the binary representation of encoding out-
put so that zij [k(y+s)+y+1 : k(y+s)+y+s] = [00]
for all i, j and k. We do this so for four encoded
samples z1i , z

2
i , z

3
i , . . . , z

t
i , we know that for the sum-

mation z′i = z1i + z2i + z3i + · · · + zti , which is out-
put by the mixing operation, has bits in locations
[k(y+s)+1 : k(y+s)+y+s] to hold the potential over-
flow resulting from summations of the (kn + i)th
samples. We call these two padding bits which

Fig. 4: Encrypted VoIP Decoding

catches the overflow as overflow bits. As such, our
encoding scheme induces the constraint that the
plaintext modulus p must satisfy the condition that
p ≥ 2b(y+s) where b = dm/ne.

The Decode operation behaves as the inverse of
the Encode operation. The Decode operation returns
the bits in locations [k(y + s) + 1 : (k + 1)(y + s)]
of zi as the (kn + i)th returned sample. Note that
the output of the Decode operation is mod 2y+s,
and this requires 2 additional bits. We do this so the
output of the decoding can hold the summation of
the encoding input without wrapping around.

Definition 3. Decode: We define the Decode operation
as follows: [v1, v2, . . . , vm] := Decode([z1, z2, . . . , zn])
where

vkn+i = zi[k(y + s) + 1 : (k + 1)(y + s)].

Figure 4 shows how our decoding process could
be implemented. On the right hand side of this
figure we take the input vector. We make copies of
this block and perform bit selection. Similar to the
encoding operation, these operations are all highly
efficient as they only involve bit selection, which is
extremely efficient to implement.

We are now ready to show that Equation 1 holds
with the following Theorems 1 and 2. Theorems 1
shows that the encoding scheme is additive and
Theorem 2 shows that the composition of the de-
coding and encoding schemes is additive. We use
these properties to prove that the encrypted VoIP
system, when used with a homomorphic encryption
equivalent of the plaintext Mix operation, does not
distort the mixed encrypted signals.



8

Theorem 1. Given v1, . . . , vt,

Encode(v1) + · · ·+ Encode(vt) mod p

= Encode(v1 + · · ·+ vt mod 2y+s).

Proof. By definition for vh = [vh1 , v
h
2 , . . . , v

h
m], zh =

[zh1 , z
h
2 , . . . , z

h
n],

zhi =
∑

j∈{kn+i|0≤c,kn+i≤m}

vkj ∗ 2k(y+s) mod p

Define A = {kn+ i|0 ≤ c, kn+ i ≤ m} By adding
these two equations,∑

h∈{1,...,t}

zhi mod p

=
∑

h∈{1,...,t}

∑
j∈A

vhj ∗ 2k(y+s)

 mod p

=
∑
j∈A

 ∑
h∈{1,...,t}

vhj

 ∗ 2k(y+s)

 mod p

Hence,

Encode(v1) + · · ·+ Encode(vt) mod p

= Encode(v1 + · · ·+ vt mod 2y+s).

Theorem 2. If t ≤ 2s, Decode(Encode(v1) + · · · +
Encode(vt) mod p) = (v1 + · · ·+ vt mod 2y+s).

Proof. From Theorem 1 that Encode(v1) + · · · +
Encode(vt) mod p = Encode(v1 + · · ·+vt mod 2y+s)
so,

Decode(Encode(v1) + · · ·+ Encode(vt) mod p)

= Decode(Encode(v1 + · · ·+ vt mod 2y+s))

If we assign z′ = Encode(v1 + · · ·+ vt mod 2y+s)
and v′ = Decode(Encode(v1 + · · · + vt mod 2y+s)),
then from the definition of the Decode operation, we
know that v′kn+i = z′i[k(y + s) + 1 : (k + 1)(y + s)] =(∑

l∈{1,...,t} v
l
kn+i

)
mod 2y+s.

7 LOW-DEPTH HOMOMORPHIC ENCRYPTION
VOIP SIGNAL MIXER

As above, define vi = [vi1, v
i
2, . . . , v

i
m] to repre-

sent a block of samples, Encode([vi1, . . . , v
i
m]) =

[zi1, . . . , z
i
n] = zi where zi is a mod p plaintext and

Enc(pk, [zi1, . . . , z
i
n]) = [ci1, . . . , c

i
n] = ci where ci is a

mod q ciphertext.
We abuse notation and assume without loss

of generality that all encryption operations are
done with a common public key pk, so we denote

Enc(pk, zi) as Enc(zi). We take a similar notational
shortcut with the decryption operation and an as-
sumed common secret key sk such that Dec(sk, ci)
is denoted for notational simplicity as Dec(ci).

