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Abstract—In this paper, we survey different existing schemes
for the transmission of flows in Data Center Networks (DCNs).
The transport of flows in DCNs must cope with the bandwidth
demands of the traffic that a large number of data center
applications generates and achieve high utilization of the data
center infrastructure to make the data center financially viable.
Traffic in DCNs roughly comprises short flows, which are
generated by the Partition/Aggregate model adopted by several
applications and have sizes of a few Kkilobytes, and long flows,
which are data for the operation and maintenance of the data
center and have sizes on the order of megabytes. Short flows
must be transmitted (or completed) as soon as possible or within
a deadline, and long flows must be serviced with a minimum
acceptable throughput. The coexistence of short and long flows
may jeopardize achieving both performance objectives simultane-
ously. This challenge has motivated growing research on schemes
for managing the transmission of flows in DCNs. We describe
several recent schemes aimed at reducing the flow completion
time in DCNs. We also present a summary of existing solutions
for the incast traffic phenomenon. We provide a comparison and
classification of the surveyed schemes, describe their advantages
and disadvantages, and show the different trends for scheme
design. For completeness, we describe some DCN architectures,
discuss the traffic patterns of a DCN, and discuss why some
existing versions of transport protocols may not be usable in
DCNs. At the end, we discuss some of the identified research
challenges.

Index Terms—data center network, flow scheduling, flow com-
pletion time, flow deadline, TCP incast, data center congestion-
control schemes.

I. INTRODUCTION

The computing services provided by data centers are contin-
uing to gain users’ acceptance because these services provide
unparalleled mobility and ubiquitous data accessibility [1].
Data centers are large warehouses that host a very large
number of servers. These servers may be used to provide
different services to businesses and users in general and to
benefit from economy of scale to reduce computational costs.
The allocation of large clusters of servers enables elastic
scalability for computing, communications, and other business
applications. Software as a Service (SaaS) and Infrastructure
as a Service (IaaS) are examples of high-demand services [2].

The data center network (DCN) is a critical component of
the infrastructure of a data center because it enables intra-data
center communications among the large amount of computing
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resources [3]. The properties of the DCN and the mechanisms
for managing the traffic passing through it largely define the
operation and performance of the data center [4]. Moreover,
the economic viability of a data center greatly depends on
running the data center at acceptable (if not high) performance
levels and allowing users and applications to highly utilize and
share its infrastructure and resources [5].

The performance of a data center is directly associated with
how fast computing jobs, which are requested by users, are
completed [6]. The services provided by a data center involve
processing the requested computing jobs and exchanging the
data associated with these jobs among servers [7]. The traffic
generated by data center applications must be transmitted
within a limited time to provide a timely response to the
user. The traffic of DCNs is deconstructed into flows. Herein,
a data center flow is defined as a sequence of packets that
are generated by an application and sent from a source node
to a destination node [8]. These data center flows must be
transmitted (i.e., completed) in a timely manner [9].

The server clusters, the architecture of the DCN, and data
center applications in combination generate traffic that follows
the Partition/Aggregate model [10], [11]. In this model, a task
is partitioned and processed by several servers for increased
performance and efficiency. More specifically, the computing
task is distributed on a tree of servers, as Figure 1 shows,
where a server acts as the Top-Level Aggregator (TLA) or
the root, servers at the intermediate levels of the tree act as
Mid-Level Aggregators (MLAs), and servers at the leaf-level,
or workers, perform the actual computational tasks [11]. The
TLA receives a user request and partitions the workload among
MLAs. In a similar fashion, ML As distribute their tasks across
workers. Each worker generates a response and sends it to
the upper level of the tree for aggregation. The MLAs and
TLA perform response aggregation, in that order. Then, the
aggregated response is forwarded to the user. In the scenarios
where a request for a computing task (e.g., processing data or
access to data) requires a response within a deadline, each
of the components of the process tree inherits portions of
the deadline. Figure 1 shows an example of the deadlines
associated to each component of the tree, as indicated in paren-
theses. Online Data Intensive (OLDI) [11], [12] applications
are examples of typical applications that have time constraints
(e.g., 300 ms latency). These time requirements may be stated
in service-level agreements, and they are incorporated into the
schemes for managing the transmission of the flows in a DCN
[13]-[15].

Short and long flows are the two major groups of traffic
in DCNs [6], [16], [17]. Tasks that go through the Parti-
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Fig. 1. Example of Partition/Aggregate traffic model [11].

tion/Aggregate model generate short flows. Short flows have a
size of a few kilobytes and are associated with users’ tasks, in-
cluding server requests and responses. Long flows have a size
of several megabytes and can be considered to be information
stored in a data center or used for maintenance. Short and long
flows differ in the size and the nature of their data but also
in their service requirements. Short flows are time sensitive,
and long flows are throughput sensitive [17]. In instances
where short flows are associated with deadlines for producing
a response, a data center must comply with those (or with the
largest number of) deadlines. In the case where short flows
are not associated with deadlines, the transmission of flows
must be finished as soon as possible [11]. The time required
to transmit a flow is referred to as the Flow Completion Time
(FCT) [9]. Conversely, long flows must be transmitted at a
satisfactory throughput to maintain the data center and keep
the information up to date. The requirements of these two
groups of flows must be satisfied without conflicting with each
other.

The use of the Transmission Control Protocol (TCP) as a
transport protocol for data center traffic may be challenged
by the required small FCT of short flows because 1) the
algorithms used in TCP are aimed at avoiding both congestion
in the network and overwhelming the receiver; they are not
engineered to minimize the FCT of a flow 2) TCP indiscrim-
inately applies the same set of algorithms to short and long
flows [18].

In addition, TCP may suffer from throughput collapse
caused by the incast phenomenon that emerges in DCNs [16],
[19], [20]. Incast occurs when flows from different senders
converge in the same switch simultaneously. A large number
of data center applications may generate incast traffic [21]-
[23]. The large number of packets arriving as incast traffic in
the switch may overflow the switch’s buffer and cause severe
packet dropping. These losses generate long waiting times
for acknowledgments and trigger the retransmission of TCP
segments, which together make the throughput collapse. This
phenomenon greatly increases the FCT of short flows. The
occurrence of this phenomenon has also prompted interest in
finding strategies to prevent or alleviate it.

Because DCNs are rather administratively autonomous, a
proprietary set of protocols may be used for intra-data center

communications while leaving the TCP/IP stack for commu-
nications between the data center and external users [24]. The
flexibility in protocol selection in a data center and the demand
for satisfying the different requirements of short and long flows
have motivated the search for schemes to manage data center
traffic.

Providing both fast responses and high throughput is the
general objective of the newly proposed schemes [25]. How-
ever, the large volume of traffic, the distribution of traffic in
the data center, and the co-existence of short and long flows
make achieving these objectives difficult [26].

Different DCN topologies have been proposed to improve
the scalability and communications bandwidth [3], [6], [27]-
[32]. However, the challenges of keeps achieving small FCTs,
satisfactory flow throughput, and tolerance to incast traffic pre-
vail because of Partition/Aggregate traffic, and these require-
ments seem to be rather oblivious of the network topology.
One may think of recurring to the variants of TCP proposed
in recent years [33]-[38] for satisfying the requirements of
short and long flows, but the traffic in DCNs is different from
what motivated the design of these schemes, which may not
be effective.

Several schemes have been proposed to minimize the FCT
of flows in data centers [9]-[11], [39]-[56]. Some of the
schemes are referred to as protocols by many authors, but for
simplicity, we refer to them herein as schemes. In this paper,
we survey schemes that are designed to transport data center
flows. For completeness, we present popular DCN architec-
tures. We also discuss the patterns of data center traffic and
the applications that generate them. On the surveyed transport
schemes, we describe their operation and their properties. We
base our discussion on an overall classification of schemes
according to their performance objectives, such as schemes
aiming to reduce FCT, also called deadline agnostic schemes,
and those aiming to finish the transmission of flows within
their required deadlines, also called deadline aware schemes,
as Figure 2 shows. Furthermore, we classify the surveyed
schemes based on their working principles, their performance
objectives, and other parameters, such as complexity and
compatibility with TCP, and we examine their algorithmic and
hardware novelties where they apply; we list their strengths
and weaknesses. We also cover the schemes designed to
overcome the TCP incast problem observed in data centers.
The comprehensive overview of these schemes provides infor-
mation to the readers so they can select schemes that can be
adopted to satisfy different performance goals in a data center
and to indicate areas that may need further research. Among
other information, we indicate whether the surveyed schemes
have been designed in an academic or industrial environment.
At the end, we comment on the areas that have been identified
for research and as design goals to develop new schemes.

The remainder of this paper is organized as follows. In
Section II, we present some of the existing data center
architectures. In Section III, we discuss data center traffic
and some of their properties. In Section IV, we describe the
objectives and operation of existing schemes for reducing the
flow completion time in DCNs. In Section V, we present a
brief overview of the TCP incast problem and summarize the
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Fig. 2. Classification of surveyed schemes.

techniques and schemes used to mitigate it. In Section VI, we
present a comparison of the principles and properties of the
discussed schemes. In Section VII, we present some of the
TCP versions and discuss why these TCP versions may not
be suitable for transmission of data center traffic. In Section
VIII, we present our conclusions.

II. DATA CENTER NETWORK ARCHITECTURES

DCN architectures can be classified as switch-centric,
server-centric, or hybrid structures [57]-[61]. A switch-centric
architecture uses switches to perform packet forwarding,
whereas the server-centric architecture uses servers with mul-
tiple Network Interface Cards (NICs) to act as switches in
addition to performing other computational functions. Hybrid
architectures combine switches and servers for packet forward-
ing [58]. In this section, we introduce the three-tier (or two-
tier) [62], fat-tree [3], and VL2 [6] networks as examples of
switch-centric DCN architectures, CamCube [63], [64] as an
example of a server-centric DCN architecture, and BCube [27]
and DCell [28] as examples of hybrid DCN architectures.

A. Three-Tier

The three-tier DCN architecture is considered a straight-
forward approach to building a DCN [62]. This architecture
typically consists of three layers: access, aggregation, and
core layers, as Figure 3 shows. In this network, servers
are connected to the DCN through edge-level switches, and
servers are placed in racks in groups of 20 to 40. Each edge-
level switch is connected to two aggregation-level switches
for redundancy. These aggregation-level switches are further
connected to core-level switches. Core switches serve as
gateways and provide services such as firewall, load balancing,
and Secure Socket Layer offloading [58], [62]. The major
advantage of this DCN is the simplicity of the topology at
the expense of complex equipment and cabling. The major
drawbacks of this architecture are the high cost, the low energy
efficiency of the networking equipment, and the lack of agility
and scalability [61].
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B. Fat-Tree

The fat-tree network is a highly scalable and cost-effective
DCN architecture that aims to maximize end-to-end bisection
bandwidth [3], [61]. A bisection is created by partitioning a
network into two equally sized sets of nodes. The bandwidth
of a bisection is found by summing all of the link capacities
between two partitions and the smallest bandwidth of all
those partitions is the bisection bandwidth [65]. The fat-tree
network is a switch-centric architecture that can be built using
commodity Gigabit Ethernet switches with the same number
of ports to reduce the hardware cost. The size of the network
is a function of the number of switch ports k. The network
is formed by edge, aggregation, and core layers. In the edge
layer, there are k pods, or groups of servers, each with k?/4
servers. Figure 4 shows an example of a fat-tree network with
4 pods.

Each edge switch is directly connected to k/2 servers in its
pod. The remaining k/2 ports of an edge switch are connected
to k/2 aggregation switches. The total number of core switches
in the DCN is (k/2)?, and each of the core switches has one
port connected to each of the k pods. A fat-tree network with
k-port commodity switches can accommodate k>/4 servers in
total. One advantage of the fat-tree topology is that all switches
are identical and possibly economical. This advantage may
represent economic savings in equipment cost and a simplified
architecture. Another advantage is the high fault-tolerance
provided by the use of multiple alternative paths between end
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nodes. A disadvantage of the fat-tree architecture is the use
of large numbers of switches and the increased cabling costs
[61].

C. VL2

The VL2 network is a hierarchical fat-tree based DCN
architecture [6], [61]. Figure 5 shows a simple VL2 network.
This switch-centric network uses three different types of
switches: intermediate, aggregation and ToR switches. The
VL2 network targets the use of commodity switches. This
network uses (D ,4)/2 intermediate switches, D; aggregation
switches and (D4)(Dy)/4 ToR switches. Intermediate and
aggregation switches have different number of ports; D and
D 4, respectively. The number of servers in a VL2 network is
20(D4)(Dy)/4. VL2 also employs a load-balancing technique
called Valiant Load Balancing (VLB) to uniformly distribute
the traffic among the network paths. One of the advantages of
this architecture is its cost effectiveness due to the use of com-
modity switches throughout the network. Another advantage
of VL2 is the ability to exploit the high bisection bandwidth
because of the employed VLB technique.

D. CamCube

The CamCube network is a server-centric architecture, pro-
posed for building container-sized data centers [63]. CamCube
uses a 3D-Torus topology to directly interconnect the servers
[60]. Figure 6 shows a 3D-Torus with 64 servers. CamCube, as
a torus-based architecture, exploits network locality by placing
the servers close to each other to increase communication

Fig. 6. 3D-Torus with 64 servers.

efficiency. CamCube may reduce costs on network equipment
(i.e., switches and/or routers) by using only servers to build
the DCN. This approach may also reduce costs for cooling
the network equipment. CamCube allows applications used
in data centers to implement routing protocols through the
CamCube Application Program Interface (API). The use of
this application may result in achieving higher application-
level performance. On the other hand, CamCube requires
multiple NICs in each server to assemble a 3D Torus network.
Furthermore, the use of the Torus topology by CamCube may
result in long paths, or O(N'/3), where N is the number
of servers [60]. Therefore, it has been claimed that routing
complexity may be high [60].

E. DCell

The DCell network is a hybrid architecture; it uses switches
and servers for packet forwarding, and it may be recursively
scaled up to millions of servers [28], [61]. DCell uses a basic
building block called DCellj to construct larger DCells (i.e.,
DCelly, DCells, etc.). In general, DCell, (k > 0) is used to
denote a level-k DCell that is constructed by combining n+ 1
DC'ellj_qs, where n denotes the number of servers in DC'ell.
DCelly has n (n < 8) servers and a commodity switch
to interconnect them. Moreover, each server in a DCelly is
directly connected to a server in a different DCelly. The
interconnection of all DCellys forms a complete graph (i.e.,
every pair of DCellj in the network is interconnected) if each
DClelly is considered as a large virtual node. Figure 7 shows a
DCelly, constructed with five DCellys and 4-port commodity
switches.

The main advantage of DCell architecture is its high scal-
ability, enabled by the recursive structure. DCell is also cost
efficient because it uses commodity switches and servers to
perform packet forwarding. The two main disadvantages of
DCell are the long communication paths between two servers
in the network and the additional NICs required for each server
and the associated increased cabling costs.

