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Errata Sheet

1. p.17 — The sentence above (1.77) should read: Equating expressions
(1.75) and (1.76) ...

2. p.23 — Figure 2.3(b). The label %V appears in the wrong place. It should
be at the same level as that shown in figure 2.3(c).

3. p.26 — Figure 2.4, the CURRENT DIAGRAM. The top right triangle

should contain a 0. The first diagonal trace should be labelled Zlo rather

than V. The second diagonal trace should read -2—VZ—D- rather than —ZLO'

At the bottom of the diagram the label %ZXJ should read 15—6210

4. p.27 — Figure 2.5. The caption should read z = 21 rather than 3 = 31.

5. p.28 — Figure 2.7. At the input to the line we need a label V!, as shown
below.

V_{, Zy Rp

6. p.50 — P2.10 should read: Consider the circuit illustrated in figure 2.33.

7. p.50 — P2.11 should read: Plot the voltage distribution along the line at
t=15Tns...

8. p.63 — Figure 3.9. The second line on the extreme right should read
—TL (S)pL (S)Vs (s)e’sT" .

9. p.74 — Figure 3.16. The extreme right end of the bottom trace should
read r25(s)te~T*

10. p.75 — The numerator of (3.68) now reads (2/t,)?. It should read (2/t,,)2.

11. p.97 — Figure 4.12. Add the label 50Q to the vector joining (V, 1)) to
(‘/21 I2)

12. p.101 — Figure 4.18. Not well duplicated from the manuscript.

13. p.105 — The tiny vector to the left of 0mA should be drawn in dashes.
14. p.142 — Figure 6.8. The broken 4 in VIL(maz) = —1.475 should be fixed.
15. p.144 — third line below (6.16) should read: the margin improves by 4 V.
16. p.145 — Figure 6.10. Change Vg(—4.5V) to read Vgg(—4.5V).

17. p.159 — Figure 6.21. On the left side, the label Vg(—4.5V) should read
Vep(—4.5V).

18. p.184 — Figure A.3. On the right side the resistor label Rg should read
Rr.



19.

20.

21.

22.

23.

P.186 — Example A.1. Fourth line, the reference to (A.3) should be
changed to (A.4).

p.187 — PA.1. In line 7 change example 5.1 to read example A.1. For
clarity add at the end: It is assumed that the 50k input resistance is
connected to Vgg = —4.5V.

p-187 — PA.3 should read: Assume that the circuit in example A.1, ...

P-205 — Part (a) should read: Use the time shifting theorem and (B.6)
to find ...

p-206 — If there are any additional printings, then problem PB.11 should
precede problem PB.9.
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Preface

This book is intended for the electrical engineer interested in obtaining a
background in the area of feedback amplifiers. A suitable text for self-study
or formal course work, the entire book can be covered in one semester at the
senior undergraduate level or at the first-year graduate level.

I have taught a one-term graduate course on this material at the New
Jersey Institute of Technology for more than ten years. In the early days
when it was a one-year course, it covered signal-flow diagrams, a great deal
of complex-variable material (particularly the Hilbert transform and the
gain-phase relations for minimum phase structures), and the Bode ideal
loop-gain characteristic. After some time it was determined that signal-flow
graphs are not essential for the understanding of feedback amplifiers and
that Bode’s mathematical ideal is very difficult to approximate; equally good
results can be obtained by other much simpler techniques. As a result, the
course was streamlined and revised to cover material that is indispensable
for the understanding and design of properly functioning feedback
amplifiers. The students, who were getting tired of copying my notes from
the blackboard, felt that the material had become sufficiently well organized
to be put into a book. Their encouragement was instrumental in getting the
work started on the manuscript.