To support end-to-end encrypted VoIP telecon-
ferencing, we use our encoding function Encode,
decoding function Decode and mixing function Mix
with our encryption function Enc and decryption
function Dec to define an operation EvalMix that
is the homomorphic encrypted equivalent of the
plaintext Mix operation. Our goal is to design the
EvalMix operation such that the following property
holds for proper parameterizations and arbitrary
samples v1, v2, . . . , vt where t is a variable that rep-
resents the number of active speakers:

Decode
(
Dec

(
EvalMix

(
ci, . . . , ct

)))
(2)

= Decode
(
Mix(v1, v2, . . . , vt)

)
In this equation, ci = Enc

(
Encode

(
vi
))

repre-
sents the encryption of the encoding of the samples
vi. The EvalMix function performs an encrypted ho-
momorphic mixing of these ciphertext, which when
decoded and then decrypted, the result is the same
as if the sampled data had been mixed without
encoding and encryption.

Definition 4. EvalMix: We define our homomorphic
mixing function EvalMix as a generalization of our
previously defined EvalAdd operation where j = bt/2c.

EvalMix(c1, . . . , ct) =
c1, if t = 1

EvalAdd(EvalMix(c1, . . . , cj),

EvalMix(cj+1, . . . , ct)), otherwise

Note that our EvalMix operation can be opti-
mized for parallel execution by evaluating the re-
cursive branches on different threads.

We show in Theorem 4 that Equation 2 holds for
our EvalMix operation. To show this proof, we first
need to show that if encrypted signals are input to
the EvalMix function, then the decrypted output is
the summation of the plaintext signals. We then use
this property in the proof of Theorem 4 to show if
encoded VoIP signals are fed as input to the EvalMix
operation, then the decrypted and decoded output
is a mix of the VoIP signals.

Theorem 3. For the input plaintext z1, . . . , zt and
plaintext modulus p assuming proper parameterization



9

to enable correct decryption after repeated application of
the EvalAdd operation,

Dec(EvalMix(Enc(z1), . . . ,Enc(zt)))

= (z1 + · · ·+ zt mod p).

Proof. We demonstrate this with a generalized proof
by induction on t.

For the base case, t = 1, EvalMix(c1) = c1

mod q by definition. By the correctness of decryp-
tion of our encryption scheme, Dec(Enc(z1)) = z1

mod p, so Dec(EvalMix(Enc(z1))) = (Dec(Enc(z1))
mod p) = z1.

Assume that for t′ < t,

Dec(EvalMix(Enc(z1), . . . ,Enc(zt
′
))

= (z1 + · · ·+ zt
′

mod p).

From the definition of EvalMix, we know that

EvalMix(c1, . . . , ct)

= EvalAdd(EvalMix(c1, . . . , cj),EvalMix(cj+1, . . . , ct)).

By substitution,

EvalMix(Enc(z1), . . . ,Enc(zt))

= EvalAdd(EvalMix(Enc(z1), . . . ,Enc(zj)),

EvalMix(Enc(zj+1), . . . ,Enc(zt))).

Therefore,

Dec(EvalMix(Enc(z1), . . . ,Enc(zt))

= Dec(EvalAdd(EvalMix(Enc(z1), . . . ,Enc(zj)),

EvalMix(Enc(zj+1), . . . ,Enc(zt)))).

From the correctness of the EvalAdd operation,

Dec(EvalMix(Enc(z1), . . . ,Enc(zt))

= Dec(EvalMix(Enc(z1), . . . ,Enc(zj)))

+ Dec(EvalMix(Enc(zj+1), . . . ,Enc(zt)))

mod p.

From the induction hypothesis,

Dec(EvalMix(Enc(z1), . . . ,Enc(zt))

= (z1 + · · ·+ zj + zj+1 + · · ·+ zt mod p).

Theorem 4. For t ≤ 2s,

Decode(Dec(EvalMix(Enc(Encode(v1)), (3)
. . . ,Enc(Encode(vt)))))

= Mix(v1, v2, . . . , vt)

Proof. We know from Theorem 3 that

Dec(EvalMix(Enc(z1), . . . ,Enc(zt)))

= z1 + · · ·+ zt mod p.

By substitution,

Decode(Dec(EvalMix(Enc(Encode(v1)),

. . . ,Enc(Encode(vt)))))

= Encode(v1) + · · ·+ Encode(vt) mod p).

We know from Theorem 1 that (Encode(v1)+· · ·+
Encode(vt) mod p) = Encode(v1+· · ·+vt mod 2y+s)
so,

Decode(Dec(EvalMix(Enc(Encode(v1)),

. . . ,Enc(Encode(vt)))))

= Encode(v1 + · · ·+ vt mod 2y+s).