F. BCube

BCube is another hybrid DCN architecture that can scale up
through recursion [27], [61]. BCube employs servers and com-
modity switches as forwarding elements and is proposed for
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building so-called container data centers. The scalability of this
structure is limited (up to thousands of servers) compared with
fat-tree, VL2, and DCell. Conversely, BCube provides high
bisection bandwidth and a graceful degradation of throughput
under equipment failures [27]. As a recursive approach, BCube
uses BCubey as a building block, which simply consists
of n servers connected to an n-port switch. In BCube, n
BCubegs and n n-port switches build a BC'ube; network.
In general, a BC'ubey, (k > 0) is constructed by combining n
BCubey,_1s and n* n-port switches. In a BC'ubey,, there are
n**+1 k + 1-port servers and k + 1 layers of switches. Figure
8 (a) shows BCube; with n = 4, and Figure 8 (b) shows
a BCubej network. BCube is cost effective, provides high
bisection bandwidth, and yields fault-tolerance under equip-
ment failures. However, BCube has limited scalability, and its
cabling cost is high because of the numerous interconnections
among switches and servers. Furthermore, the number of NICs
in a server in BCube is proportional to the depth of the network
[61].

There are other DCN architectures, in addition to the ones
presented in this survey; these are: MDCube [66], Hyper-
BCube [67], JellyFish [68], PortLand [69], SprintNet [70],
FiConn [71], FlatNet [72], OSA [73], c-Through [74], Helios
[75] and Small-World [76] for the interested reader.

These DCN architectures show a common property: clusters
of servers are interconnected through an aggregation switch.
This property shows that DCN applications are supported to
delegate jobs to a multitude of servers. This part of the DCN,
the aggregation switches, is where the many-to-one traffic
is commonly observed [77], [78]. It is also clear that the
Partition/Aggregate traffic may show great similarity in all
of these DCN architectures and that the transport protocols
may share similar challenges, independent of the adopted DCN
architecture.

III. DATA CENTER TRAFFIC

Data centers host a wide variety of applications and services.
Each application or service exhibits a different type of traffic
pattern, such as many-to-one, one-to-many, and one-to-one,
among the servers in the data center [16], [17], [78]-[80]. Web
page creation, content composition for social networking, and
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Fig. 8. (a) BCube; with n = 4. (b) A BCubej, network.

web searches generate many-to-one, i.e., Partition/Aggregate
traffic [10], [81]. In these applications, a Hypertext Transfer
Protocol (HTTP) request is broken down into several requests
by a front-end web server to fetch the partial responses for
a web page from many data center workers. Upon receiving
the replies from the workers, the front-end web server merges
them and sends the final web page back to the user [10],
[79], [81]. In that case, workers generate many-to-one traffic
toward the front-end web server. For instance, a particular
HTTP request for a Facebook page requires 88 cache lookups,
35 database lookups, and 392 backend remote-procedure calls
from multiple servers across the data center [81]. Moreover, a
simple web search request may access more than 1000 servers
to form the final page [82].

The MapReduce programming paradigm aims to parallelize
a large number of computations, thus enabling to process
and generate large data sets [21]. MapReduce is used for
many different purposes such as building search indices,
capacity planning, optimizing product behavior, and large-
scale machine learning [21], [81], [83]. MapReduce generates
many-to-one traffic, in which intermediate key-value pairs are
transferred to reducers (i.e., servers assigned in the reduce
phase of a MapReduce job by the master node) and all of the
values that are associated with an individual key are assigned
to a single server during the shuffle stage [21], [84]—[88].
Although not generated by a single application or service,
a large amount of MapReduce traffic may appear to be an
all-to-all traffic pattern [81]. Therefore, many-to-many traffic



may be decomposed into many-to-one or one-to-many traffic.
Furthermore, distributed file systems, such as Google File
System (GFS) and Hadoop [88], fetch multiple chunks from
multiple servers to form a file. This process generates many-
to-one traffic [21], [87], [88]. In addition, a chunk is replicated
onto multiple chunk servers (the default number of servers to
keep the replicated chunk is three) for fault tolerance, which
generates one-to-many traffic [21].

Email servers of Microsoft Windows Live and Hotmail
generate one-to-one traffic when they receive a request for
authentication from a user [89]. This traffic pattern occurs
when a mail server sends an authentication request for the user
to a separate authentication service residing in another server
[89]. Virtual Machine (VM) migration may also generate one-
to-one traffic pattern between two servers in a data center
with virtualized environments [90]. For instance, VMWare’s
VMotion migration system allows moving a VM from one
physical machine to another, thereby generating one-to-one
traffic [90], [91].

Cloud computing data centers facilitate a vast variety of
applications and services [2]. These different applications or
services enabled by cloud computing used for the management
of virtualized data centers may generate many different traffic
patterns [92], [93]. However, the discretionary traffic patterns
generated by cloud computing are out of the scope of this
paper.

In summary, one-to-many and many-to-one are the most
frequently observed traffic patterns in data centers. Of these
patterns, the many-to-one traffic seems to present the most
difficult challenge as flows may compete for and exhaust
resources at the converging DCN switch [16], [17], [77], [78].

There are two primarily prevalent groups of applications
and services in DCNs [10], [53], [55]: The first group in-
cludes bulk-data transfers, such as storage synchronization,
and MapReduce-like jobs, which generate large flows [11],
[46], [53]. The second group is short-lived communications
(i.e., short flows) that are generated by applications or services,
such as web content composition or web search [10], [46].
Moreover, an empirical study of network traffic in ten data
centers revealed that short flows (e.g., flows smaller than 10KB
in size) constitute 80% of data center flows and the top 10%
of the long flows by size carry most of the bytes in a data
center [78]. This study also showed that traffic among servers
in a data center follows an ON-OFF behavior with heavy tailed
distributions.

It is worth noting that all of the surveyed schemes in this
paper address the traffic that stays inside the data center (i.e.,
intra-data center flows).

IV. MINIMIZING FLOW COMPLETION TIME OF DCN
FLowS

In this section, we review several of the recently proposed
schemes for the transport of data center flows, such as Data
Center TCP (DCTCP) [10], [94], Rate Control Protocol (RCP)
[9], [39], Router Assisted Capacity Sharing (RACS) [40],
Low Latency Data Center Transport (L?DCT) [41], High-
bandwidth Ultra-Low Latency (HULL) [42], pFabric [43],

[44], DeTail [45], Hedera [46], Multipath TCP (MPTCP) [47],
[48], TinyFlow [49], RepFlow [50], Congestion-Aware Load
Balancing (CONGA) [51], Random Packet Spraying (RPS)
[52], Explicit Multipath Forwarding (XMP) [53], Deadline-
Driven Delivery (D?) [11], Preemptive Distributed Quick
(PDQ) Flow Scheduling [54], Deadline-Aware Datacenter TCP
(D?TCP) [55], and Deadline Aware Queue (DAQ) [56]. We
present them in two different categories: deadline agnostic and
deadline aware schemes.

A. Deadline Agnostic Schemes

1) Data Center TCP (DCTCP): DCTCP [10], [94] is a
scheme that changes the interpretation of Explicit Congestion
Notification (ECN) [95] messages at the sender to control
TCP’s congestion window for data center traffic. DCTCP
uses the algorithms used in TCP, except those for congestion
control. It differs from TCP in the way in which the sender
interprets the ECN messages. DCTCP issues ECN messages
in proportion to the extent of congestion in the network rather
than using ECN messages to simply indicate congestion [95].

ECN is typically used with an Active Queue Management
(AQM) technique such as Random Early Detection (RED) at
switches/routers. ECN uses a field in the IP header with two
bits, called ECN codepoints, to inform the receiver that end
hosts are ECN-capable and about the incipient congestion. The
ECN codepoint “11” is assigned to indicate congestion and
is called the Congestion Experienced (CE) codepoint. Any
router along the path between the source and the destination
sets the CE codepoint if its average queue length is above
a predefined threshold. In this case, the receiver generates
an ACKnowledgement (ACK) packet marked with an ECN-
Echo flag (ECE) in the TCP header to reflect the encountered
congestion upon receiving the packet with the CE codepoint
set. The sender’s TCP reacts by halving the congestion window
(cnwd) and reducing the value of the slow-start threshold
(ssthresh) [95].

However, DCTCP reacts to congestion differently than TCP
does. A sender in DCTCP modifies the congestion window
according to the extent of the congestion. DCTCP aims to keep
a small buffer occupancy at the switches along the source-
to-destination paths. At the same time, DCTCP provisions
buffer space for incast traffic bursts to reduce the number
of dropped packets. By keeping low-buffer occupancy at
switches, DCTCP may provide low latency, high throughput,
and high burst tolerance using shallow-buffered switches.
Figure 3 shows the operation of DCTCP in three different
parts of the DCN:

o At switches: At the switch queues, there is a threshold
K to indicate the desired level of occupancy. The CE
codepoint in the IP header is set if the queue occupancy
is greater than K. The value of K can be modified during
a congestion episode to alleviate congestion.

o At receivers: A DCTCP receiver keeps a TCP state
variable, called the DCTCP Congestion Experienced
(DCTCP.CE) flag, to determine whether to mark an ACK
packet with the ECE flag to indicate the encountered
congestion at the switch. The DCTCP.CE flag is initially
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assigned to zero, and the receiver processes the CE
codepoint in any received packet as follows:

1. If the DCTCP.CE flag at the receiver is one and
the CE codepoint in the received packet is not set, the
receiver sends an ACK packet with the ECE flag set for
every unacknowledged packet and resets the DCTCP.CE
flag.

2. If the DCTCP.CE flag at the receiver is zero and the
CE codepoint in the received packet is set, the receiver
sends an ACK without marking the ECE bit for every
unacknowledged packet and switches the DCTCP.CE
flag to one.

3. Otherwise, the CE codepoint in the received packet
is simply ignored and the receiver sends one ACK
packet for every m received packets to support delayed
ACKs. The ECE flag of these ACK packets is set if the
DCTCP.CE flag is one.

o At senders: The sender estimates the fraction of sent
bytes, «, using ECE-marked ACK packets per Round-
Trip Time (RTT) using:

a=(1-g) a+gF (1)

where g, 0 < g < 1, is a constant weight and F' is the
fraction of packets marked in the last window of data
transmission (which is approximately one RTT). A large
« indicates a high level of congestion. Once « is updated,
the congestion window is adjusted: cwnd = cwnd (1 —
a/2).

2) Rate Control Protocol (RCP): RCP [9], [39] is a
congestion-control scheme that may decrease FCT. Unlike the
congestion-control mechanisms used in TCP, RCP seeks to
maximize the throughput or utilization at the bottleneck link.
RCP is introduced to alleviate congestion in general networks
and also finds its application for fairly sharing the bandwidth
among data center flows. This scheme aims to approximate the
behavior of a Processor Sharing (PS) [96] scheduler, which
shares bandwidth of bottleneck links fairly among contending
flows.

It is well known that the Shortest Remaining Processing
Time (SRPT) scheduling policy achieves optimal scheduling in
terms of Average FCT (AFCT) on a single link by selecting the
flows with the shortest remaining processing time [97]-[99].
In RCP, the emulated PS scheduling achieves a performance
close to SRPT in terms of FCT, with no flow size information

required beforehand [9]. In this way, RCP achieves high
link utilization while keeping a near-zero queue occupancy
at the switch without a priori knowledge about flow sizes.
However, it should be noted that PS achieves suboptimal
AFCT compared with SRPT [40].

The working mechanism of RCP is described as follows.
RCP assigns a rate, R(t), to every concurrent flow defined as

[2(C = y(1)) = BLY]

R(t) = R(t — dp) + N0

2

where dy is the moving average of the measured RTT of
all packets, R(t — dy) is the previously updated rate, C' is
the link capacity, y(t) is the input traffic rate during the
last update interval, ¢(t) is the instantaneous queue size, and
N (t) is the estimated number of ongoing flows, calculated
as N(t) = %. Here, « and ( are stability and perfor-
mance parameters that affect the convergence of R(t), where
0<a, B8<1.In(2), C—y(t) is the available bandwidth and
I} %? is the amount of bandwidth needed to empty the queue.

Figure 10 shows an example of the operation of RCP. This
scheme follows four steps: 1) Every switch estimates R(t),
which is updated once per control interval (e.g., average RTT).
2) At the source, every packet header carries a field of the
desired rate I2,. Initially, 2, = oo. Once the desired rate
is received by a switch, R, = R(t), if R(t) < R,, and it
remains unchanged otherwise. 3) The destination copies the
granted rate, I?,,, which equals the minimum of the assigned
rates by the switches along the path, into the ACK packet and
sends it to the source. 4) The source transmits at the granted
rate. This rate is adjusted every estimated RTT interval.
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Fig. 10. Operations of RCP [39].

The implementation of RCP adopts an estimation for the
number of ongoing flows, N(t) = R(%do), and a user-
defined parameter, 7, to determine the update rate interval,
T = min(7,dp), which can be smaller than the average RTT.
In this case, R(t) is defined as

I N _ pa(t)
R(t) = R(t - Ty + 2 yc(f» BL)

IRNE)



3) Router Assisted Capacity Sharing (RACS): Because PS
scheduling is known to be sub-optimal for minimizing AFCT
[39], the RACS scheme [40] was proposed to emulate the
SRPT policy [97], which selects the job with the shortest
remaining time first. In RACS, every flow is assigned a weight
corresponding to either the remaining processing time or the
residual flow size. This information is updated periodically
so that routers re-allocate the rate for each flow after each
update. A RACS switch allocates bandwidth in proportion to
the flows’ weights. The weight assigned to a flow ¢ at time j
is denoted as w; (7). The rate allocated to flow ¢ by the router
is calculated as

wi(j — 1)

B= i)

“4)
where W (j—1) is the weight of all flows traversing the link at
interval j — 1 and C' is the link capacity of the bottleneck link.
The weight of a flow can be expressed as e~*" or 1/s,., where
s, is the number of flow bytes remaining to be transmitted,
or the remaining flow size.

Figure 11 shows the operation of RACS. The connection
in the figure assumes that the flow transmission has already
started. A rate request (RR) packet is sent from the source
at the beginning of a control interval, k, and it carries the
flow’s last and current assigned weights, w;(k—1) and w; (k),
respectively, and the transmission round period, t;. When a
router on the path receives an RR packet during interval k,
it first updates the rate allocation for flow ¢, R;, using (4),
and the RTT estimation, t¢,., by using a moving average. If the
recently calculated R; and ¢,. values are smaller than the values
carried by the packet, the router updates the R; and ¢, fields in
the RR packet. These updated fields are represented as R and
t’ in Figure 11. The sender uses the assigned rate in the next
transmission period. The destination writes the final, Ré, and
t/ into an ACK packet and sends it back to the source. The
source uses these values to transmit the flow in the following
transmission period and adjusts ¢, based on the feedback sent
by the receiver. After ¢5, the source re-calculates the flow’s
weight and sends a new RR packet to obtain the transmission
rate for the following period.
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Fig. 11. Operations of RACS.