This book is meant to fill a void which has existed in this area for many
years. The first authoritative book on the subject was Network Analysis and
Feedback Amplifier Design by H. W. Bode .(Van Nostrand, 1945). Anyone
who has used that book knows that it covered the material quite thoroughly,
but it was very difficult to read. A book which clarified Bode’s material was
Feedback Circuit Analysis by S. S. Hakim (London Iliffe Books Ltd., 1966).
It was modern for its time, but a great deal of the material dealt with
electron-tube applications. There are other books on the subject, but they
are reference books, written for the experienced specialist and do not

ix



X e Preface

contain exercise problems. Most textbooks on electronics that have been
published in recent years devote a chapter to this subject, leaving students
confused on material that requires a much more thoroughgoing treatment.
Some instructors feel that feedback amplifiers are a subset of control
systems. This kind of treatment is inadequate, because in control systems it
is assumed that most blocks comprising the system have one output variable
related to one input variable and loading is not considered an important
issue. In feedback amplifiers we have two variables at the output (voltage
and current) and two variables at the input. Loading of the feedback circuit
on the output and input of the amplifier can only be ignored in cases where
a large impedance mismatch exists. The impedance mismatch assumption is
not a requirement for the proper application of the theory of this book.

The material presented in this book is entirely consistent with the
classical methods first elaborated by Bode. Bode’s matrix formulations
(arising from mesh and nodal equations) were very elegant, but at times
tended to obscure cause-and-effect relationships between element values and
final circuit performance. The methods used in this book are much more
direct, so that the connection between component values and final circuit
performance is obvious. The book contains many illustrative examples, so
that readers should have no difficulty studying it at their own pace.

I have taken deliberate pains to reduce the amount of background
material required for the reading of this book. Toward that end, the amount
of circuit analysis required for calculations consists of the voltage-divider
theorem, the current-divider theorem, Thevenin’s theorem, and Norton’s
theorem. Mesh analysis is needed only once in connection with the RC
phase-shift oscillator and even there its use can be avoided. The material in
App. A gives very convenient methods of performing calculations on
bipolar and field-effect transistor circuits, eliminating the need to resort to
mesh or nodal analysis. In this way it is always easy to see which elements in
the circuit control what quantities, and how to select them to meet a
particular specification. This material is essential to the understanding of the
methods of Chaps. 2-4 and should be read first if it seems unfamiliar. It
was felt that this material is tutorial in nature and therefore was put into
App. A so that the rest of the book could be arranged in a more logical
order.

Aside from an understanding of the aforementioned topics, some back-
ground in frequency-response calculations in amplifier circuits is also desir-
able. A background in complex variables may be helpful but is not essential,
and the reader who wishes to understand the derivation of the Nyquist
stability criterion in Chap. 6 will find a short review of the subject in
App. B.

The asymptotic gain formula presented in Chap. 2 makes it possible to
analyze any feedback amplifier circuit, even the emitter follower, regardless
of whether it is possible to discern a feedback loop. Chapter 2 also presents
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the Blackman formula for evaluating impedance in feedback amplifiers.
This theorem has been largely ignored in most textbooks on electronics, but
the fact remains that it gives a method for calculating impedances in an
unequivocal manner, even in confusing situations.

Chapter 3 simply presents some results on well-known feedback amplifier
configurations for the reader’s convenience and also discusses the less
popular, but at times useful, bridge feedback connection.

Chapter 4 takes up the question of the proper breaking of the feedback
loop and performing correct loop-gain measurement, even in situations in
which it is impossible to find a point in the amplifier where there is a
substantial impedance mismatch. R. D. Middlebrook presented methods
which are suitable for the measurement of loop gain in dc-coupled feedback
amplifiers in which it is difficult to open the loop without disrupting the
operation of the amplifier. A somewhat more convenient alternative method
is presented in Chap. 4, so that loop-gain measurements can be performed
without any doubt that the loop has been properly broken and properly
terminated.

Chapter 5 concerns itself with the calculation of loop-gain frequency
response. The use of the Miller effect is shown to be ineffective for feedback
amplifier analysis because this method only gives accurate results up to the
3-dB frequency, whereas an accurate knowledge of the frequency response is
needed beyond gain crossover. The reader who has access to good circuit
analysis program such as PCAP, CORNAP, or SPICE might find this chapter of
marginal interest, but some interesting fundamental points can still be
learned in this chapter. The frequency analysis methods that are presented
can be carried out by using a pencil and paper and a calculator. In this way
the reader who has no ready access to a computer with the proper software
can still obtain excellent results.

In Chap. 6, methods for feedback amplifier stability analysis are pre-
sented. The emphasis here is on the Nyquist criterion. The method of
root-locus is omitted since it is more applicable to control systems.