We know from Theorem 2 that for t ≤ 2s,
Decode(Encode(v1)+· · ·+Encode(vt) mod p) = (v1+
· · ·+ vt mod 2y+s), so,

Decode(Dec(EvalMix(Enc(Encode(v1)),

. . . ,Enc(Encode(vt)))))

= (v1 + · · ·+ vt mod 2y+s).

By definition, (v1 + · · · + vt mod 2y+s) =
Mix(v1, v2, . . . , vt) so if t ≤ 2s,

Decode(Dec(EvalMix(Enc(Encode(v1)),

. . . ,Enc(Encode(vt)))))

= Mix(v1, v2, . . . , vt) .

Using Theorem 4 we can now provide an en-
crypted VoIP mixing capability so that a teleconfer-
ence participant can listen to multiple mixed audio
signals from other participants on a single chan-
nel. An important feature of our scheme is that it
provides full-duplex communication, meaning that
participants can transmit while they receive mixed
signals.

From a practical usability perspective, a tele-
conference participant would not want their voice
fed back to them through the mixing operation.
Even with a small return lag as low as 10 ms, the
feedback signal can become disorienting to speak-
ers, even if such a lag from other participants is
generally unnoticeable during normal conversation.
We therefore want to support multiple mixing oper-
ations simultaneously, so that client voice streams
(v1, . . . , vt), the ith client receives the mixed sig-
nal

∑
j∈{1,...,t}\{i}(v

i). The EvalAdd operations in the



10

EvalMix function are all highly efficient as they only
involve splitting vectors, multiplication by two and
bitwise concatenation, which are all extremely effi-
cient to implement. This summation for multiple re-
cipients is computationally efficient, relying only on
summation operations, and can also be performed
in a parallel manner. We discuss the engineering
tradeoffs associated with concrete parameter selec-
tion in greater depth in Section 9.

8 END-TO-END ENCRYPTED VOIP TELECON-
FERENCING PROTOTYPE

We implemented the additive homomorphic cryp-
tosystem portion of the secure VoIP teleconferenc-
ing prototype in the Mathworks Matlab environ-
ment because it provides an interpreted compu-
tation environment with native support for vector
and matrix manipulation for rapid prototyping. We
found the Matlab syntax to be a natural fit for the
primitive lattice operations needed for our LTV-
based cryptosystem design. We used the Matlab
coder toolkit [28] to generate an ANSI C version of
our implementation. For early experimentation we
compiled the generated ANSI C using gcc to run as
an executable in a Linux environment for parameter
tuning.

Rather than construct a VoIP capability from
the ground up, we constructed an end-to-end en-
crypted VoIP teleconferencing capability by inte-
grating our HE library and the Encode/Decode func-
tionality with an existing open-source VoIP tele-
conferencing library. We selected the Mumble VoIP
library for this integration because Mumble is ma-
ture, offers high sound quality and runs on a variety
of platforms. We focused on iOS clients because
these clients were the most mature open source
versions of the Mumble clients.

By integrating with the Mumble library, our
end-to-end encrypted VoIP library has the same
user interface, usage model and deployment model
as the standard Mumble capability. An image of
the Graphical User Interface (GUI) of the modified
client running on an iPod Touch can be seen in
Figure 5 where the client is running in push-to-talk
mode. Although we did not make this app publicly
available, the modified Mumble software can also
be deployed through an app store model, or as
binaries which can be loaded onto iOS devices with
development tools.

Client integration was relatively straight for-
ward with several notable exceptions to reduce
packet drops and improve sound quality:

Fig. 5: The Push-To-Talk Client GUI

1) The client application generated voice pack-
ets that contained 480 samples at 48 kHz,
or 10 ms worth of sound. The sound driver
on the client, however, generated slightly
larger packets. As a result, the period of the
sound packets was slightly larger than 10
ms, and every so often two sound packets
were generated back to back. The original
server set a 10 ms timer and accepted one
packet every 10 ms. We added a small
queue at the server so we did not drop
packets when we received two packets in
less than 10 ms.

2) We generated new frame numbers at the
server as opposed to re-using the client
frame numbers. The clients correlated the
frame numbers with time. This modification
reduces time jitter.

3) The encryption and decryption operations
for our applications were processor inten-
sive, and were run in batches of several
audio packets at once. We moved the en-
cryption and decryption operations to a low
priority thread and had a higher priority
thread accept and queue new audio packets
(both from the network, and from the mi-
crophone). This helped prevent a situation
where audio packets are dropped because
the client was busy decrypting or encrypt-



11

ing.
4) We improved the efficiency noise sample

generation by using an approximate dis-
crete Gaussian operation that mapped 32-
bit uniform distributed samples from the
client pseudo-random generator to multiple
discrete Gaussian samples using a look-up
table.