4) Low Latency Data Center Transport (L>DCT): L2DCT
[41] schedules short flows without requiring information about

flow sizes. L2DCT adopts the Least Attained Service (LAS)
scheduling policy [100], which emulates SRPT. However, LAS
uses no knowledge of the flow size but pursues the same
working principle of SRPT; to serve the smallest flow first.
LAS prioritizes the flow with the least data sent and selects
the flows for scheduling in a descending order of priority.
L2DCT adjusts the congestion window according to the ex-
tent of congestion. The DCN switches estimate the congestion
level and notify the source through ECN messages. L2DCT
applies a congestion avoidance algorithm similar to that in
DCTCP. L2DCT comprises three parts, as Figure 12 shows:
a controller of the congestion window at sender, an ECN
echo mechanism at the receiver, and ECN-enabled switches.
At the switch side, the queue length is monitored. If the
length exceeds a threshold K, the CE codepoint is set. Once
destinations receive packets with the ECN-echo flag set, they
issue ACKs that copies the ECN flag back to the senders.
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Fig. 12. The L2DCT scheme.

In L2DCT, a sender has two operational functions; it: 1)
assigns a weight to each flow based on the number of bytes
the flow has already transmitted and 2) dynamically adjusts
the congestion window size according to the congestion noti-
fication (i.e., ECN). The weight assignment in L2DCT follows
an exponential function similar to that in RACS. However, the
weight of a flow, w,, in L2DCT is determined by calculating %
or e~ *, where s represents the amount of data already served
for that specific flow.

Every RTT, the sender calculates the fraction of packets
marked by ECN, F, and updates «, the moving average
of the fraction of ECN feedbacks, using (1). Both DCTCP
and L2DCT use the same exponential smoothing equation to
estimate the fraction of packets marked by ECN.

As a reaction to congestion, a penalty function b is esti-
mated:

b=a"* 5)

This penalty function indicates the reduction rate of the con-
gestion window. When a sender receives an ACK packet with
the ECN-echo flag set, it reduces the size of the congestion
window:

cwnd = cwnd(1 — b/2) (6)

To increase the congestion window size, a sender calculates
the ratio of the current flow weight and the maximum flow
weight, k, or:

k= wc/ Wmazx (N

where Wy, q, 1S the maximum assignable weight, w,,;, is the
minimum assignable weight, and w. is the current flow weight,
with we € [Wimin, Wmaz]-
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A sender may increase the size of its congestion window:
cwnd = cwnd + k ®)

As an example, the congestion window size is halved when
congestion is severe (o« = 1, b = 1), as in TCP. Because short
flows are assigned larger weights than those of long flows,
they may use larger amounts of bandwidth than long flows.

5) High-bandwidth Ultra-Low Latency (HULL): Although
several works are based on the congestion notification of
DCTCP, queueing delay remains a dominant parameter. HULL
[42] has been proposed to reduce queueing delays to almost
zero. HULL has two goals: to achieve near baseline fabric
latency and high bandwidth utilization. Most of the operations
of HULL are performed at switches. These operations are: a
phantom queue, DCTCP congestion control, and packet pac-
ing. Figure 13 shows these components, which are described
as follows.

a) Phantom Queue (PQ): This is a counter associated
with a switch egress port. It simulates the queue buildup
as it would occur in a queue of a link running at a speed
lower than the actual link rate. The counter is incremented
when a packet is received and decremented according to a
configurable service rate (e.g., 95% of the actual link capacity).
This counter aims to provide an estimate of the link utilization
of the switch egress ports rather than the queue occupancy.
ECN is configured at PQ using a threshold K. PQ preserves
bandwidth (e.g., 5% [42]) of the link capacity to achieve zero
queue occupancy at the switch buffer. This measure has the
objective of reducing average and tail FCTs. When a packet
exits a link, the counter’s value is checked. If the counter’s
value is greater than or equal to K, the packet is ECN marked.
Therefore, packets may be marked before the actual queue
starts to build up.

b) DCTCP Congestion Control: HULL implements
DCTCP at PQs. Instead of halving the congestion window
when congestion is detected, as in TCP, DCTCP estimates the
extent of the congestion from the fraction of ACKs received
by the sender in one RTT. DCTCP has been shown to be
an effective way to reduce AFCT while ensuring a high link
utilization (e.g., 94% [94]).

c¢) Packet Pacing: HULL uses a hardware-based pacer
module at the NIC of the sender nodes. The pacer sets the
transmission rate of the output link [101]. The packet pacer is
used to reduce burstiness and the high rates of long flows. The
pacer module consists of a token-bucket rate limiter with an

adjustable sending rate and a flow-association table that stores
information about flows associated with the pacer. HULL
updates the pacing rate (i.e., at token-bucket rate), Ry, every
T, time, using the following controller:

M,
Ry = (1 —n)Ryp + Nt BQw )

where 7 and /3 are positive constants (e.g., the values suggested
are 7 = 0.125 and 8 = 16 [42]), @y is the current backlog of
the token bucket, in bytes, M,. is the number of bytes that the
pacer receives from a host, and 7., although not defined in the
original description [42], may be considered as the sampling
period for counting M,.. If an ACK packet with the ECN-echo
bit set is received, Hull associates the corresponding flow with
the pacer with probability p, (i.e., 1/8 [42]). The association
is dissolved after a time period, T;. This probabilistic policy
makes short flows unlikely to be paced.

6) pFabric: pFabric [43], [44] is proposed with the goal of
achieving both high fabric utilization and near-optimal FCT for
latency-sensitive short flows using a simple approach. pFabric
aims to minimize AFCT by approximating the SRPT policy
[97], [98]. It decouples flow scheduling from rate control. This
is, switching nodes with small buffers (with a size smaller than
twice the bandwidth-delay product) determine which packets
are scheduled or dropped. These decisions are based on the
assigned flow priorities. pFabric has three main components:
flow prioritization, pFabric switch, and rate control. They are
described as follows.

a) Flow Prioritization: For each flow generated at the
source, a number encoding the priority of the flow is added
into the header of each packet of the flow. The flow priority
is set to the remaining flow size to be transmitted.

b) pFabric Switch: A pFabric switch executes two mech-
anisms: priority scheduling and priority dropping. Priority
scheduling dequeues the buffered packet with the highest
priority first. Priority dropping drops arriving packets if the
buffer is full and the queued packets hold equal to or higher
priority than that of the arriving packet. Otherwise, it drops
one or more of the lowest priority packets in the buffer and
buffers the arriving packet. To achieve these two functions,
the switch maintains two data structures: a) a queue for actual
packets, maintained in RAM, and b) a metadata queue for
storing a hash of 5-tuple values to represent the flow ID and
the priority numbers of the packets. When an arriving packet
is stored in the buffer, the packet is added to the end of the
queue and the metadata queue is updated. A binary tree of
comparators is used to find the packet with the lowest priority
that is to be dropped.

For the dequeuing operation, there are two steps. First, a
binary tree of comparators is used to find the packet with the
highest priority. Once the packet is found, the flow ID of the
packet is used for a second search to find the earliest arrived
packet of the selected flow. The second search is achieved
by applying a bitwise parallel comparator on all the packets
in the meta-data queue. pFabric avoids starvation of packets
by dequeuing the earliest packet of the flow with the highest
priority. This starvation would occur if the selection of a packet
considered only flow priority.



¢) Rate Control: In the case of a high load and multiple
long flows contending for a downstream link, packet loss may
occur. This scenario would eventually lead to throughput col-
lapse in the fabric. To overcome this problem, pFabric adopts
a simple rate control mechanism that inherits the congestion
control mechanisms of TCP but with some variations, such
as changing the initial congestion-window size, disabling fast
retransmit, using Selective ACKs (SACKSs), and using a fixed
number of consecutive timeouts to detect congestion in the
network. Specifically, flows in pFabric start with a large initial
congestion window size (equal to the bandwidth-delay product
of the link). The increase of the congestion window follows an
additive increase for each ACK, as TCP does. Once a timeout
is experienced, a multiplicative decrease is performed. pFabric
also disables duplicate ACKs or any other mechanism that
may trigger the fast retransmit algorithm. Moreover, it uses
SACKs and keeps track of consecutive timeouts to indicate
congestion. If five consecutive timeouts are experienced, the
flow enters a probe mode in which sender periodically sends
probe messages and returns to the slow-start phase after
receiving an ACK packet.

7) DeTail: DeTail [45] is a cross-layer scheme aimed at
reducing long tail FCT of short flows in a DCN. It performs
cooperation between multiple layers (from data-link to appli-
cation layers) and exchanges cross-layer information. Every
layer implements a different function. A lossless fabric [102]
is created through the adoption of a flow control at the data-
link layer. A lossless fabric is one in which packet drops
are avoided through the use of a flow control mechanism
and storage. At the network layer, DeTail performs per-packet
adaptive load balancing among alternative shortest paths that
are less congested. Because no packets are dropped in cases
of congestion in DeTail, an ECN-like mechanism is applied
at the transport layer. This mechanism sends congestion noti-
fications, based on the occupancies of the switch buffer, to
reduce the sending rate of low-priority deadline-insensitive
TCP flows. Moreover, the application layer provides flow
priorities based on the latency sensitivity of the flows to
prioritize delay-sensitive flows over background (long) flows.
The operations of DeTail at the different layers, as Figure 14
shows, are described as follows.

a) Data-Link Layer: Priority Flow Control (PFC) [103]
is used at DeTail’s data-link layer to realize zero packet drop-
ping. PFC is adopted by recent Ethernet switches [104]. Be-
cause DeTail performs occupancy estimation on both ingress
and egress switch ports, it adopts a Combined Input-Output
Queued (CIOQ) [104], [105] switch architecture, which has
queues at the ingress and egress ports. At every port of a
DeTail switch, strict priority queueing is enabled to ensure that
high-priority packets are served before low-priority packets. At
each ingress and egress queue, there is a byte counter to mon-
itor the queue occupancy. If the counter exceeds a threshold,
a pause message is sent to the previous hop to temporarily
stop the transmission of flows with specific priorities. Once
the count falls below the threshold, a resume message is sent
to continue the transmissions of the indicated and previously
paused priorities.
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Fig. 14. Cross-layer operation of DeTail [45].

b) Network Layer: DeTail’s network layer balances the
load based on the congestion state of eligible paths. In other
words, after arriving in a switch, a packet is forwarded to the
shortest and least congested path. This process is divided into
two steps: 1) The forwarding engine identifies the possible
shortest and least congested paths between source and desti-
nation. 2) Packet priority and egress port occupancy are used
to select the least congested paths and the switch selects an
output port to forward the packet.

c) Transport Layer: DeTail uses a retrofit of TCP
NewReno [106] as transport protocol. Because the data-link
layer implements lossless flow control, congestion control is
only triggered by ECN marks on low priority queues. DeTail
disables the fast recovery and fast retransmit algorithms of
TCP NewReno to avoid reacting to packets delivered out of
sequence.

d) Application Layer: This layer provides the priority of
latency-sensitive flows. Although eight different flow priorities
are available, DeTail only uses two different priority levels
based on how sensitive to latency the flows are.

8) Hedera: Hedera [46] is a flow scheduling scheme to
reduce the occurrence of traffic hot spots in DCNs. It reduces
large FCTs caused by network congestion and utilizes the path
diversity of DCN topologies, which are multi-rooted trees with
many equal-cost paths between servers. Different from other
schemes, Hedera considers long flows to be the major cause
of network congestion.

The operation of Hedera follows three steps: 1) It detects
long flows at the edge switches of the DCN. Hedera adopts
a fat-tree network as DCN. If a flow occupies at least 10%
of the link capacity, it is called a long flow. 2) A central
controller estimates the bandwidth demand of long flows and
uses two placement algorithms to compute suitable paths for
them, the Global First Fit (GFF) and Simulated Annealing
(SA) algorithms. The demand estimator is a max-min fairness
[107] algorithm, which runs iteratively until the flow capacities
converge. In each iteration, flow capacities of source nodes
are increased and the exceeded capacities at the receivers
are decreased. 3) Paths are installed on the switches. Hedera
uses OpenFlow-enabled switches. OpenFlow [108] uses the
central controller to access and modify the forwarding tables



of switches.

For flow placement, GFF linearly searches all possible paths
containing the links that may accommodate the flow being
relocated and it greedily selects the first suitable path that has
enough bandwidth to satisfy the flow rate. In GFF, the central
controller installs the selected path by creating forwarding
entries in the corresponding edge and aggregation switches.

SA probabilistically searches suitable paths for the flow
being relocated to find a near-optimal solution. SA is a well-
known probabilistic search method to find the global minimum
of a cost function in which there may be several local minima
[109]. In order to reach that goal, SA brings the system
to a state with a minimum possible energy. SA starts the
computation of the path by selecting a core switch. A one-to-
one mapping between core switches and destination hosts in a
pod defines the initial state s. The energy of the current state,
E(s), denotes the total exceeded capacity over all the links
in the current state s, which is minimized during the runtime
of SA. Here, temperature 7' represents the remaining number
of iterations the algorithm performs and it is decremented in
each iteration until it reaches zero. It is also used to calculate
the acceptance probability, which is the probability of having
a transition from the current state, s, to a neighboring state,
sny. When T is high and the energy of the neighboring state
is larger than the energy of the current state, the acceptance
probability may be large [109].

During the path search, Hedera selects a switch neighbor
of a core switch as a member of a new path(s), sy, and then
proceeds to estimate the total exceeded capacity, F(sy ), using
path sy. The path to the destination is updated by selecting
the neighbor core switch, if the new path implies a smaller
energy. Specifically, if E(sy) < E(s), ep = E(sy) where ep
is the path with the smallest amount of exceeded link capacity.
Hedera reduces the search space of SA by assigning a single
core switch for each destination, rather than assigning one for
each flow.

9) Multipath TCP (MPTCP): MPTCP [47], [48] is a data
center transport scheme that utilizes the available bandwidth
of a DCN by load balancing the traffic among multiple paths.
This scheme is considered an extension of TCP. MPTCP is
based on the assumption that one or both end hosts are multi-
homed and multi-addressed. MPTCP splits a flow into several
sub-flows and transmits these sub-flows on different paths.
These sub-flows are transmitted between a source-destination
pair, where they use either the same pair of IP addresses with
different ports or different IP addresses hosted at the two ends.
The transmission of each sub-flow uses a TCP connection.

Figure 15 shows an example of the basic operation of
MPTCP. The figure shows the connection establishment, sub-
flow setup, and connection tear down. During the connec-
tion setup, SYN, SYN/ACK, and ACK packets carry an
MP_CAPABLE field to the receiver host. This field serves
two purposes: 1) It is used to verify whether the other end
host supports MPTCP. 2) It allows the hosts to exchange a
64-bit key (i.e., one key for the sender and another for the
receiver) for authentication and to establish additional sub-
flows [48]. If a source adds a new sub-flow between any
pair of available addresses, it first notifies the destination

about the new sub-flow by using SYN, SYN/ACK, and ACK
packets with the MP_JOIN option. Figure 15 shows a sender
starting a subflow from sthe ender’s Port 2 to the receiver’s
Port 1 using MP_JOIN to indicate the new sub-flow setup.
The identification is verified by using the keys exchanged
in the previous MP_CAPABLE handshake. Once the subflow
connection is established, data packets are transmitted as in
TCP. When the transmission of a sub flow is completed, a
TCP-like closing mechanism is used. However, the closing
of the transmission of one sub-flow may not mean that the
transmission of the whole flow has finished. When there is
no more data to send, the MPTCP connection tear down
process is triggered, using DATA_FIN and the corresponding
DATA_ACK packets.