Chapter 7 examines feedback amplifier stability from the point of view
of the time and frequency response. Explicit methods of capacitive com-
pensation are given for various situations encountered in practice.

Chapter 8 takes up the question of the feedback required to attain
various design specifications. Chapter 9 concludes the book by presenting
some common oscillator configurations.

I wish to express my gratitude to my colleague Prof. Joseph Frank for
the many thorough discussions on the subject of electronics and feedback
amplifiers. They were most helpful in elucidating many theoretical and
practical aspects of the subject, and made it possible to create a clearer
presentation for much of the material in this book.

Sol Rosenstark



Feedback Amplifier Principles by Sol Rosenstark

Errata Sheet

The errors in this book are minor and are largely due to oversights during
proofreading. The author duly apologizes for these.

e Page 15, 3rd line: Change the phrase “return ration” to “return ratio.”

e Page 34, figure 3.10: There are two resistors labeled R3. Change the
label of the 2102 resistor to Rs.

e Page 61, the top line of matrix (5.8): Change the two upper case S to
lower case s.

e Page 77, last line: Change the word “Calculating” to “Calculate.”
o Page 82, equation (6.7): Change as to a;.

e Page 89, second to last line: Change “than” to “that.”

e Page 122, problem 7.7, third line: Change R; to R;.

e Page 146, top diagram: The emitter resistor is shown shorted to ground.
The short should be replaced with a capacitor bypass to ground.

e Page 173, the sixth line of the paragraph starting with “In this exam-
ple’: Change “beeen” to “been.”
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Introduction to
Feedback Theory

1.1 Introduction

Although feedback amplifiers have been in use for more than half a century
[1], a unified method of feedback amplifier analysis has yet to be accepted
by feedback amplifier designers. The first attempt to establish proper
theoretical foundations for feedback amplifier analysis was made by Bode
and Blackman in the 1940s [2, 3], but very little (sometimes none) of Bode’s
and Blackman’s work can be found in most modern day texts on electronic
circuits. This book attempts to fill this gap by presenting Bode’s and
Blackman’s work in modern terms. It also includes later results, which give
very clear procedures for measuring loop gain, and then the subject of
feedback amplifier stability is addressed. In all cases, an attempt is made to
present the simplest possible methods of analysis, which also meet strict
criteria for accuracy.

This chapter serves as an introduction to the concepts of feedback
theory. It should not be assumed that the equations appearing here are to be
used for design purposes. Equations appropriate to feedback amplifier
analysis will be found in the following chapters.

Appendix A is included as a review of bipolar-transistor and FET (field
effect transistor) equivalent circuit theory. Although most electronic circuit
designers are very likely to be familiar with such material, it is included so
that the reader can assure himself that his point of view and the author’s
correspond on this point.

1



2 « Feedback Amplifier Principles
1.2 Elementary Feedback Theory

A feedback system is one in which the output signal is used in some way to
modify the input signal to the system as shown in Fig. 1.1.

Amplifier
of gain oV,
A

Feedback
network with
attenuation

Figure 1.1 Feedback system block diagram.

In the model shown we have an amplifier with a forward gain A4, which
determines the signal relation between the output voltage V, and the voltage
at the input terminals V,, according to

V, = AV, (1.1)

In addition, we have a feedback network, which relates the returned signal
V, and the output signal ¥, according to

v, =B, (12)

The summer takes the difference between the input signal ¥, and the
returned signal V, to produce the difference signal

Vi=V,- 7, (13)

Substitution of (1.1) and (1.2) into (1.3) allows us to eliminate ¥, and V,
from (1.3), leading directly to the gain with feedback,
v A

o

Af=7=1+,BA (1.4)

s

The term BA which appears in the denominator of (1.4) is termed the
loop gain or return ratio T of the feedback system. A method for determin-
ing the return ratio

T=pA (1.5)

is shown in Fig. 1.2.

The signal source is set to 0. The signal path of the feedback loop is then
broken at some convenient place and a signal of 1 unit is injected at
terminal a. The returned signal at point b, V,, is given by

Viy=—BA (1'6)
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unit L
signal Amplifier

o of gain
a A

Feedback
network with

attenuation

g
Figure 1.2 Feedback system prepared for finding 7.