Our modifications, by improving sound quality
and efficiency and reducing packet drops, enables
increases in audio sampling rates and and lowered
encryption lag. As a result, the client is capable
of generating 16 bit audio samples at a rate of
48 kHz, which is a standard configuration of the
Mumble VoIP client. This throughput provides a
sound quality substantially better than PSTN.

9 PARAMETERIZATION AND ADAPTATION FOR
END-TO-END ENCRYPTED VOIP TELECONFER-
ENCING

We make our initial high-level end-to-end en-
crypted VoIP teleconferencing capability goals more
concrete by choosing parameters for the encod-
ing/decoding and cryptosystem operations so that:
- The VoIP signal data is sampled at a high enough
rate that adequately high voice quality is encoded
into plaintext.
- The end-to-end VoIP transmission cannot have
and end-to-end lag of more than the classical 150ms
limit on end-to-end lag [22].
- We target a throughput of not too much larger than
would be needed for AES-encrypted operations,
meaning a ciphertext expansion of less than 10, or a
total bandwidth usage of less than 6.4Mbps which
is supportable by most commodity wireless data
transmission protocols [29].
- The plaintext is securely encrypted into VoIP ci-
phertext with sufficiently large work factor prevent-
ing unauthorized decryption. For our encryption
scheme, this means δ ≤ 1.007 for 80 bits of security
[21].
- The homomorphic mixing of multiple encrypted
VoIP feeds can be successfully decrypted and then
decoded. We discuss the case for at most t = 4 active
speakers at any instance in time can be supported
during a session, but this parameter generalizes.
- All these operations need to be run efficiently
on commodity hardware, such as iOS and Linux
devices with 64 bit processors. This mean that the
largest ciphertext moduli has to be less than 264.

To achieve these more concrete goals in the
context of our introduced cryptosystem and encod-

ing and decoding functionality, the parameters we
adjust are:

• q, the ciphertext modulus.
• p, the plaintext modulus.
• n, the ring dimension.
• y, the VoIP sample bit depth.
• φ, the VoIP sample rate.
• m, the number of samples per VoIP block.
• s, the number of bits of padding in the en-

coding scheme.

We consequently set our optimization con-
straints as:

• q < 264, the maximum ciphertext modulus
for optimal execution on 64-bit processors.

• p > 2dm/ne(y+2), to guarantee lossless encod-
ing from the definition of the Encode op-
eration in Section 9 for 4 actively speaking
clients.

• q > 4pr
√
nw, to guarantee correct decryption

where r = 3 is a discrete Gaussian noise
parameter and w = 4.5 is an assurance pa-
rameter for the encryption system we use
from [4], [5].

• n > (log q)/(4 log δ), to guarantee security
[26], [30].

• s ≥ log2(t), to guarantee that the bits of 0
padding between samples in the encoding
and our correctness proofs hold when the
maximum number of speakers are talking.

With these optimization constraints we want to:
- Minimize Encode, Enc, EvalMix, Dec and Decode
runtime. We find in [4] that the runtimes of the
encryption operations are linear in n. Naive algo-
rithms for the runtime of Encode and Decode are also
linear in n. We thus attempted to minimize n while
satisfying all other constraints.
- Minimize (qn)/(2y+2m), the ciphertext expansion.
- Guarantee throughput φ2y does not cause suffi-
cient packet drops to negatively affect voice quality.
We essentially fix φ and evaluate voice quality ex-
perimentally.

Given the large number of variables, the highly
nonlinear optimization constraints for those that we
can analyze (such as ciphertext expansion) and the
prevalence of experimentally evaluated conditions,
such as packet drop rates, voice quality and soft-
ware runtime, we performed initial experimenta-
tion using plaintext operations to find initial data
sampling rates and encoding parameters. From a
pragmatic standpoint for the VoIP teleconferencing
application, we observed experimentally that there



12

is little practical sense to accommodate more than
4 active speakers. It is very difficult for any one lis-
tener to follow a conversation with so many simul-
taneously speaking participants. We identified ex-
perimentally that plaintext mixing with 40ms blocks
of 48KHz VoIP data of 5-bit depth provided good
sound quality adequate for normal conversation.
The native app provides sampled data in groupings
of 10ms of data, but we merge 4 blocks of 10ms of
data together for an m of 1920 samples per audio
block.

We use a ring dimension n = 1024 with 1920
samples per block, and we have a resulting plaintext
modulus of p = 214 = 16384. We then set q to be
1236950597633, which requires 41 bits to represent.
These parameters results in a root Hermite factor
upper-limit of δ = 1.00696 which is currently be-
lieved to be adequately secure and provide at least
80 bits of security [21]. From the audio input (5
bits of 1920 samples) and ciphertext output (41 bits
of 1024 samples), we have a resulting ciphertext
expansion of roughly 4.37.