10) TinyFlow: TinyFlow [49] aims to regulate the traffic
rather than to perform congestion control in DCNs. This
approach addresses the head-of-line blocking problem of short
flows and low bandwidth utilization that Equal-Cost Multi-
Path (ECMP) forwarding faces under multipath routing in
some DCN topologies, such as fat-tree [3] and VL2 [6].
Because ECMP does not differentiate short from long flows,
it may assign the same path to both of them. As a result,
short flows may experience long queueing delays at the egress
buffers of switches. In addition to the head-of-line blocking
problem, a low utilization of the available bandwidth may
be experienced due to static mapping of flows to paths.
These issues may be caused by hash collisions at switches.
Assignment of two or more long flows to the same output
port may congest the port.

TinyFlow mitigates these problems by breaking down
long flows into short flows and randomly distributing them
among all possible paths using ECMP. For multipath routing,
TinyFlow uses long-flow detection and dynamic random re-
routing. OpenFlow switches perform long-flow detection on
the edges of the DCN. Switches perform sampling every 100
Kbyte and a long flow is detected if two samples of the
same flow are found within 500 ps. Dynamic random re-
routing randomly changes the egress port for the detected
long flow after every 10 Kbyte of data. According to reported
simulations, 18% and 40% speedup may be achieved for
the mean and 99th percentile FCT of short flows, respectively,
and 40% in both mean and tail FCT for long flows over
ECMP [49]. Moreover, applications and end hosts do not need
to be modified. Additionally, TinyFlow may be coupled with
a congestion control scheme to improve performance of the
DCN.

11) RepFlow: The design objective of RepFlow [50] is to
reduce the FCT of short flows without requiring any change
in TCP at end hosts and the switches in the DCN.

The application of ECMP depends on the selection of one
outgoing link among the equidistant paths to the destination in
a switch. Although ECMP is an efficient technique, it does not
differentiate between short and long flows. Therefore, ECMP
may increase the FCT of short flows.

RepFlow replicates short flows to decrease the probability of
head-of-line blocking. In this scheme, each sender establishes
a TCP connection to the receiver in addition to the original
one if the flow size is equal to or smaller than 100 Kbytes and
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Fig. 15. Example of the operation of MPTCP.

sends identical packets using both connections. In this way,
the original flow is replicated. The multiple connections are
differentiated by the use of different port numbers. Therefore,
the hashing performed by ECMP likely produces two different
paths for two identical flows but with a different 5-tuple (i.e.,
source and destination IP addresses, port numbers, and pro-
tocol). By replicating flows, RepFlow exploits the multipath
nature of the DCN topology to decrease FCT for short flows.
It has been reported that the overhead generated by the
replication of short flows is negligible because short flows
only account for a small fraction of the traffic in the system.
Because RepFlow is not a congestion-control-based scheme, it
may be combined with another data center transport scheme,
such as DCTCP. Moreover, RepFlow does not require any
modification at end hosts or the switches in DCN.

12) Congestion-Aware Load Balancing (CONGA):
CONGA is a distributed, congestion-aware, and in-network
load-balancing scheme for DCNs. This scheme aims to
balance the traffic without modifying TCP. The design of
this scheme holds the following objectives: 1) to provide a
fast reaction (e.g., tens of microseconds) to congestion; 2) to
operate obliviously to transport protocols (e.g., TCP or UDP)
and without requiring modifications to them; 3) to make the
scheme robust to link asymmetries and link failures; 4) to
make it configurable in switches, such that the scheme may be
applied throughout or in a portion of the DCN; and 5) to be
optimized for 2-tier DCN topologies. CONGA may decrease
the FCTs of all flows and it may provide higher throughput
compared to some other multipath forwarding schemes, such
as ECMP and MPTCP. CONGA splits flows into flowlets
[110], estimates the congestion on the paths based on the
feedbacks from destination leaf (i.e., edge) switches, and
assigns the flowlets to the least congested paths. A flowlet is
defined as a bursts of packets of a flow that are separated by
sizable gaps [51], [110]. The use of flowlets decreases the
possibility of out-of-sequence packet delivery and provides
a finer load-balancing granularity as compared to flow-based
load balancing [51].

The functionality of CONGA depends on switches in a 2-
tier leaf-spine topology (a 2-tier leaf-spine topology is a 2-
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Fig. 16. CONGA architecture.

level DCN topology consisting of edge and core switches with
2:1 oversubscription at the leaf level, as Figure 16 shows). In
CONGA, each leaf (i.e., edge) switch maintains a congestion-
to-leaf table, to store the congestion feedbacks received from
destination leaf switches. Destination leaf switches collect
congestion information carried in data packets from the source
switches and send these congestion feedbacks back to sender
leaf switches on the traffic flowing in the opposite direction.
To forward a flowlet, a leaf switch checks its congestion-to-
leaf table and selects the uplink with the minimum congestion.
The architecture of CONGA is depicted in Figure 16.

Congestion measurement in CONGA is performed by an
estimator function, called Discount Rate Estimator (DRE),
which is run on all switches in the DCN. DRE measures the
load of a link by incrementing a register value X for each
packet sent through the link by the size of the packet and
decrementing it every Ty,..us using a multiplicative factor, «,
following X = X (1 —«). Note that X here, is proportional to
the traffic rate, R, over the link. Specifically, X ~ R7, where
7 = Tyre/a. The selections of 7, and Ty, are performed
experimentally [S1]. The congestion metric is calculated as
X/7C, where C represents the link capacity.

Leaf switches also perform flowlet detection and bookkeep-
ing. A load balancing decision takes place only for the first
packet of a flowlet. The subsequent packets of the flowlet
follow the same path. Therefore, the table is used to keep track
of the flowlets while they remain active. At the same time,
flow detection is achieved by a timer, called flowlet inactivity
timer, which periodically (every T; seconds) times out and
deletes the entry of a flowlet from the flowlet table, if there is
no packet to send for that flowlet in a period equal to 27';.

13) Random Packet Spraying (RPS): Random Packet
Spraying (RPS) [52] is a forwarding technique that forwards
packets of flows through different shortest paths to their
destinations, where a path is randomly selected with uniform
probability. Unlike ECMP, RPS performs packet-by-packet
forwarding at switches of a multi-rooted tree topology, such
as a fat-tree [52]. Instead of hashing the five-tuple header
fields of each flow to find out the path for forwarding the
flow as performed by ECMP, RPS randomly selects an egress
port for each packet from the alternative equal-cost paths to
the destination and forwards the packet. Note that out-of-
sequence packet delivery may occur if RPS is employed as
the forwarding scheme at switches because of the potentially
different latencies of the alternative paths. In the case of
out-of-sequence packets, TCP’s congestion control triggers



the congestion avoidance phase and halves the congestion
window. This TCP response leads to suboptimal performance
because TCP does not distinguish out-of-sequence packets
from lost packets [111]. However, RPS is designed under
the assumption that alternative equal-cost paths have similar
queueing properties and latencies because of the symmetry of
these paths [52]. Latencies of multiple equal-cost paths are
assumed to be similar when RPS is employed throughout the
DCN because RPS may distribute the load equally among all
the equal-cost paths. Although out-of-sequence packet delivery
may still occur in RPS, the performance of RPS is higher than
that of ECMP in terms of throughput and flow completion
time.

RPS also uses a modified version of the RED scheme
called Selective-RED (SRED) to keep the queue lengths of
a switch almost equal under the scenario of a link failure.
By keeping the queue lengths of a switch at equal length,
RPS may maintain similar latencies on equal-cost paths and
therefore, the out-of-sequence packet delivery may be avoided.
Other schemes for path selection based on RPS have been
considered [112].

14) Explicit Multipath (XMP) Congestion Control: Explicit
multipath congestion control (XMP) [53] is a congestion-
control scheme for MPTCP. It aims to balance two seemingly
conflicting goals: providing high throughput for long flows and
small latencies for short flows. XMP is based on transmitting
subflows, as in MPTCP, to exploit the multipath feature of
DCNs. XMP creates subflows for long flows and uses TCP
for short flows. Similar to MPTCP, in XMP each subflow has
its own congestion window and each of them independently
experiences the congestion conditions along the path. Unlike
MPTCP, XMP considers all subflows to belong to a single flow
to obtain efficiency and fairness among all the flows in the
DCN. XMP comprises Buffer Occupancy Suppression (BOS)
and Traffic Shifting (Trash) algorithms. BOS aims to attain
small latencies for short flows, using ECN. BOS marks the
packets at switches along the path, as DCTCP does. Unlike
DCTCP, the receiver uses two bits inside the TCP header,
ECE and Congestion Window Reduced (CWR) codepoint,
to inform the sender of the number of packets that have
experienced congestion. This information indicates the extent
of network congestion. These two bits are used to differentiate
large latencies generated by the DCN from those generated by
the delayed acknowledgment mechanism. A sender increases
its congestion window by one maximum segment size if it
receives an ACK packet with both ECE and CWR bits set
to zero. Otherwise, the sender stops increasing the congestion
window and starts the congestion avoidance phase. During the
congestion avoidance phase, the sender reduces its congestion
window by 1/4 if it receives an ACK packet with both ECE
and CWR bits set to one MSS. The selection of 3 and K values
must satisfy (K+ Bandwidth Delay Product)/f < K for 1
Gbps link rate and 400 ps of RTT. If both the ECE and CWR
bits are zero, the sender increases the congestion window by
0 after one RTT. Here, ¢ is an indicator of how aggressively
a flow competes for bandwidth with other flows on the same
path. The Trash algorithm calculates the individual transfer
rate of each flow and works in combination with the BOS

algorithm. The objective of the Trash algorithm is to shift the
traffic of subflows on the congested paths to the less congested
paths. The Trash algorithm first calls the BOS algorithm for
each subflow to determine the independent sending rates.
Second, a total rate for each flow is calculated by summing the
assigned rates to every subflow of a flow. Third, using the total
rates calculated in the second step, the individual § parameter
of each subflow is adjusted by the Trash algorithm. The Trash
algorithm continues this process until rate convergence occurs
for every subflow in the network.

B. Deadline Aware Schemes

1) Deadline-Driven Delivery (D3): The D3 [11] scheme
incorporates awareness of flow deadlines for the assignment of
transmission rates. As in RCP, senders calculate the requesting
rate for flows before the transmission of the flow and the
switches along the path to destination participate in determin-
ing the sending rate for each active flow. A sender initially
calculates the requested rate, r, for each of its flows before
transmitting them using r = s/d, where s and d indicate the
flow size and the deadline of the flow, respectively.

The sender sends the requested rate to destination. Switches
along the path to the destination allocate a rate to each flow and
inform the sender of the granted rate by using ACK packets
on the reverse path. Senders periodically (i.e., every interval ¢,
which is approximately one RTT) ask for a new rate allocation
as the traffic load may vary with time. Rate requests for the
next interval are piggybacked to one of the data packets sent
during the interval .

When a switch receives these rate requests, it accepts as
many as the total requested bandwidth remains smaller than or
equal to the output-link capacity, C', while it greedily satisfies
the requests in the order they arrive.

To maintain a high link utilization, D? shares the rest of
the bandwidth by setting a;y1 = 741 + fs, where a;41 and
r¢y1 are the allocated and the requested rate for interval ¢+ 1,
respectively, and fs is the fair share. Here, fs is calculated as
fs=(C = D)/N, where D denotes the total demand and N
represents the total number of flows requesting transmission.
Once the available bandwidth is smaller than the ¢ + 1th rate
request (i.e., .41 > C — A, where A is the total allocated
bandwidth), the algorithm assigns all the remaining bandwidth
to the flow by using a;,; = C — A. D? applies the same
approach to short and long flows.

Figure 17 shows the operation of D3. The sender initiates
a flow by sending a SYN packet carrying the rate request
at interval £. The switch on the path calculates the allocated
rate and appends it to the packet. The receiver sends back the
allocated rate to the sender and the sender starts sending the
flow at the allocated rate. During the transmission, the sender
updates the rate requests at each RTT period of time to update
the minimum bandwidth required for completing flows.

2) Preemptive Distributed Quick (PDQ) Flow Scheduling:
D3 grants flow rate requests in a First Come First Serve
(FCFS) manner, so that it may neglect scheduling flows whose
deadline may be about to expire. For instance, if a flow
with a large deadline arrives earlier than one with a small
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deadline, D? grants the flow with the larger deadline first. The
selection policy of D? may unnecessarily delay flows with
small deadlines. Therefore, the number of flows that may finish
their transmission fast or on time under this policy may not be
large. PDQ [54] addresses this drawback by using the Earliest
Deadline First (EDF) and the Shortest Job First (SJF) selection
policies to schedule flows. PDQ aims to transmit the most
critical flow as soon as possible by preemptively allocating
the needed resources to it. In cases where two or more flows
have equivalent deadlines, PDQ assigns the highest priority to
the flow with the shortest transmission time.

To realize flow-by-flow scheduling instead of packet-by-
packet, PDQ records the state of every concurrent active
flow at both senders and intermediate switches. PDQ switches
monitor the flows’ state during their transmission and when
a new flow is selected among the existing flows, it takes
preemptive action; it pauses the transmission of flows and
assigns the link bandwidth to the new selected flow. Figure
18 shows an example of the operation of PDQ. As in D3,
packet headers in PDQ maintain a field to indicate the flow
rate request when a flow connection is initiated through a
synchronization (SYN) packet. However, the rate request in
PDQ indicates the maximum achievable sending rate (i.e.,
sender’s NIC line rate). Once the switch receives this request,
it accepts or rejects the flow depending on the criticality of the
flows contained in the flow table and the available bandwidth,
Awail. In the example, two switches receive a SYN packet
and check the deadline D of the packet to determine the
flow’s priority. If the priority of the packet becomes the highest
among the set, a rate equal to min{Avail, R} is assigned to
the flow. Here, R is the current flow’s sending rate and is
updated by the switches along the path (e.g., R1, R2, and R3
in Figure 18 are the updated sending rates, where R1 is the
first accepted rate and R3 is the last accepted rate). However,
if there is any switch that pauses this flow (e.g., P = 2 in
the figure means that Switch 2 pauses it), the sender holds the
transmission until a rate (larger than zero) is granted. While
a flow is paused, probe packets are sent periodically until the
transmission is resumed.
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Fig. 18. Example of the operation of PDQ.