From this result and (1.5) we conclude that
T=- rb (17)

Namely, the return ratio T is the negative of the returned signal at the
output of the broken feedback loop, when a unit signal is injected at the
input of the loop. The independent sources (V,, in this example) must be set
to zero before this procedure is carried out. We shall use the return ratio
extensively later, so that the method of finding 7 will be of very great
significance to us.

The signal appearing across terminals a—b is referred to as the return
difference F, and we see from Fig. 1.2 that

F=1+p4 (1.8)
or ;
F=1+T (1.9)
We can, in conclusion, write the gain with feedback in the form

A
A= o (1.10)

[
+

or

BTN

A= (1.11)

1.3 Classification of Feedback Connections

If the signal that is fed back is subtracted from the input signal, then the
feedback is said to be negative or degenerative. If the feedback signal is
added to the input signal, then the feedback is said to be positive or
regenerative. For negative feedback, T is positive. Negative feedback is
often used to obtain good performance from inferior equipment, the price
being an increase in the quantity of equipment utilized. Sometimes a
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three-transistor feedback amplifier is built to obtain a good distortion
specification, when the same gain could be obtained with a single-transistor
amplifier, but with poor distortion performance. This point will be elaborated
in the following sections.

1.4  Sensitivity

When we again examine (1.4), we observe that if the loop gain B84 is much
greater than unity, then

A f = F (112)
and the gain of the amplifier with feedback is entirely independent of
variations in the gain 4. This is the part of the feedback amplifier contain-
ing active elements, which vary with temperature, age, and component
selection. Equation (1.12) states that if the return ratio is large then it is
primarily the feedback network that controls the gain of the feedback
amplifier. It is therefore important to make the feedback network indepen-
dent of the kind of variations that active devices possess. Accordingly, the
feedback network should be designed with stable passive devices.

If BA is not much greater than unity, we can still determine the
sensitivity of the amplifier with respect to variations in A4, by differentiating
(1.4) with respect to A4,

dA, 1

It is useful to define the sensitivity of the closed loop amplifier gain A 7 as
the fractional change in A4, for a given fractional change in 4,

_ ddy/4,

Sa=Ta/a

(1.14)
and we can readily obtain from (1.13), with the use of (1.5) and (1.10), the
result,

1

Si=1¥T

(1.15)

It can be readily appreciated, that for 7 = 9, a 10% change in the gain 4
will cause approximately a 1% change in the gain of the feedback amplifier.
We must be mindful, however, that the gain variation of the amplifier is
reduced by a factor of 1 + T at the expense of the amplifier gain, which has
been reduced by the same factor.
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Example 1.1: We are given an amplifier with a gain of 10 and a gain
variation of 3.3%. The specifications call for an amplifier with a gain of
10 and a gain variation of 0.1%. We shall try to meet the specifications
by putting three of the above amplifiers in cascade and using negative
feedback. From the specifications we determine that

A =10° = 1000
(A4/4) = {[10(1 + 0.033)]° — 10*}/10°= 0.1
4,=10

and

(Ad4,/4,) = 0.001

Substituting this data into (1.14) and (1.15), we readily obtain the result
T =99, which is the required return ratio needed to fulfill the gain
variation specification.

If we cascade three amplifier stages and then apply feedback, the
resultant gain is

103 103

fSTF7 100 - 10

A

We see that we need three cascaded stages with feedback to meet the
specification that one good stage could have met. Transistor prices being
very low, one does not have to give a second thought to the idea of using
many inferior stages where one good one could have done the job. |

1.5 Distortion

Due to the nonlinear properties of the active devices used in amplifiers,
distortion takes place which introduces extraneous signals into the amplifier
output. As an example we will take a two-stage amplifier as shown in Fig.
1.3.

Figure 1.3 Two-stage amplifier for studying distortion.
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The model shown represents a two-stage amplifier with the signal 1,
representing the distortion at the amplifier output. The distortion signal
appears at the output because distortion is generated by the stage that is
driven the hardest.

We observe that the return ratio for the model shown is

T= ,BAl2 =4,—-1
Hence

1+ T=A4,
Applying (1.10) we see that when V| is acting alone

A

Using superposition we find that the total signal at the amplifier output is

V, = AV, + A# v, (1.16)
1

For comparison we choose an amplifier without feedback which has the
same signal gain as that shown in Fig. 1.4.