With these parameter settings we observed that
when running on an iPhone 5s, the encoding and
encryption operation took a mean time of 9.2ms
and decryption and decoding took 4.6ms. The sum-
mation on the VoIP server took 0.5ms. Transport of
encrypted VoIP traffic from Cambridge MA to the
Northern Virginia Amazon AWS servers took an
average of 15ms. This results in a total mean latency
of less than 150ms for VoIP traffic. Taken together,
these parameters meet our performance goals, al-
though experimental use indicates that latency is
on the high side and users who speak quickly
would need to speak more slowly than normal to
have a conversation, although not so slow as to be
unnatural.

10 END-TO-END ENCRYPTED VOIP TELE-
CONFERENCING EXPERIMENTATION

We experimentally evaluated the performance of
the VoIP service deployed in each of the Amazon
AWS data centers across the world. We then in-
stalled the client software in iPod Touch and iPhone
5s clients. We connected each client to each of the
servers through various connection types in the
metro area of Boston, a major city in the New
England region of the United States. These con-
nections included 802.11n wireless enterprise gate-
way connected to a high-speed enterprise Internet
connection, 4G LTE, 3G and 2G connections over
the T-mobile commercial wireless service and an

AT&T DSL connection in a rural area in the state
of Connecticut.

We measured the upload and download
throughput of the connections, the drop rate of VoIP
packets routed through the various server locations
and the subjective quality of the VoIP teleconfer-
ence session as defined by the experimenters. The
upload and download throughput was measured
by Ookla throughput measurement app [31] on
the client devices. VoIP drop rates were measured
experimentally by instrumenting the VoIP servers
to measure drop rates. Voice quality was measured
in comparison to PSTN voice quality where “Ex-
cellent” means the VoIP conversation was better
than PSTN, “Good” means the VoIP conversation
was comparable PSTN, “Poor” means the VoIP
conversation was worse than PSTN but still usable
for communication, and “Unusable” means the con-
nection was useless for communication.

All of the experiments were run over a 2 hour
period on a weekday evening using two iPod Touch
clients with servers deployed on the Amazon AWS
t1.micro instances [32]. The clients were each on
independent connections to the Internet at all times,
so there was low likelihood of one client contribut-
ing substantially to congestion or packet drops for
the other client.

Table 1 shows the upload and download
throughput observed by each of the clients for each
of the connections. Note that the rural DSL service
provided better throughput than the 2G connection
and better download throughput than the 3G con-
nection.

TABLE 1: Experimentally Measured Data Through-
put in Mb/s for Connection Types

Connection Type Upload Rate
Mb/s

Download Rate
Mb/s

Enterprise 802.11n 38.22 36.53
4G LTE 35.82 17

3G 6.31 0.43
2G 0.2 0.16

Rural DSL 2.55 0.47

We observed that all of the last-mile wireless
connections supported acceptable VoIP teleconfer-
ence capabilities except for the 2G connections.
Over all of the acceptable connections, the lowest
upload or download throughput observation was
on the 3G download: 0.43Mb/s Because the VoIP
download and upload data flows are symmetric,
this implies at least a 0.43Mb/s upload and down-
load throughput connection is required to support
VoIP teleconferencing using our prototype.



13

Table 2 shows the packet drop rates observed
at each of the servers at the various Amazon AWS
locations for the various client connection types.
Note that distance between the client and server
had only a minor impact on drop rates, while the
connection type had a very large impact on drop
rates. This implies that the connection could be a
bottleneck for the VoIP service.

The subjective VoIP teleconference quality ob-
served through each of the servers at the various
Amazon AWS locations for the various client con-
nection types had no observed impact on voice
quality. Conversely, we found that connection type
had a very large impact on voice quality. Enterprise
802.11n, 4G LTE, 3G all provided adequate voice
quality, while 2G and Rural DSL connections pro-
vided poor to unusable voice quality.

In addition to our tests of connection-server
pairings, we also tested the impact of having more
than t = 2s clients actively speaking at any one
time.. For this experiment we established a ses-
sion with 3 iPod Touch and 4 iPhone 5s clients
at various locations on the eastern United States
seaboard to a single VoIP server in the Amazon
AWS Northern Virginia data center. With these 7
client connections running simultaneously with 4
users speaking simultaneously we were able to hold
meaningful conversation among the 4 simultaneous
speakers and no voice distortion was observed by
the 3 non-speaking client users. With 6 users speak-
ing simultaneously and 1 silent listening client, we
experimentally observed that no clipping due to
mixing unless the 6 clients are talking so loudly
as to nearly be screaming. However, when more
than 4 participants attempt to speak simultaneously,
the conversation was ineffective not because of lim-
itations in the homomorphic mixing, but due to
the inability of participants to mentally track the
simultaneous speaking of more than 4 people. As
such, limiting the number of speakers to 4 is a
reasonable choice for practical teleconferencing use
cases.