In addition, PDQ may add the Early Termination (ET)
and Early Start (ES) schemes as additional optimizations. ET
is used to terminate the flows without a feasible deadline.
Due to the excessive demand from all flows, some flows are
quenched in order to satisfy the service deadline of others.
ET quenches a flow if one of the following conditions is true
for that flow: (1) the deadline has passed, (2) the deadline
is greater than the remaining transmission time as estimated
by the currently assigned rate, and (3) the flow is paused
at this point and the estimated RTT is longer than the time
to the deadline. ES is used to improve link utilization when
a switch terminates servicing one flow and starts servicing
another; before scheduling a new flow, the link may be idle
for one or two RTTs; the time it takes to notify the source
of the new flow. ES allows the transmission of a new flow
to start before the current and nearly-completed flow finishes.
ES uses a threshold, K, to define nearly-completed flows; if
the time needed by the current flow to finish is smaller than
K RTTs, the flow is considered nearly finished.

Suppressed probing in PDQ reduces the probing frequency
for the flows sending probe packets during their pause periods.
PDQ also uses a rate control strategy to react to queue built
up produced by ES and the loss of control packets (e.g., pause
packets).

3) Deadline-Aware Datacenter TCP (D?>TCP): D?*TCP
[55] aims to meet deadlines for deadline-driven applications
(e.g., online data-intensive applications) and to provide high
throughput for background flows. It inherits the functions of
DCTCEP, such as adjusting the flow congestion window size
in proportion to the extent of congestion in the network. To
transmit the flows with small deadlines ahead of those with
large deadlines, D?TCP enhances the congestion avoidance
algorithm of DCTCP by adding deadline awareness to it,
where priority of a flow is determined by the flow deadline.
Flows are assigned an amount of bandwidth proportional to
the priority of the flow.

The operation of D?TCP consists of three parts, as Figure
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19 shows: a rate controller at the sender side, ECN-enabled
switches along the path, and the receivers functioning as
reflection points for conveying congestion-feedback messages.
In D2TCP, it is assumed that the DCN uses shared-memory
commodity switches. At the switch side, the ECN mechanism
monitors the queue length. If the queue length exceeds a
threshold K, the CE codepoint is marked. Once the receiver
node receives the packets with marked CE bits, it generates
ACKs for the received packets with ECN-marked feedback,
and sends the ACKs back to the sender. The congestion
avoidance algorithm takes place at the sender side. It decreases
the flow’s congestion window based on ECN feedback and
the deadline imminence factor, d, which indicates the time
remaining to the deadline. If no packet is ECN-marked,
the sender increases the window size to probe for available
bandwidth. As in DCTCP, a weighted average that measures
the extent of congestion is maintained as in (1). After the
calculation of «, a penalty value, p, is calculated as:

p=al (10)

Here, p indicates that the congestion window must be reduced

as:
wW(1-2 if 0
w=JWa=% ifp> (11)
W+1 if p=20
The estimation of d follows d = %, where T, is the time

needed to complete the flow’s transmission in a deadline-
agnostic manner, and D is the remaining time until the dead-
line of the flow expires. T is calculated by an approximation,
T.=B %, where B and W are the remaining size of the
flow and the current congestion window size of the sender,
respectively.

4) Deadline Aware Queue (DAQ): DAQ aims to quickly
serve short flows and guarantee bandwidth (or throughput)
for long flows [56]. This scheme is deadline aware, so it
expects the issuing application to associate a deadline to each
short flow. To achieve FCTs within deadlines, DAQ uses
switches along the path to provide differentiated service to
flows that need to be transmitted urgently. There are two levels
of urgency, determined at the packet level (not exclusively at
the flow level) for short flows: urgent and not urgent. Long
flows are not analyzed for urgency because they are not latency
sensitive. Packets of short flows with a deadline smaller than
a certain threshold are denominated urgent packets and those
packets with a deadline equal to or larger than the threshold
value are not considered urgent. The supporting switches use
three queues to differentiate service: a) an urgent queue for

Q1.1
short I I I s scheduler
flows
) Output
input traffic
traffic

s/l
Wi scheduler

flows

Fig. 20. Queue structure at DAQ switches [56].

urgent packets, b) a non-urgent queue, and c) a queue for
long-flow packets. The adoption of these queues (and the
scheduler that selects which queue receives service at a given
time) provides low complexity for this scheme, as switches
are flow stateless because once a packet is sent to a queue,
no information about the flow is kept. Figure 20 shows the
queueing structure at DAQ switches. The queues are served by
a two-level scheduler, where the first level is a weighted round-
robin scheduler that gives a weight ws to short-flow queues
(urgent and not-urgent queues) and w; to the long-flow queue.
These weights guarantee a minimum service rate to long flows.
The second level of the scheduling scheme used between the
short-flow queues is strict priority, where the higher priority
is assigned to the urgent queue.

DAQ may use ECN-like signaling to indicate congestion
in the switches and optimize the performance of the scheme.
In addition, DAQ uses flow control to avoid overflowing
the switch queues. DAQ shows that the priority queueing
structures in switches shorten the FCT of small flows and
guarantee throughput to long flows.

V. SCHEMES FOR TCP INCAST

TCP incast is likely to occur when a concurrent many-to-one
communication pattern takes place in a DCN when multiple
servers simultaneously send data to a single receiver through
an intermediate switch. The instant traffic burst quickly over-
flows the limited switch buffer causing packet losses, which
in turn triggers an overwhelming number of retransmissions
after their respective time outs. The combination of time outs,
packet losses, and retransmissions significantly reduces the
TCP throughput. This low link utilization phenomenon is
also named goodput collapse. Figure 21 shows the network
segment where TCP incast in a DCN occurs. Here, many
synchronized servers send data to one receiver through the
same Top-of-Rack (ToR) switch. In this case, congestion
occurs at the link connected to the receiver server. Many
typical data center applications are based on the many-to-
one traffic pattern, such as cluster storage [19], MapReduce
[21], and web search applications based on Partition/Aggregate
work flows [10], [12]. In this section, we describe the existing
solutions to the TCP incast problem.

A. Reducing the Minimum Retransmission Timeout (RT O ,ir)

Recent studies have shown that setting the minimum Re-
transmission TimeOut (RT'O), or RTO,,;n, to a value similar
to the average RTT experienced in DCNs, within the range of a
few microseconds, may significantly alleviate the throughput
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Fig. 21. Scenario of incast congestion in data center networks.

collapse caused by TCP incast [19], [113]. Other proposed
approaches to solve the throughput collapse combine high-
resolution timers (to set RTO values within the microsecond
range), randomizing RTO values to desynchronize senders, and
disabling TCP delayed ACKs [114].

B. Reducing the Number of Packets Experiencing RTO

The use of data-link-layer control techniques such as Back-
ward Congestion Notification (BCN) [115]-[117], Quantized
Congestion Notification (QCN) [118], Forward Explicit Con-
gestion Notification (FECN) [119] and Enhanced Forward
Explicit Congestion (E-FECN) [120], congestion control, and
flow control mechanisms at the transport layer such as Incast
Congestion Control for TCP (ICTCP) [77], DCTCP [10],
ethernet flow control [121], and priority flow control [103]
have been proposed to overcome the TCP incast problem.

1) Data link control: The Internet Engineering Task Force
(IETF) [122] and the IEEE Data Center Bridging Task Group
of IEEE 802.1 Working Group [123] are dedicating efforts
to congestion notification schemes for DCNs to address the
increasing bandwidth demand. Some of the outcomes are the
BCN and QCN schemes, which are both queue-length-based
control schemes; they sample arriving packets at the congested
switch and send feedback to the sender indicating the severity
of the congestion, which is determined by the experienced
queue length. When a source node receives feedback notifica-
tions, it adapts the sending rate to mitigate the congestion in
the network. BCN aims to maintain high throughput, minimize
queueing delay, and achieve proportional fairness [117]. As
another congestion-notification scheme, the goal of QCN is
to provide a stable, responsive, fair and simple to implement
congestion control in data-link layer [124]. Other schemes
with similar objectives, such as FECN [119] and E-FECN
[120] have also been proposed. These congestion-notification
schemes are applied at the data-link layer.

BCN is based on the principle that congestion occurs at
the core switches. These switches may be provisioned with
hardware-based monitors for the detection of congestion. BCN
requires collaboration of the source nodes with the congested
node. The traffic source has a rate regulator (e.g., a token-
bucket traffic shaper) integrated in it. Once a core switch

detects congestion by monitoring the length of an output
queue, it notifies the sources with a BCN message, which
includes the severity level of the congestion. The sources
react to the received BCN message by updating the flow
transmission rates.

QCN is proposed by the IEEE 802.1Qau project. It aims to
function as an Ethernet congestion-control algorithm. QCN
comprises two algorithms: 1) the Congestion Point (CP),
which takes place at the switches and 2) the Reaction Point
(RP), which acts as a rate limiter. The objective of the CP
algorithm is to maintain the buffer occupancy at a desired
level. As in BCN, a QCN switch randomly samples incoming
packets with probability p and calculates the level of con-
gestion, Fjp, by combining the queue size and rate excess. If
the calculated Fj is smaller than the one found in the probe
packet, the Fj, value in the packet is updated and sent back
to the sender. Once the source receives the feedback, the RP
algorithm adjusts the sending rate, which is a function of F3,.
The RP algorithm may increase the data rate as recovery after
a rate-decrease episode. The rate increase takes place in two
phases: Fast Recovery (FR) and Active Increase (AI). Every
time a rate decrease occurs, RP enters the FR state. In the FR
state, there are five cycles, each of which equals 150 Kbyte of
data transmission by the rate limiter in RP. At the end of each
cycle, the current rate, CR, is updated as CR = (CR+TR)/2,
where TR is the sending rate before a rate decrease message
is received. After five cycles, RP enters the Al state and starts
probing the path for extra bandwidth. QCN also uses a timer
to rapidly converge to a high sending rate when C'R is very
small.

QCN is more efficient than BCN, in terms of the traffic
generated by feedback messages, as it only sends negative
feedbacks. Despite controlling link rates in a DCN, link
utilization and TCP throughput of QCN are low. These are
the results of unfairness among flows under synchronized read
requests from senders when TCP incast occurs [125].

FECN is a congestion control scheme for data centers to
achieve extremely low or zero packet drops at congested
switches. FECN outperforms BCN in both fairness and re-
sponse time [120]. FECN uses proactive signaling to period-
ically detect the available bandwidth of the network. Specif-
ically, the source periodically sends Rate Discovery (RD)
packets that include a rate field, r, initialized to -1. Switches
on the path calculate the fair share for each flow based on
their load and queue length, and they advertise a rate, r;, for
the ith measurement interval. If the advertised rate for interval
1+ 1 is larger than r in RD packet, it is updated to r = r; + 1.
Upon receiving an RD packet, the receiver reflects the packet
containing r back to the sender, thus the sender sets its sending
rate as advertised in the packet.

E-FECN combines the benefits of BCN and FECN. It
enhances FECN by reacting to sudden traffic bursts and by
allowing switches to send BCN messages to senders under se-
vere congestion. As in FECN, E-FECN uses the RP algorithm
to reduce the sending rate. FECN and E-FECN are explicit
rate-based closed-loop control methods, but switches do not
send FECN feedbacks directly to the sender. E-FECN allows
the switches to send BCN messages (through the receivers) to



TABLE I
WINDOW ADJUSTMENT IN ICTCP

Condition H Window adjustment

Increase the advertised window if there is enough
&< available bandwidth on the network interface;

i > 71 .
! decrease the quota after the advertised

window is increased.

Decrease the advertised window
di-’ > 2 by 1 Maximum Segment Size (MSS) if this

condition holds for three continuous RTTs.

Otherwise Window remains unchanged.

the senders if the queue length of any switch along the path
becomes greater than a threshold, indicating severe congestion.

2) Congestion control: The congestion control algorithm of
TCP [111], [126] is effective to avoid packet losses in wide
area networks, such as the Internet. However, its effectiveness
lessens under TCP incast traffic. The ICTCP scheme [77] ad-
dresses this issue by proactively modifying the TCP advertised
window (at the receiver side) before packet loss occurs. ICTCP
keeps the receiver informed of the achieved throughput and the
remaining available bandwidth. This scheme aims to maintain
a window size small enough to keep throughput collapse from
occurring and large enough to keep the transmission of data
with a high throghput. The incast congestion control scheme
attempts to set a proper advertised window for all TCP connec-
tions at the same bottleneck link and to share the bandwidth
fairly among these flows; it adjusts the advertised window
based on the ratio (b¢ - b"")/b°, where b and b°¢ denote the
measured and the expected throughput, respectively. ICTCP
uses the current throughput of connection ¢, b7, to smooth the
measured throughput, b7, .., = max (b7, Bb7",; + (1 — B)b;),
where 0 < 8 < 1 is the smoothing factor. The expected
throughput, ¢, is calculated as b¢ = max(b}*, rwnd;/RTT;),
where rwnd; and RTT; are the advertised window and the
RTT of connection ¢, respectively.

The ratio of the throughput difference, d?, is defined as
d? = (b¢ —b™) /b, such that d° € [0,1]. ICTCP increases the
advertised window when this ratio is small, and decreases the
window when the ratio is large. The thresholds v; and 7, are
used to define an increase or decrease of the window size, as
Table I shows. The values of v, and ~» are suggested as 0.1
and 0.5, respectively [77]. The available bandwidth is defined
as BW4 = max(0, aC — BWr) where « is a parameter
used to decrease the oversubscribed bandwidth during window
adjustment with « € [0,1], and BWr is the total incoming
traffic on that interface.

Different from adjusting the advertised window as in ICTCP,
DCTCP may overcome the TCP incast problem by keeping
the buffer of the switches along the workers-aggregator path
with a small occupancy. DCTCP reacts to the extent of the
congestion by adjusting the congestion window. The extent
of congestion is indicated by the fraction of packets that
ECN-enabled switches mark. This reaction is different from
that of ICTCP, which adjusts the TCP advertised window to

control each connection’s sending rate. In ICTCP, the window
size is calculated as a function of the available bandwidth of
the receiver and on the difference between the measured and
expected throughputs, as in TCP Vegas [127].

Although it is not explicitly stated, RACS and pFabric also
alleviate the throughput collapse caused by TCP incast. RACS
mitigates the problem by maintaining small queues as DCTCP
does. By means of the ECN feedback mechanism and the
ability to decrease the sending rate to less than one packet
per RTT, pFabric exhibits higher performance that DCTCP,
in terms of AFCT and packet loss rate, under a TCP incast
scenario. pFabric alleviates the problem by reducing RT'O,,in,
which is selected as 45 s in experimental evaluations.

3) Flow control: Flow control mechanisms, such as those
provided by the Ethernet [121] and priority flow control [103]
can effectively help to manage the amount of aggregated data
sent through a single switch. However, their performance in
multi-switch or multi-layered switching topologies is limited
because of the head-of-line-blocking problem of switches
[19]. PAUSE frames used in Ethernet flow control fully stops
the transmission of all flows passing through the link for
a specified period of time. It should be noted that to take
measures against the flow causing congestion, stopping the
whole transmission on the link will also stop other flows from
sharing the same link even though they may not contribute
to the congestion. PFC is proposed to solve this problem, by
stopping the congesting flow without affecting the other flows.
However, throughput collapse may still occur in PFC. In such
a scenario, the buffer of a blocked switch may overflow and
subsequently block the upstream buffers, spreading the initial
congestion into a saturation tree [128], [129].