Figure 1.4 Nonfeedback amplifier used for com-
o parison.

The output signal for this case is
V,=AV, + Vp, (1.17)

and we see that the desired signal output is the same as that in (1.16), but
the distortion in the feedback amplifier has been attenuated by a factor of
A,, which corresponds to the return difference of the feedback amplifier.
Again we see that we can improve performance with inferior equipment if
we use it in larger quantities. Sometimes more can be better.
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1.6 Noise

We shall use the same models that were used to study harmonic distortion,
except that we shall introduce noise at the input and output of each
amplifier stage, as well as have noise accompany the signal at the amplifier
input as shown in Fig. 1.5.

Figure 1.5 Two-stage amplifier used for studying the effects of additive noise.
Following the analysis of the previous example, we see that at the
amplifier output we have

1
V,=A, (Vi + Vo + Vi) + Vaa + A_lVNB (1.18)

For comparison the nonfeedback amplifier is shown in Fig. 1.6.

Figure 1.6 Nonfeedback amplifier used
Vo for comparison.

For this case, the total output voltage is
V=4V, + Vyo + Vi) + Vs (1.19)

and we see that feedback does not give any improvement for noise intro-
duced at the amplifier input, regardless of whether this noise source exists
before or after the summer. But noise introduced close to the amplifier
output is attenuated in the feedback amplifier, as in the case of a distortion
signal. For cases where the greatest noise is introduced at the amplifier
input, feedback gives no improvement at all.

1.7 Bandwidth-Gain Trading

The arguments which follow apply to amplifiers that possess a single
6-dB /octave high-frequency rolloff. In other words, we assume that the
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amplifier before feedback has a gain characteristic given by

4o

A(f) =T/, (1.20)

This is a low-frequency amplifier with a 20-dB /decade rolloff, with a break
frequency f;,. We can trade gain for bandwidth by using the amplifier in a
simple feedback configuration shown in Fig. 1.7.

A
Voo—=(T) o ° Vo

T 1+jf/fy
14

Figure 1.7 Feedback configuration for demonstrating gain-bandwidth trading.

The gain with feedback is found with the aid of (1.4)

1
()= —2
1+ '81 +J§(/fh
which results in
Ao
1+ B4
A,(f) = f° (1.21)

VT AT BAy)

The above result can be written in the form

4y

Af(f)ziw (122)
where
A
Ay = 1T23A“0 (1.23)

is the low-frequency gain reduced by feedback, and
=60+ BA,) (1.24)

is the 3-dB cutoff frequency in the presence of feedback. The gain-frequency
tradeoff is very clear when the last two equations are examined.

Although the above analysis applies strictly to amplifiers possessing a
single high-frequency pole, it could be generalized with some effort to
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amplifiers with more break frequencies. Furthermore, the same analysis can
be carried out to show that gain-bandwidth trading applies to the low-
frequency response of amplifiers just as well.

1.8 Impedances

Negative feedback can be used to change input and output impedances, a
subject we shall explore thoroughly later in a unified approach for the
various input—output configurations commonly found in feedback amplifiers.

1.9 Conclusion

The concepts presented in this chapter are no more than an introduction to
feedback theory. Methods that are specifically applicable to feedback
amplifiers will be presented in the following chapters. Almost all the
equations presented in this chapter will be supplanted with other equations
which are designed to give clear and unequivocal results even for such
confusing feedback amplifier structures as the emitter follower.

At present there are two methods of arriving at feedback amplifier
theory. One is the network formulation approach used by Bode [2] in laying
down the fundamentals of feedback theory. His method was based on the
use of mesh impedance or nodal admittance matrices. This approach is
elegant, but is somewhat difficult to understand and lacks intuitive insight.
The methods of feedback amplifier analysis, which will be presented in
Chap. 2, are based on publications by Middlebrook [4] and Rosenstark [5].
The method used here relies on simple circuit analysis, which leads very
naturally and directly to the feedback formulas, which will be used
throughout the rest of this text. The theory presented will be found to be in
entire agreement with that of Bode.