11 SECURITY ANALYSIS

Although innovation in our prototype is intended
to address honest-but-curious adversaries who can
observe all server behavior, our design can be fur-
ther augmented to provide broader security fea-
tures. For instance, if a client is compromised, the
adversary at the compromised client, even with
full observation of network traffic from all other
clients, will be unable to determine from which

other clients specific VoIP signals are coming from
if there is at least two other clients. This feature
arises from the inability to map mixed signals to
their sources based on ciphertext observations. This
non-identification feature comes from the feature
of the lattice encryption system in that encryptions
of two different signals are indistinguishable, and
these two encrypted signals are indistinguishable
from the encryption of white noise because of the
noise added to ciphertext during encryption.

Recent publications have introduced the concept
of subfield lattice attacks [33], [34]. Although these
attacks are relevant for some variants of the NTRU
cryptosystems that rely on the DSPR [5], our pa-
rameter settings do not meet the conditions of these
attacks.

A possible effective attack on the end-to-end
encrypted VoIP teleconferencing activity would be
for a compromised client to inject noise signals
into the teleconferencing mixer, thus reducing the
ability of the client participants to converse with
one another. This attack is a vulnerability of general
teleconferencing systems. Any participant can inject
noise into the conversation. A feasible longer-term
approach to reduce the effectiveness of this threat
would be to perform homomorphic filtering against
noise injection, and possibly provide some function-
ality for the clients to tell the mixer which other
participants they want to listen to. Over the short
term, the application of authentication techniques
to identify likely adversaries could be effective in
addressing these issues.

Another issue is one of key distribution. The
keys in our cryptosystem are relatively small:
41*1024 bits which is a little more than 5MB. These
keys could easily be distributed through encrypted
flat files using existing public key infrastructures,
or even using Diffie-Hellman type techniques to
generate shared secret keys. Furthermore, our as-
sumption of prior key coordination can be removed
by generalizing the scheme to rely on multi-key
features of the LTV scheme [5].

12 DISCUSSION AND ONGOING ACTIVITIES

In this paper we present and discuss a scalable
approach to VoIP teleconferencing that provides
end-to-end encryption. Our assessment is that we
met our design goals for practical and secure tele-
conferencing as discussed in Section 3.

A further aspect of our layered architecture
vision is an ability to mix-and-match a comput-
ing substrate at the server for increased scalability



14

TABLE 2: Packet Drop Rates For Various Server Locations and Client Internet Connection Types.

Server Location Client Location Enterprise 802.11n 4G LTE 3G 2G Rural DSL
N. Virginia Connecticut 0% 10% 10% 66% 33%

Oregon Connecticut 0% 2% 3% 71% 35%
N. California Connecticut 0% 7% 8% 67% 34%

Ireland Connecticut 0% 7% 7% 73% 38%
Singapore Connecticut 5% 2% 2% 68% 39%

Tokyo Connecticut 1% 3% 4% 69% 37%
Sydney Connecticut 5% 3% 3% 67% 34%

Sao Paulo Connecticut 0.30% 4% 6% 76% 34%

and throughput. Although we only utilize limited-
depth Additive Homomorphic Encryption capabil-
ities, our encryption system implementation is a
scaled-down version of a Fully Homomorphic En-
cryption (FHE) system [4]. As such, our teleconfer-
ence implementation can be generalized to support
FHE operations with software modifications and
changes in parameter selection to maintain security.
The engineering trade-off is that as deeper circuits
are computed at the server, end-to-end latency in-
creases.

Prior general implementation efforts [4] shows
EvalMult runtimes are currently too large for com-
fortable interactive conversations if these operations
are to be performed at the VoIP server. However, if
runtime performance of EvalMult were to improve
by only an order of magnitude or two, the latency to
execute deeper circuits than the homomorphic mix-
ing would become feasible. This provides a design
path for deeper operations on the encrypted data.
An initial feasible application would be encrypted
noise rejection at the VoIP server by implementing
a low pass filter. Low-pass filters, such as weighted
moving averages, can be supported in relatively
shallow depth circuits with a few multiply op-
erations. This more general design would enable
protection against some potentially practical attacks
that could be made by an adversary such as noise
injection attacks where an adversary inserts noise
into a VoIP teleconferencing session to reduce the
ability of participants to hear one another.