4) Increasing the buffer size: A straightforward method to
avoid packet loss under TCP incast is to increase the amount
of switch buffers, but this measure also increases the switch
cost and it may not alleviate the throughput collapse for a
large number of senders. In fact, it has been shown that
increasing the buffer space allocated per port on switches
increases the number of senders that can transmit before
incast is experienced by the system. Therefore, it may simply
postpone throughput collapse [19].

VI. CLASSIFICATION, COMPARISON, AND DISCUSSION

In this section, we classify and compare the surveyed
schemes according to their objectives, features, and operation.

A. Category: Scheme Objectives

Table II shows the classification of the surveyed schemes
according to their objectives. These objectives are listed in the
order they appear in the table.

Reducing Mean or Tail FCT: The majority of the surveyed
schemes aim to decrease both the AFCT and the tail FCT for
short flows, while PDQ, RACS, and L2DCT aim to explicitly
reduce AFCT only. DeTail is the only scheme among these
that has the sole objective of reducing the Tail FCT. Although
AFCT is a practical parameter to show the performance of a
scheme for short flows, tail FCT (i.e., 99th or 99.9th percentile



TABLE II
CLASSIFICATION OF SCHEMES ACCORDING TO THEIR OBJECTIVES

Reducing Maximizing
Mean(M)/Tail(T)| No/Less Modification Number of Flows
FCT Requirement in Existing that Meet High Burst Low/Zero Providing Mitigating
Scheme | for Short Flows | DCN Infrastructure |Fairness| Their Deadlines | Tolerance |Buffer Occupancy | High Throughput | TCP Incast
DCTCP | /(M and T) Vv v v
RCP Vv Vv
RACS Vv (M) v v v
L2DCT Vv M) v
HULL | /(M and T) v v
pFabric v/ M and T) Vv Vv
DeTail Vv (T)
Hedera v
MPTCP v v
TinyFlow| +/ (M and T) v v
RepFlow | / (M and T) v
CONGA Vv (M) Vv v
RPS v
XMP Vv (M) v v
D? v v v
PDQ v (M) v
D2TCP v v
DAQ v v
ICTCP v
BCN v v
QCN v v
FECN v v
E-FECN v

FCT) is used to observe the worst-case performance of the
system.

Small or No Modification of Existing DCN Infrastructure:
Deploying the schemes on an existing DCN architecture and
TCP/IP stack may require changes in the existing infrastruc-
ture, whether at the end hosts or network switches. Small and
modest changes to the existing structure in the adoption of
these schemes may imply faster incorporation into the data
center.

Fairness: Fairness, or max-min fairness, is another measure
sought by several schemes. A fair scheme may avoid resource
monopolization by long flows. Such schemes may reduce the
average or tail FCT of short flows [39]. Here, RCP, MPTCP,
XMP, BCN, QCN, FECN, and E-FECN are listed in this
category.

Maximizing Number of Flows that Meet their Deadlines:
D3, PDQ, D?TCP, and DAQ aim to maximize the number
of short flows that meet their deadlines. Schemes seeking to
achieve this goal may also decrease the FCT of short flows
that are not associated with deadlines [54].

High Burst Tolerance: The Partition/Aggregate traffic model
that many applications in DCNs employ may generate bursts
of packets in the DCN [10]. It is important for the schemes
to be able to tolerate the bursts and to alleviate the congestion
caused by these bursts. DCTCP, D3, and RACS provide high
burst tolerance. For instance, D? attains burst tolerance by
assigning a base rate to the flows and allowing them to send
header-only packets for a specified period of time.

Low or Zero Buffer Occupancy: Another objective is to keep
the queue size at the switches small if not zero. We categorize



this objective as low or zero buffer occupancy. Having a
low or zero buffer occupancy may reduce the queueing delay
experienced by latency-sensitive short flows. BCN, FECN, and
HULL pursue this objective. For example, HULL reserves a
small portion of the actual link capacity, called bandwidth
headroom, to keep the switch buffer occupancy at almost zero.
This measure may help to decrease FCT of short flows. Other
examples are BCN and FECN, which also aim to keep the
queue occupancy at a constant level by signaling the sender
node for a sending rate adjustment.

Providing High Throughput: DCTCP, RACS, HULL,
MPTCP, TinyFlow, CONGA, RPS, XMP, D3, and DAQ share
the objective of maintaining high throughput for long flows in
DCNs. These schemes assign lower priority to long flows than
short flows. Hedera aims to maximize the aggregate network
throughput (i.e., bisection bandwidth).

Mitigating TCP Incast: ICTCP, DCTCP, pFabric, and RACS
report having a capability to mitigate the throughput collapse
caused by TCP incast. Among these, ICTCP is the only
scheme that is explicitly designed with this objective, while
the other schemes aim to reduce FCT but they may also be
applicable in this case.

B. Category: Used Mechanisms

Table III classifies the schemes according to their work-
ing principles. We identified the following ten mechanisms:
ECN feedback, window adjustment, rate assignment (rate
allocation), load balancing, preemptive scheduling, flow pri-
oritization, flow replication, multipath forwarding, cross-layer
operation, and hardware modification.

ECN Feedback: DCTCP, RACS, L?DCT, HULL, DeTail,
XMP, and D2TCP use ECN feedbacks to decrease the sending
rate of the source node as a way to reach a desirable buffer
occupancy at the switches to alleviate network congestion.

Window Adjustment. ICTCP, DCTCP, PDQ, D2TCP, and
L2DCT use this mechanism to control the rate in which
flows are transmitted. In this technique, the advertised window
(rwnd) or congestion window (cwnd) of the connection of a
flow may be adjusted to increase or decrease the transmission
rate of the flow. The window adjustment mechanism may
benefit from ECN feedbacks to detect or avoid congestion.

Rate Assignment: Explicit rate assignment is a technique
performed at switches to calculate and assign a transmission
rate for requesting flows according to the adopted service
policy. This technique enables switches along the path to
explicitly select flow rates before the actual transmission starts.
In this way, the aggregated rates of the flows transmitted on a
path does not exceed the path capacity. Moreover, explicit rate
assignment may be used to prioritize or penalize flows [11],
[54]. The schemes that use this mechanism are FECN, RCP,
RACS, D3, and PDQ.

Load Balancing. Load balancing is a technique to exploit
the multipath feature of DCNs that distributes traffic among
possible paths. DeTail, MPTCP, TinyFlow, CONGA, RPS, and
XMP use this technique.

Preemptive Scheduling: Preemptive scheduling is a tech-
nique that pauses the active flow(s) and give the service to the
highest priority flow as it emerges. PDQ uses this technique.

Prioritization for Short Flows: Most schemes assign higher
priority to short flows than to long flows. Prioritization re-
sults in assigning higher sending rates to flows with small
deadlines associated to short flows, as observed in D3, or
by preemptively scheduling short flows first to finish them
quickly, as in PDQ. Another way to prioritize short flows is
to aggressively shrink the congestion window of far-deadline
flows, while slightly reducing the congestion window of near-
deadline flows, as proposed in D?*TCP. RACS assigns higher
priorities and sending rates to short flows by considering the
remaining size of a flow. Similar to RACS, L2DCT uses the
least-attained service scheduling policy to assign rates. pFabric
employs a priority-based packet scheduling at switches where
it uses the remaining flow size to assign a priority for each
packet. DAQ dedicates queues for short flows at the switches
to provide differentiated service to them.

Exploiting Multipath: Because many of today’s DCNs uti-
lize multiple paths between any pair of end hosts [3], [62],
MPTCP, DeTail, RepFlow, TinyFlow, CONGA, Hedera, RPS,
and XMP make use of these paths to provide a high bisection
bandwidth [46], [47], decrease FCT [49]-[51], [53], increase
throughput [47], [53], or perform load-balancing throughout
the network [45], [47], [49], [51]-[53]. MPTCP segments
a flow into subflows and forwards them through the paths
selected by ECMP. DeTail uses per-packet adaptive load bal-
ancing at the network layer and selects the forwarding paths by
considering the port buffer occupancies of switches. RepFlow
replicates each short flow and also selects the paths by using
ECMP. TinyFlow segments long flows into short flows by
randomly selecting the egress port of a long flow among the
equal-cost paths to the destination for every 10KB of data
sent for the corresponding long flow. CONGA segments a
flow into flowlets and uses uplink congestion information of
leaf switches to select multiple paths. Hedera re-routes long
flows that exceed 10% of the link capacity through different
paths. RPS sprays the packets randomly among the equal-cost
paths to destination. XMP, as in MPTCP, segments flows into
subflows to use the multiple paths of DCNss.

Cross-layer Operation: Cross-layer design is a technique
in which different layers of the protocol stack work collabo-
ratively to mitigate congestion in the network or to speedup
the transmission of flows. Performing layer-wise operations
and cross-layer information exchange may help to mitigate
congestion. DeTail adopts cross-layer schemes to reduce the
long tail of FCTs. TinyFlow and DAQ use this approach
to reduce the FCT of short flows, and CONGA employs
it to provide a responsive congestion-aware load balancing
mechanism.

Hardware Modification: Hardware modification may be
used on the end hosts or DCN switches to support a desired
flow transport property. HULL, DAQ, CONGA, BCN, and E-
FECN resort to hardware modification. For example, HULL
uses hardware-based flow pacers at end hosts and DAQ uses
dedicated queues for prioritized flows at switches. CONGA
requires leaf-switches to keep track of flowlets, select the best
possible port for a flowlet to be forwarded by checking the
congestion-to-leaf table, and generate congestion feedback.
BCN and E-FECN use a hardware up-down counters in the
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TABLE III
CLASSIFICATION OF SCHEMES ACCORDING TO THEIR WORKING MECHANISMS

Explicit
Rate Assignment

ECN
Feedback

Window
Adjustment

Load

Scheme Balancing

Prioritization
for
Short Flows

Preemptive
Scheduling

Exploiting
Multipath

Cross-Layer
Design

Hardware
Modification
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MPTCP
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v/ (switch)
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XMP
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ICTCP / (rwnd)
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v/ (switch)

FECN

E-FECN
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generation of feedback messages at switches.

C. Category: Scheme Features

Table IV summarizes the features of all presented schemes.
We categorize the scheme features by whether they are TCP-
based, fault tolerant, or able to coexist with TCP. We also
indicate their layer(s) of operation and how they react to
congestion.

TCP-based Operation and Operating Layers: We first list
the schemes whose design is based on TCP or a variant of
it. This feature indicates the layer(s) of the TCP/IP protocol
stack where modifications may be needed. We note that most
schemes work at the transport layer. Because many DCNs
are implemented with Layer-2 switches, we find a number
of schemes that operate at this layer. Moreover, we find that
schemes such as DeTail, TinyFlow, CONGA, RPS, and DAQ
operate across several layers.

Reaction to Congestion: The reaction of the schemes to con-
gestion may be either reactive or proactive. Reactive schemes
are mostly focused on congestion control. We find that most
of the schemes are proactive, except for pFabric, Hedera,
MPTCP, and D2TCP. Proactive schemes aim to prevent con-
gestion from occurring. Schemes that are based on rate control
are also considered proactive.

TCP Coexistence: In general, schemes that can coexist with
TCP in DCNs means that they may be able to interact with the
protocol and mechanisms in it. Schemes that do not explicitly
state whether they can coexist with TCP or do not provide
sufficient information to infer whether they can coexist with
TCP are labeled as ”Not known.”

Fault Tolerance: The redundancy provided by the use of
multiple paths in the DCN is the major mechanism for
providing fault tolerance. DeTail, Hedera, MPTCP, CONGA,
RPS, and XMP are examples of schemes in this category.



21

TABLE IV
MAIN SCHEME FEATURES
Modification Requirements
Scheme TCP-based | Operating Layer|Reaction to Congestion| TCP Coexistence|Fault Tolerance
Sender |Receiver| Switch
DCTCP [10] Vv L4 Proactive Not known Vv v ECN
RCP [39] L4 Proactive Not known Vv Vv Vv
RACS [40] L4 Proactive VA Vv VA Vv
L2DCT [41] Vv L4 Proactive 4 Vv 4 ECN
HULL [42] v L4 Proactive Not known v v ECN
pFabric [44] Vv L4 Reactive VA Vv v VA
DeTail [45] L2, L3, L4 Proactive Not known Vv Vv v ECN
Hedera [46] v L4 Reactive V4 v V4
MPTCP [47] L4 Reactive v Vv Vv v v
TinyFlow [49] N/A L3, L4 N/A Vv VA
RepFlow [50] Vv L5 Proactive V4
CONGA [51] Vv L3, L4 Proactive v Vv Vv
RPS [52] v L3, L4 Proactive v v VA
XMP [53] L4 Proactive v Vv Vv Va V4
D3 [11] L4 Proactive v Vv v
PDQ [54] L4 Proactive Not known Vv V4 V4
D2TCP [55] v L4 Reactive v v v ECN
DAQ [56] L2, L4 Proactive Vv VA
ICTCP [77] Vv L4 Proactive v Va
BCN [117] N/A L2 Proactive 4 Vv v
QCN [118] N/A L2 Proactive v v v
FECN [119] N/A L2 Proactive v Vv VA V4
E-FECN [120]| N/A L2 Proactive v v v v

Modification Requirements: We indicate if modifications are
required at the sender, receiver, or switches for the implemen-
tation of the scheme. We observed that most schemes require
a level of support from DCN switches, whether with ECN
or any other particular functionality. It should be noted that
although ECN is given as a modification requirement in Table
IV, commodity switches being currently used in DCNs are
shipped with ECN capability [130].

D. Category: Operation Principles

Table V shows our classification of the schemes based on
their operation principles. We list the schemes that aim to
reduce FCT and also include the schemes that are aimed to
increase application throughput as the number of flows that

finish transmission before their deadlines over the total number
of flows requesting service [11].

Some of the schemes use a combination of multiple strate-
gies to manage the transmission of flows, and therefore, they
may fit in several of the categories. We set the following major
categories of operation principles: rate control, congestion
control, flow control, and multipath forwarding. As the last
column of the table shows, most of the schemes resort to some
kind of switch operation.