Even deeper operations, such as voice recog-
nition operations run on encrypted data, would
require circuits so deep that current HE imple-
mentations would need to use an effective boot-
strapping operation to maintain security. Bootstrap-
ping in current FHE implementations takes mul-
tiple orders of magnitude longer to perform than
EvalMult operations, and multiple breakthroughs in
the implementation of bootstrapping, or even com-
pletely new and more efficient FHE schemes, will be
needed for even deeper circuits to be practical to sat-

isfy VoIP latency constraints. Bootstrapping is likely
to be first implemented practically in custom high-
performance hardware, such as in a custom FPGA-
or ASIC-based co-processor [35]–[37]. When used
in conjunction of a variation of a not previously
implemented bootstrapping scheme [38], our design
offers the possibility for a much more general VoIP
teleconferencing capability that incorporates signal
detection and noise filtering operations on the en-
crypted VoIP channels.

Our end-to-end encrypted VoIP capability pro-
vides a basis for integration with other hardware-
accelerated co-processors due to our use of a layered
software services stack to provide high-level homo-
morphic encryption operations supported by lower-
level lattice-based primitive implementations. Part
of our longer-term vision is to provide software in-
terfaces in our design for our highly optimized im-
plementations of the basic FHE operations (KeyGen,
Enc, EvalAdd, EvalMult, Dec) for both general and
specific applications.

ACKNOWLEDGEMENT

The authors wish to acknowledge the support of
Chris Peikert in designing and implementing the
cryptosystem, advice on the VoIP integration from
David Archer, suggestions related to VoIP mixing
from abhi shelat and suggestions on parameter se-
curity from Yuriy Polyakov.

REFERENCES

[1] M. Baugher, D. McGrew, M. Naslund, E. Carrara, and
K. Norrman, “The secure real-time transport protocol
(SRTP),” 2004.

[2] P. Zimmermann, A. Johnston, and J. Callas, “ZRTP: Media
path key agreement for secure RTP,” draft-zimmermann-
avt-zrtp-04 (work in progress), 2007.

[3] R. Zhang, X. Wang, R. Farley, X. Yang, and X. Jiang, “On
the feasibility of launching the man-in-the-middle attacks
on VoIP from remote attackers,” in Proceedings of the
4th International Symposium on Information, Computer, and
Communications Security, ser. ASIACCS ’09. New York,
NY, USA: ACM, 2009, pp. 61–69. [Online]. Available:
http://doi.acm.org/10.1145/1533057.1533069



15

[4] K. Rohloff and D. B. Cousins, “A scalable implementation
of fully homomorphic encryption built on NTRU,” in
Proceedings of the 2nd Workshop on Applied Homomorphic
Cryptography (WAHC), 2014.

[5] A. López-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-
fly multiparty computation on the cloud via multikey fully
homomorphic encryption,” in STOC, 2012, pp. 1219–1234.

[6] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU:
A ring-based public key cryptosystem,” in Algorithmic
Number Theory, ser. Lecture Notes in Computer Science,
J. P. Buhler, Ed. Springer Berlin Heidelberg, 1998,
vol. 1423, pp. 267–288. [Online]. Available: http:
//dx.doi.org/10.1007/BFb0054868

[7] D. W. Archer and K. Rohloff, “Computing with data pri-
vacy: Steps toward realization,” IEEE Security & Privacy,
no. 1, pp. 22–29, 2015.

[8] M. Bellare and P. Rogaway, “Entity authentication and
key distribution,” in Advances in CryptologyCRYPTO93.
Springer, 1994, pp. 232–249.

[9] A. D. Keromytis, “Voice-over-IP security: Research and
practice,” Security & Privacy, IEEE, vol. 8, no. 2, pp. 76–
78, 2010.

[10] J. Launchbury, D. Archer, T. DuBuisson, and E. Mertens,
“Application-scale secure multiparty computation,” in
Programming Languages and Systems, ser. Lecture Notes
in Computer Science, Z. Shao, Ed. Springer Berlin
Heidelberg, 2014, vol. 8410, pp. 8–26. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-54833-8 2

[11] C. Gentry and S. Halevi, “Implementing Gentry’s fully
homomorphic encryption scheme,” in Advances in Cryp-
tology, EUROCRYPT 2011, ser. Lecture Notes in Computer
Science, K. Paterson, Ed. Springer Berlin / Heidelberg,
2011, vol. 6632, pp. 129–148.

[12] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled)
fully homomorphic encryption without bootstrapping,”
ACM Transactions on Computation Theory (TOCT), vol. 6,
no. 3, p. 13, 2014.

[13] C. Gentry, A. Sahai, and B. Waters, “Homomorphic en-
cryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based,” in Advances in
Cryptology–CRYPTO 2013. Springer, 2013, pp. 75–92.

[14] C. Gentry, S. Halevi, and N. P. Smart, “Homomorphic
evaluation of the AES circuit,” in Advances in Cryptology–
CRYPTO 2012. Springer, 2012, pp. 850–867.

[15] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can
homomorphic encryption be practical?” in Proceedings
of the 3rd ACM workshop on Cloud computing security
workshop, ser. CCSW ’11. New York, NY, USA:
ACM, 2011, pp. 113–124. [Online]. Available: http:
//doi.acm.org/10.1145/2046660.2046682

[16] Y. Doröz, Y. Hu, and B. Sunar, “Homomorphic AES eval-
uation using NTRU.” IACR Cryptology ePrint Archive, vol.
2014, p. 39, 2014.

[17] C. Gentry and S. Halevi, “HElib,” https://github.com/
shaih/HElib, 2014.

[18] L. Ducas and D. Micciancio, “FHEW: Bootstrapping ho-
momorphic encryption in less than a second,” in Advances
in Cryptology–EUROCRYPT 2015. Springer, 2015, pp. 617–
640.

[19] D. Wu and J. Haven, “Using homomorphic encryption for
large scale statistical analysis,” 2012.

[20] L. Liu, M. Fukumoto, and S. Saiki, “An improved mu-
law proportionate NLMS algorithm,” in Acoustics, Speech
and Signal Processing, 2008. ICASSP 2008. IEEE International
Conference on. IEEE, 2008, pp. 3797–3800.

[21] T. Lepoint and M. Naehrig, A Comparison
of the Homomorphic Encryption Schemes FV and
YASHE. Cham: Springer International Publish-
ing, 2014, pp. 318–335. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-06734-6 20

[22] S. Na and S. Yoo, “Allowable propagation delay for VoIP
calls of acceptable quality,” in Advanced Internet Services
and Applications. Springer, 2002, pp. 47–55.

[23] V. Lyubashevsky, C. Peikert, and O. Regev, “A toolkit
for ring-lwe cryptography.” in EUROCRYPT, vol. 7881.
Springer, 2013, pp. 35–54.

[24] C. Peikert, “A decade of lattice cryptography,” Foundations
and Trends R© in Theoretical Computer Science, vol. 10, no. 4,
pp. 283–424, 2016.

[25] N. Gama and P. Q. Nguyen, “Predicting lattice reduction,”
in EUROCRYPT, 2008, pp. 31–51.

[26] R. Lindner and C. Peikert, “Better key sizes (and attacks)
for LWE-based encryption,” in CT-RSA, 2011, pp. 319–339.

[27] Y. Chen and P. Q. Nguyen, “BKZ 2.0: Better lattice se-
curity estimates,” in ASIACRYPT, ser. Lecture Notes in
Computer Science, vol. 7073. Springer, 2011, pp. 1–20.

[28] MATLAB, R2012b. Natick, Massachusetts: The Math-
Works Inc., 2012.

[29] E. Perahia and R. Stacey, Next Generation Wireless LANS:
802.11 n and 802.11 ac. Cambridge University Press, 2013.

[30] D. Micciancio and O. Regev, “Lattice-based cryptogra-
phy,” in Post Quantum Cryptography. Springer, February
2009, pp. 147–191.

[31] Ookla, 2014. [Online]. Available: https://www.ookla.com/
[32] Amazon AWS Instance Types, 2014. [Online]. Available:

http://aws.amazon.com/ec2/instance-types/
[33] M. Albrecht, S. Bai, and L. Ducas, “A subfield lattice attack

on overstretched NTRU assumptions,” IACR Cryptology
ePrint Archive, vol. 2016, p. 127, 2016.

[34] J. H. Cheon, J. Jeong, and C. Lee, “An algorithm for NTRU
problems and cryptanalysis of the GGH multilinear map
without a low level encoding of zero,” IACR Cryptology
ePrint Archive, vol. 2016, p. 139, 2016.

[35] X. Cao, C. Moore, M. O’Neill, E. O’Sullivan, and N. Han-
ley, “Accelerating fully homomorphic encryption over the
integers with super-size hardware multiplier and modular
reduction.” IACR Cryptology ePrint Archive, vol. 2013, p.
616, 2013.

[36] D. B. Cousins, J. Golusky, K. Rohloff, and D. Sumorok,
“An fpga co-processor implementation of homomorphic
encryption,” in High Performance Extreme Computing Con-
ference (HPEC), 2014 IEEE. IEEE, 2014, pp. 1–6.

[37] E. Öztürk, Y. Doröz, B. Sunar, and E. Savaş, “Accelerating
somewhat homomorphic evaluation using FPGAs,” Cryp-
tology ePrint Archive, Report 2015/294, Tech. Rep., 2015.

[38] J. Alperin-Sheriff and C. Peikert, “Practical bootstrapping
in quasilinear time,” in Advances in Cryptology CRYPTO
2013, ser. Lecture Notes in Computer Science, R. Canetti
and J. Garay, Eds. Springer Berlin Heidelberg, 2013, vol.
8042, pp. 1–20. [Online]. Available: http://dx.doi.org/10.
1007/978-3-642-40041-4 1