Rate Control: The switches in the schemes under the rate
control category generally select the sending rates of flows,
and senders transmit the flows at the selected rates. The
assignment of rates may follow a policy that may fulfill the
objective of the scheme (see Table II). RCP emulates PS to
assign a fair rate to all flows traversing the switches along the
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OPERATION PRINCIPLES OF SCHEMES
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Features
Scheme - - - - -
Rate Control Congestion Control Flow Control Multipath Forwarding Switch Operation
DCTCP cwnd adjustment ECN
RCP Emulating PS Fair-share rate calculation
RACS SRPT approximation SRPT-based rate calculation
ECN
L?DCT LAS approximation +
LAS-based rate calculation
HULL cwnd adjustment ECN + PQ
. Flow priority + Flow ID
pFabric TCP-based
comparators
. ECN
. Switch-buffer-occupancy L. Hop-by-hop
DeTail Priority Flow Control . +
based congestion-based .
Drain byte counters
Hash-based forwarding
for new flows
Re-routing +
Hedera
of long flows OpenFlow support
+
Long flow detection
ECMP
MPTCP + ECMP
Subflows
ECMP
Tinyflow +
Splitting long flows
ECMP
RepFlow +
Flow replication
Congestion-aware .
. Congestion measurement
flowlet forwarding
CONGA +
+
. . Flowlet detection
ECMP at spine switches
Random egress port
RPS Packet-based .
selection
XMP cwnd adjustment Subflows ECN
D3 Deadline-based Calculation for
greedy rate assignment rate allocation
eue size and Flow priority comparison
Quee siz EDF and SJE W priofily comparis
PDQ measured aggregate . +
schedulings . .
traffic based Keeping active flow states
D2TCP cwnd adjustment ECN
Urgent and non-urgent
ueue support
DAQ L2-based d . PP
Waited RR
rwnd
ICTCP

adjustment




path. RACS and L2DCT use the SRPT and LAS scheduling
policies, respectively, to minimize the FCT of short flows.
Switches in D? and PDQ calculate the sending rate of flows to
increase application throughput by using greedy assignment.
D3 shares the bandwidth among the flows that arrived first and
PDQ dedicates the link bandwidth to critical flows.

Congestion Control: The congestion control category in-
cludes DCTCP, HULL, XMP, and D?TCP. In these schemes,
the size of the congestion window is adjusted according to the
ECN feedback, while D2TCP considers deadline information
of the flows in addition to the ECN feedback. pFabric uses
TCP but it increases the initial window size and reduces
RTO,,;, as a reaction to congestion. DeTail uses buffer
occupancies to detect (and react to) congestion by using drain
byte counters at each ingress and egress port of the switches.

Flow Control: The schemes in this category may operate
on an end-to-end or hop-by-hop fashion. DeTail and DAQ
use PFC and data-link-layer-based flow control techniques,
respectively, to avoid buffer overflow at switches. ICTCP
adjusts the receiver window to control the sending rate of the
flows and PDQ employs the EDF and SJF scheduling schemes
to control the flows by pausing and allowing the transmission
of them at any time.

Mutipath Forwarding: Multipath forwarding exploits the
multipath nature of DCNs to mitigate the effects of congestion
on the network. MPTCP, RepFlow, TinyFlow, RPS, and XMP
are examples of schemes that use this principle. MPTCP,
RepFlow, and TinyFlow also use ECMP to find available
equal-cost paths from source to destination. MPTCP and
XMP create subflows to exploit multipath diversity, RepFlow
replicates short flows, TinyFlow splits long flows among the
calculated ECMP paths. Hedera uses a hash-based forwarding,
similar to ECMP, only for new flows. Hedera’s switches
reroute a long flow when the flow uses 10% or more of
the link capacity. DeTail uses port buffer occupancies to
select a packet’s next hop. CONGA selects a path to forward
the flowlets based on path congestion state to perform load
balancing. RPS randomly selects an egress port for each packet
among the equal-cost paths to the destination and forwards
them individually.

Switch Operation: It is important to note that a large number
of these schemes require ECN support and most schemes
require different types of switch operations, as the last column
of Table V indicates. Some of the schemes such as HULL,
DAQ, and CONGA require hardware modification at switches
to support their operations. HULL implements a hardware
pacer at the NIC of the sender to pace large flows, and a PQ
at switches. DAQ maintains three different queues to service
different flows (i.e., urgent short flows, non-urgent short flows,
and long flows). CONGA requires each switch along the path
calculates a congestion metric and each edge switch stores
these calculated congestion metrics in order to select the best
output port to forward each flowlet.

In the following section, we look into the properties of
the schemes classified as rate control, congestion control,
multipath transmission, and hardware modification categories.
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E. Major Operation Principles

1) Rate Control Schemes: Schemes based on rate control
pursue allocation of the rates in which flows are transmit-
ted. The properties listed for these schemes include fairness,
deadline awareness, flow prioritization, and whether a scheme
responds proactively or reactively to network congestion sce-
narios, as Table VI shows.

Fairness: Fairness [131], [132] is sought in DCNs to avoid
monopolization of resources. This objective is particularly
important for cloud computing DCNs, where the resources
are shared among a large number of tenants at any given time.
Max-min fairness [107] is desirable for sharing bandwidth in
DCNs, and therefore, fairness is considered by several data
center transport schemes. However, fairness may conflict with
performance objectives. For example, recent research work has
shown that fairness may not be aligned with achieving high
performance transport in terms of the number of flows whose
(transport) deadlines are satisfied [11]. We found that several
of the rate control schemes may not be fair (or explicitly
hold that objective), except for RCP, which pursues fairness
by emulating PS scheduling. RACS and pFabric prioritize
flows according to the remaining portion of the flow to be
transmitted as they aim to finish the smallest short flows first.
D3 shares the bandwidth based on the rates requested by
flows in the order in which the requests arrive. PDQ, which
also grants rates to flows based on their requests, allocates
bandwidth by considering deadlines and flow sizes.

Deadline Aware: Some of the rate control schemes are
deadline aware, and others consider that no deadlines are
obtained or explicitly used (or required) by the data center
applications. The performance metrics for these two groups of
schemes are application throughput and AFCT. Among these
schemes, D3 and PDQ are deadline aware. There are other
schemes that, though they are not in the rate control category,
are deadline aware. We comment on them in the following
sections.

Flow Priority: Schemes assign priority to flows to be used
for selecting the flow that receives service and, in some cases,
the amount of service (and therefore, of bandwidth) that the
flow receives. This is also a method to select the level of
sharing of resources (e.g., high priority flows are allocated
more bandwidth than are low priority flows). For example,
RACS and pFabric assign high priorities to the flows with
small remaining sizes. Exceptions of using flow priorities
are RCP and DCTCP, which consider every flow with equal
priority.

Deployability: We refer to deployability as the amount of
changes needed in the infrastructure of a DCN to adopt a
transport scheme. In this category, RCP, RACS, and D? require
the smallest number of changes on existing infrastructure, so
their deployability is considered high. pFabric accommodates
multi-path forwarding and is considered to have medium
deployability. PDQ requires being able to support preemptive-
ness, and its deployability is considered low.

Table VII presents the scheduling policies and the storage
requirement for flow states at switches. We summarize the
particular function and operations needed at switches and end
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TABLE VI
COMPARISON OF RATE CONTROL SCHEMES

Scheme Fairness | Deadline Aware | Flow Priority | Deployability
RCP Yes No No High
RACS No No Yes High
pFabric No No Yes Medium
D3 No Yes No High
PDQ No Yes Yes Low

hosts, and we list the used signaling methods.

Scheduling Policy: Switches in RCP, RACS, and PDQ apply
scheduling policies to select transmission rates for each flow.
RACS emulates the SRPT policy by assigning flow priority
and using the switches to perform differentiated service (i.e.,
allocation of bandwidth) according to the assigned priorities.

RCP, RACS, and D3 update the allocated bandwidth for
each flow every RTT, or time slot, based on the current queue
size, aggregate incoming traffic, and the number of flows. Each
time slot, bandwidth allocation is adjusted for a large number
of short flows. These schemes are then designed to be stateless
to avoid using a large storage for flow states, and complex and
fast scheduling algorithms at supporting switches. This feature
keeps their complexity low.

Switch Storage: pFabric and PDQ log every flow state,
pFabric uses two (state) vectors, and PDQ uses a table of
states. PDQ switches store the states of the most critical 2k
flows, where x is the number of flows whose sending rate
is greater than zero. Therefore, the space complexity of PDQ
depends on the number of flows needed to fill up the link
capacity, or with complexity O(x). When a switch receives
a new flow request, PDQ compares the packet’s parameters
with those entries in the table to determine whether to accept
or stall the flow.

Host Operations: End hosts send data at the rate specified
by the switches along the sender-receiver path in many of
these schemes. In addition to rate assignment by the switches,
RACS hosts assign a priority to each existing flow, D3 hosts
calculate the minimum requested rate assigned to a flow, and
PDQ hosts determine whether a flow is terminated early.

Signaling Method: Most of the schemes in this group use a
proactive signaling method to prevent congestion, except for
pFabric. pFabric uses packet dropping to trigger rate control
at the source nodes.

2) Congestion Control Schemes: Schemes that aim to re-
duce network congestion to minimize FCT fall in this category.
Schemes such as L2DCT, D2TCP, and HULL follow the same
congestion control mechanism as in DCTCP. Tables VIII and
IX show the properties of the schemes in this category. Some
of the properties considered are: fairness, whether they are
deadline aware or agnostic, and TCP compatibility.

Fairness and flow priority: L?DCT, D?TCP, and DeTail
assign priorities to flows based on flow sizes or deadlines.
Flows with higher priorities are assigned larger sending rates.

On the other hand, DCTCP and HULL assign rates to flows
similarly to TCP; they aim to achieve max-min fairness for
flows over a long period of time.

Deadline aware: D>TCP is the only deadline aware scheme
in this category. The congestion control algorithms of L2DCT
and D?TCP are very similar; these two algorithms add an
exponential factor to the penalty on the congestion window
size. In these two schemes, the objective is to adjust the
congestion window according to the flow priority and in
proportion to the extent of congestion.

Compatibility with TCP: We consider two aspects for in-
dicating compatibility with TCP [133]: one aspect is whether
the scheme is backward compatible with TCP, and the second
aspect is whether existing applications need to be modified
to support the new scheme. From this category, D*TCP and
DeTail are two schemes that may not be compatible with
TCP. D>TCP may require modification on the application to
obtain information of flow deadlines from legacy applications.
Because DeTail is a cross-layer scheme, the layer interfaces
must be modified to provide the required information ex-
change. For example, the application layer in DeTail uses a
socket interface to provide deadline information to network
and data-link layers, and at the same time, the physical layer
is required to notify the data-link and network layers about
the occupancies of the egress ports.

3) Multipath Forwarding Schemes: The schemes in this
category are MPTCP, Hedera, TinyFlow, RepFlow, CONGA,
RPS, and XMP. They use multiple paths to forward flows to
reduce possible congestion points in the DCN. These schemes
share some common properties on how they perform control
of the multiple path transmissions and load balancing. Table
X shows a summary of the properties of the schemes in this
category, and it indicates the target traffic of each scheme, and
how the schemes are implemented.

Control Plane: Hedera is a centralized scheduler, imple-
mented on OpenFlow [108], [134] switches to communicate
with the central controller through a secure channel. The main
function of the controller is to modify flow entries in the
switches to redirect flows if path modifications arise. MPTCP
is a TCP-compatible scheme; it is a distributed scheme (i.e.,
executed by the end hosts) and inherits the basic operations of
TCP. TinyFlow, RepFlow, CONGA, RPS, and XMP use dis-
tributed control mechanisms where load-balancing decisions
are made locally.
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TABLE VII
FEATURES OF RATE CONTROL SCHEMES
Scheme Scheduling Policy Switch Storage Host Operations Signaling Method
RCP PS No per flow states Sending data Proactive
RACS SRPT No per flow states Assign flow priority Proactive
Priority schedule,
pFabric Part of per flow states Sending data Reactive
priority drop
Greedily accept
D3 No per flow states Calculate flow rate requests Proactive
rate requests
PDQ EDF and SJF Per flow states Flow early termination Proactive
TABLE VIII
COMPARISON OF CONGESTION CONTROL SCHEMES
Scheme Fairness | Deadline Aware | Flow Priority | Burst Tolerance | Compatibility with TCP
DCTCP Yes No No High Yes
L2DCT No No Yes Low Yes
D2TCP No Yes Yes Low No
HULL Yes No No High Yes
DeTail No No Yes High No
TABLE IX
DEPLOYABILITY OF CONGESTION CONTROL SCHEMES
Scheme Switch Operations Source Operations
DCTCP ECN Update o per RTT
L2DCT ECN Calculate flow current weight w. every RTT
D2TCP ECN Calculate deadline imminence factor d
HULL Phantom queues with ECN Packet pacing for long flows
ECN enabled at low priority queues,
DeTail Sending data
load balancing per packet

Reaction to Congestion: MPTCP reacts to network con-
gestion by linking TCP’s congestion-avoidance algorithm on
multiple subflows and by explicitly relocating the subflows on
more congested paths to less congested ones. Hedera uses a
central scheduler to monitor and replace congested (or nearly
congested) paths or links. TinyFlow and RepFlow depend on
ECMP to determine the lower-cost paths. They load balance
their flows among those paths. CONGA reacts to congestion
by using collected congestion measurements at edge switches
to select the egress port to forward flowlets. XMP reacts to
congestion by generating ECN messages when the instan-
taneous queue length of any switch exceeds a threshold to
inform the sender to adjust its congestion window in addition
to the technique used in MPTCP.

Load Balancing: Although ECMP is a routing technique,
if the output generated by the hash function used in ECMP
and the incoming flows are both uniformly distributed, the
distribution of flows will be uniform. In this case, ECMP
may provide load balancing among equal-cost paths [135].
MPTCP, TinyFlow, and RepFlow use ECMP to determine the
forwarding paths. MPTCP divides a TCP flow into several sub-
flows using multiple address pairs (e.g., IP or port number)
for the same physical source or destination servers. Hedera
depends on the demand of long flows and its central scheduler
to assign paths to them. Hedera may be able to determine
optimal paths for invariant DCN conditions. TinyFlow uses
a distributed and local approach at switches. By segmenting
long flows into short flows and randomly varying the egress



port for these flows, TinyFlow provides load balancing in the
network. RepFlow applies per-flow load balancing by creating
another TCP connection for replicated flows (i.e., for the ones
smaller than 100 Kbytes) between the sender and receiver, as
MPTCP does. It requires ECMP support at the switch side.
CONGA uses flowlet granularity for load balancing. It looks
up the table where the congestion feedbacks are collected and
selects the least congested egress port to forward a flowlet. If
there are multiple egress ports that are equally uncongested,
one is randomly chosen. RPS randomly selects the egress port
from the equal-cost paths for each packet to balance the load
on different paths.

Targeted Traffic: Hedera, TinyFlow, and XMP aim to bal-
ance the load of long flows whereas MPTCP, CONGA, and
RPS aim to balance the load of all flows, in DCNs. RepFlow
targets short flows only.

Implementation: Hedera uses a central controller and Open-
Flow switches, while MPTCP uses the TCP/IP stack dis-
tributed throughout the DCN. TinyFlow also uses OpenFlow
switches to detect and split long flows. Because RepFlow
simply creates a TCP connection between the same sender-
receiver pair, it does not require any modification to TCP.
CONGA uses custom switching Application-Specific Inte-
grated Circuits (ASICs) to perform its operations, such as
flowlet detection, storing congestion measurement tables, load
calculation for the links, generation of congestion feedbacks,
and congestion marking. RPS does not require a specific
implementation detail except regular commodity switches, as
a more sophisticated version of RPS is already implemented
on today’s commodity switches [136]. XMP uses a modified
version of TCP/IP stack, as does MPTCP.

In-sequence Packet Delivery: Schemes that exploit the mul-
tipath feature of DCNs forward the packets of a flow using
multiple alternative paths between source and destination end
hosts. However, this technique may lead to delivering packets
out-of-sequence because of the latency differences (stemming
from their different queueing delays) of alternative paths [49],
[137]. Out-of-sequence packet delivery occurs when packets
with higher sequence numbers arrive before those with lower
sequence numbers, which left the sender earlier. In that case,
TCP may unnecessarily retransmit delayed out-of-sequence
packets [137]. Schemes that exploit the multipath feature of
DCNs, such as DeTail, Hedera, MPTCP, TinyFlow, RepFlow,
CONGA, RPS, and XMP, are likely to experience out-of-
sequence packet delivery. Therefore, we summarize how these
schemes address this issue.

DeTail disables the fast-recovery and fast-retransmit al-
gorithms to avoid retransmissions. DeTail employs TCP
NewReno for reacting to out-of-sequence packets. In addition,
DeTail uses reorder buffers at end hosts for cases when out-
of-sequence arrivals occur [45].

Hedera relocates a flow when the bandwidth demand of
the flow exceeds 10% of the link capacity, and a new path is
selected among the equal-cost paths to the destination. Because
the relocation of the flow is carried out by selecting a new path,
out-of-sequence packet delivery is unlikely. Out-of-sequence
packets may also be experienced in MPTCP as each subflow
may take a different path, and the selection of paths in MPTCP
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is oblivious to the path’s latency. MPTCP then apportions a
measure against out-of-sequence packets; each segment carries
two different sequence numbers in its header. The first one is
the connection-level sequence number, and the second one is
a subflow-specific sequence number. By mapping these two
sequence numbers, the receiver reassembles the original byte
stream [48].

TinyFlow employs OpenFlow-based edge switches to ran-
domly vary the egress port of a long flow when 10KB of data
have been sent. In this way, TinyFlow segments long flows
into 10KB flows. The selection of a new egress port for the
10KB segments is performed among the equal-cost paths to
the destination. However, some packets of these segmented
flows may be delivered out-of-sequence [49].

Although RepFlow is a multipath forwarding scheme, it
does not suffer from out-of-sequence packet delivery because
it employs a flow-based forwarding technique; every packet of
each replicated flow follows the same path to the destination
[50]. CONGA does not suffer from out-of-sequence packet
delivery as long as the inter-flow gap is large enough (i.e.,
if the idle time between two consecutive bursts of a flow
is larger than the maximum latency difference among the
multiple paths to the same destination). Moreover, a flowlet-
inactivity timeout parameter introduces a compromise between
the number of out-of-sequence packets and the number of
flowlets that exploit multiple paths. Therefore, the flowlet-
inactivity timeout must be carefully selected to avoid out-
of-sequence packet delivery while maintaining a satisfactory
level of load balancing [51]. RPS is a packet-based forwarding
scheme, which may lead to out-of-sequence packet delivery.
The problem is not handled in RPS because it works under the
assumption that TCP tolerates some out-of-sequence packets
and the paths under RPS are expected to be equally loaded
[52]. XMP may also lead to out-of-sequence packet deliv-
ery because it forwards subflows using alternative paths, as
MPTCP does [53]. XMP uses the same approach as DCTCP
to address this issue.

4) Schemes with Hardware Modification: We look into fur-
ther details of the schemes that modify the hardware of hosts,
switches, or a combination of both to run them. We discuss
the features of the schemes and compare their properties. Table
XI presents the working principles, the use of switch storage,
host operation, and switch operation of the schemes in this
category.

Working Principle: HULL is built under the assumption
that long flows congest paths. It solves this issue by using
a PQ to estimate the would-be occupancy if the congestion
in a link increases and by pacing long flows. DAQ aims to
dynamically reserve bandwidth for long flows and maintain
the larger portion of it for short flows. DAQ uses weighted
round-robin to reserve a minimum amount of bandwidth for
long flows if the demand for bandwidth increases. CONGA
aims to avoid congestion of paths by monitoring path states
and by load balancing traffic. The load balancing mechanism
is based on flowlets.

Switch Storage: HULL requires storage to temporarily store
packets of long flows in switches as flows wait for pacing.
DAQ uses three queues: two queues for storing packets of
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TABLE X
COMPARISON OF MULTIPATH FORWARDING SCHEMES
Reaction to Load Balancing
Scheme Control Plane Targeted Traffic Implementation
Congestion Method
ECMP + Multiple addresses from
Relocation of
MPTCP Distributed the same physical All flows Modified TCP/IP stack
subflows
source/destination servers
Link-utilization-based
Relocation of flow re-routing
Hedera Centralized Long flows OpenFlow
flows +
Hash-based forwarding
TinyFlow Distributed N/A ECMP + Splitting long flows Long flows OpenFlow
RepFlow Distributed N/A ECMP + Replicating short flows Short flows TCP (multiple sockets)
Selecting egress port
CONGA Distributed based on Congestion-aware flowlet forwarding All flows Custom switching ASICs
congestion metric
RPS Distributed N/A Packet spraying All flows Regular commodity switches
Relocation of subflows Multiple addresses from
XMP Distributed + the same physical Long flows Modified TCP/IP stack
ECN source/destination servers

urgent and non-urgent short flows and one queue for packets of
long flows. DAQ does not store flow states. CONGA requires
storing flowlet states in (edge) switches.

Host Operation: In HULL, the sender performs pacing of
long flows to alleviate or avoid congestion. DAQ senders oper-
ate as they would in a TCP/IP stack network. CONGA keeps
the state of congestion at senders for different destinations
and uses this information for the identification of suitable
paths. In addition, most load balancing decisions are made
at the senders. CONGA receivers need to temporarily store
congestion (ECN) information for sending it back to senders.

Switch Operation: In HULL, switches use PQs to prevent
congestion and use ECN thresholds to issue congestion no-
tifications. In DAQ, switches perform packet scheduling and
queueing of packets. Because queues in switches may have a
limited size, DAQ may use data-link layer flow control to avoid
packet losses. CONGA requires switches to perform several
functions, including detection of flowlets and to keep routing
information initiated by senders.

Table XII presents a comparison of features of the schemes
in this category. We select the following features: compatibil-
ity with TCP, deadline awareness, cross-layer operation, and
deployability.

Compatibility with TCP: DAQ performs most of the op-
eration at switches and leaves end hosts mostly intact. The
operations of DAQ are mostly transparent to senders and

receivers; therefore, it is TCP compatible. CONGA is also
reported to be compatible with TCP. The compatibility of
HULL with TCP is unknown.

Deadline Awareness: Of these three schemes, DAQ is the
only deadline-aware scheme. HULL and CONGA are deadline
agnostic schemes.

Cross-layer Operation: All of these schemes recur to cross-
layer operation. HULL performs pacing, which affects the
operation of data-link layer protocols. DAQ may use flow
control at the data-link layer to run a lossless fabric and
identification of flows at the transport layer. CONGA uses
detection of flowlets, congestion, and load balancing, and it
may involve operation from data-link to application layers.

Deployability: HULL requires a hardware-based pacer at
each sender’s NIC. HULL switches must also be accessible
for the implementation of the PQ. DAQ requires a queueing
system in switches. These queues may be implemented in
hardware or software. Although some switches may also
be provisioned with queue structures that can be used by
DAQ, the mechanism for identifying short and long flows
is needed. CONGA may have medium complexity for de-
ployment because it requires modifications at the switches.
In fact, it is reported that most of the functions of the scheme
are implemented in ASICs [51]. Therefore, HULL and DAQ
are labeled as having high deployability compared with the
medium deployability of CONGA.
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TABLE XI
FEATURES OF SCHEMES BASED ON HARDWARE MODIFICATION
Scheme Working Principle Switch Storage Host Operations Switch Operation
HULL Resolve congestion from long flows | Storing for pacing long flows Pacing PQ and ECN
DAQ Weighted Round-Robin scheduling No per flow states Differentiated queueing
Multipath routing
Priority schedule, Load balancing
CONGA Per flowlet states flowlet detection
priority drop multipath routing
bookeeping

We summarized which surveyed scheme is proposed by
academia, industry, or by a collaboration of both in Table
XIII. As the table shows, most of the schemes are proposed
by academia and almost half of them are proposed by both
according to published information. Also, because data centers
are owned and operated by private companies, information
about their adopted DCN topologies information about their
adopted DCN may not be available, to the best of our
knowledge.

VII. TCP VERSIONS AND APPLICABILITY TO DATA
CENTER NETWORKS

Although TCP is the transport protocol deployed in the
Internet, it may not be a suitable protocol for DCNs for
multiple reasons [18]. First, TCP is not designed to minimize
FCT, whereas minimizing FCT is one of the main objectives
in DCNs [9]. For instance, one of the existing versions of
TCP, TCP Reno, makes the transport of flows last longer
than necessary [9]. Second, the TCP incast problem may arise
under the many-to-one traffic pattern, which is generated by
many data center applications such as web search, web-page
content composition, MapReduce, and some of the distributed
file systems such as Google File System and Hadoop [18],
[77], [113], [114]. Many surveyed schemes [10], [11], [40],
[41], [43], [45], [47], [50], [53], [55], [56], [77] in this paper
are concerned with TCP incast and aim to mitigate or alleviate
it. Third, the greedy nature of long flows in data centers may
cause queue buildup in switches by constantly monopolizing
the buffer of the receiver switch. This queue growth may delay
the transmission of short flows if short flows share the same
links with long flows [18]. A similar problem called buffer
pressure may arise when long flows share the link with short
flows. In this case, long flows leave a small buffer space for
short-flow bursts at the receiver switch [18].

A vast number of TCP congestion control algorithms, such
as TCP Tahoe [126], TCP Reno [138], TCP NewReno [106],
TCP Vegas [127], [139], TCP Binary Increase Congestion
(BIC) control [140], TCP CUBIC [37], FAST TCP [36], and
many others have been proposed in various scenarios [141].
One would wonder whether these proposed TCP congestion
control algorithms may be applicable in DCNs. Although
standard TCP congestion-control algorithms such as TCP
Tahoe, TCP Reno, and TCP NewReno perform well for
large bandwidth-delay product networks, they do not target

minimizing FCT. TCP Tahoe uses the retransmission timer
and the fast retransmit to detect congestion in the network
and does not have the fast recovery algorithm, which may
increase the FCT in case of packet loss [126]. TCP Reno and
TCP NewReno depend on packet loss as the indication of
congestion, and they react to congestion after the buffer of
the switch fills up and starts dropping packets [106], [138].
TCP Vegas [139] and FAST TCP [36] aim to use changes in
RTT for adjusting the sender’s congestion window to adapt
to the (incipient) congestion conditions in the network [142].
The assumption in both of these congestion-control algorithms
is that the increase of RTT is only caused by the increase
in queueing delay at the bottleneck switch. However, DCNs
actually have very small RTTs compared with the Internet,
and the increase of RTT does not apply here [77]. Moreover,
queueing delay, which is the primary cause of RTT changes in
a DCN, may not provide a reliable sign of congestion in data
centers [10]. TCP BIC and CUBIC are designed for high speed
but high latency networks (e.g., satellite communications),
and they may not be suitable for DCNs, which usually have
RTT values less than 250 ps in absence of queueing [10].
On the other hand, most of the TCP variants, such as TCP
Tahoe, Reno, NewReno, BIC, and CUBIC may generate bursty
traffic by injecting many packets back-to-back in sub-RTT
time scales, which in turn may cause queueing delays, packet
losses, and lower throughput [143].

VIII. CONCLUSIONS

The generated flows in a data center are coarsely classified
into short and long flows, from which short flows may carry a
deadline for completing their transmission. Short flows require
either short flow completion times or completion before a
deadline whereas long flows require being serviced at a min-
imum acceptable throughput. The transmission requirements
of data center flows are mostly challenged by the many-to-
one traffic pattern. The data center applications that generate
this traffic pattern apply the Partition/Aggregate distribution
model. This pattern and the coexistence of short and long
flows raise challenges for the satisfaction of the performance
requirements of data center flows. These challenges have
prompted the design of new transport schemes. In this paper,
we presented a survey of these schemes and classify them into
those that are deadline aware and those that aim to minimize
FCT. As one of the performance issues is throughput collapse



TABLE XII
COMPARISON OF SCHEMES BASED ON HARDWARE MODIFICATION

Scheme Compatibility with TCP | Deadline aware | Cross-layer operation | Deployability
HULL Not known No No High
DAQ Yes Yes Yes High
CONGA Yes No Yes Medium
TABLE XIII
SCHEMES PROPOSED BY ACADEMIA/INDUSTRY
Scheme |Proposed by Academia | Proposed by Industry
DCTCP Vv Vv
RCP v v
RACS Vv
L2DCT v
HULL Vv v
pFabric VA Vv
DeTail v v
Hedera Vv
MPTCP v v
TinyFlow Vv
RepFlow Vv
CONGA v
RPS Vv
XMP Vv
D3 v v
PDQ Vv
D2TCP v Vv
DAQ v
ICTCP i
BCN Vv
QCN v v
FECN Vv
E-FECN v

29



caused by TCP incast, we also addressed developed schemes
to alleviate it. Herein, we have analyzed the different operation
and properties of the surveyed schemes. We observed that
schemes, in general, aim to reduce the flow completion time.
These schemes consider network congestion to be the major
hurdle for satisfying flow requirements. As a result, most
schemes address network congestion in either a direct or
indirect fashion. In particular, we observed that schemes that
prioritize the transmission of flows according to flow size or
deadline may address congestion indirectly. In these schemes,
the selection of flows and their rate assignment may require
fast and complex infrastructure support. Other schemes may
resort to exploiting the high-level path parallelism of DCNs
and perform load balancing or transmission redundancy to
achieve low FCTs. We observed that these schemes may
need to take special care for providing in-sequence packet
forwarding. We also observed that more research is needed to
evaluate the impact that out-of-sequence packet delivery has
on FCT and on the number of flows that finish transmission
within their deadline.

With the particular features of data center traffic, we found
a new family of schemes that resort to adapting data center
switches for satisfying the traffic requirements. This option
presents the advantage that existing protocols may need little
modification. In addition, modifications on the hardware of
DCN equipment may enable precise management on high-
bandwidth interconnection links.

In general, we foresee that much research is needed in de-
signing schemes for reducing FCT considering the coexistence
of long and short flows as they compete for DCN resources.

The fault-tolerance in DCNs can be listed as another open
research problem. In fact, the multipath feature of the DCN
may be used to improve the resilience of transport schemes
against the node or link failures.

With schemes following a particular working principle, as
classified herein, each of them faces particular challenges,
including complexity, achievable FCT, fairness on the service
for short and long flows, and implementation feasibility in
software or hardware. For example, schemes that are based
on solving network congestion may need to improve the
efficiency of feedback mechanisms for regulating the rates
in which flows are transmitted. As data centers are generally
owned by a single administrator, their compatibility with TCP
and other protocols of the TCP/IP suite is not strictly required
because those protocols may be run within the data center
only.
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