REFERENCES
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1934, also U.S. Patent No. 2,102,671.
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4. Middlebrook, R. D.: Design-Oriented Analysis of Feedback Amplifiers,
Proc. Natl. Electronics Conf., pp. 234-238, October, 1964.
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IEEE Trans. on Ed., vol. 17, pp. 192-198, November 1974.
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EXERCISES

L1. It will be demonstrated that it is better to create a large cascade
connection and put feedback on that, rather than putting feedback on
individual stages.

Suppose we have an amplifier with a voltage transfer characteristic

A
Ao(f) = 1 +J;/f0

where
A, =100
and

fo=1kHz

(a) How much feedback (loop gain) is needed to change this amplifier’s
transfer characteristic to
Al
AU =13577,
where f; = 10 kHz? What will be the value of 4,?

(b) Suppose four of the amplifiers whose gains are 4,( /) are cascaded.
What is the midband gain and 3-db frequency of the cascaded
amplifier?

(c) The cascaded amplifier is heated so that 4, changes by +10%. By
what percentage will the gain of the cascaded amplifier change?

(d) Now the alternate feedback amplifier is examined. Four of the
stages whose gains are A (f) are cascaded. How much loop gain is
needed to get the midband gain of part (b)? What is the 3-db
frequency of this connection? Compare the results to those of part
(b).

(e) If A, changes by +10%, how much will the overall amplifier gain
change? Compare the results to those of part (c).



Fundamental Relations
in Feedback Theory

2.1 Fundamental Relations and Return Ratio

Given any circuit, no matter how complicated, we can find the gain and
input and output impedances by using any convenient circuit analysis
technique such as mesh or nodal analysis. This kind of solution, however,
hides the dependence of the computed parameters on the variation of the
parameters of the active devices (e.g., transistors, FETs), which are con-
tained in the circuit. We have found in the introduction that the loop gain T
affects the stability of the gain of the feedback amplifier with respect to
variations in the active-device gain A. It is therefore desirable to break up
the solution of the feedback amplifier problem into lesser quantities, one of
them being the return ratio 7.

There is a difficulty in breaking up most feedback amplifiers into an
active device with forward gain A, distinct from a feedback network with
reverse attenuation f. The difficulty arises from the fact that all sections of
the amplifier load one another, so that the input-output relation for each
section cannot be represented in terms of a single parameter such as 4 or 3.
Accordingly, we shall define a quantity, the return ratio T, which is also the
loop gain A4, without attempting to break up the feedback amplifier into
distinct 4 and B networks. The entire feedback amplifier is left intact for
these calculations.

11
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controlied source
O
+ +
+ +
X, Xq Xp= kX4 X2
l——o -

rest of the feedback amp

Figure 2.1 Feedback amplifier model.

The return ratio is calculated with reference to a specific controlled
(dependent) source. Figure 2.1 shows the entire feedback amplifier con-
tained in a rectangular box, which has input terminals excited by a source
x; and output terminals showing an output x,. There is a window in the
box allowing us to see the reference controlled source x,, whose dependence
on the controlling quantity x, is given by

X, = kx, (2.1)

This controlled source could represent the current gain of a transistor, with
x, corresponding to the base current I,, x, corresponding to the collector
current /, and k corresponding to the forward current gain 4. It could, on
the other hand, be identified with the parameters V,,, V,,, and p of an FET.
The fact that voltages are indicated in Fig. 2.1 should not lead to the
conclusion that we are restricting ourselves to voltage analysis only. For
want of a better method of representation, the quantities shown in Fig. 2.1
are voltages.

Definition. The return ratio 7, with reference to controlled source x,, is
defined* as the negative of the variable x,, which is produced when the
dependent source x, is replaced by an independent source of the same
nature and polarity but of strength k, all independent sources are set to
zero, and all other conditions in the system are left unchanged from their
normal operating conditions.

To get an understanding of the definition, we shall calculate T in some
examples.

Example 2.1:  We shall find the return ratio 7 with reference to Q, for the
amplifier shown in Fig. 2.2.

We first set the source V; to 0, and then replace the dependent current

source h,1,, with an independent current source of strength 4, and

*This method of defining return ratio was suggested by R. B. Blackman to D. E. Thomas,
as 1s mentioned on page 1566 of [1].
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R c
(1K) —
Q =h=
2 v, hg= hes 100
° hy=hi=lk
= — d

Figure 2.3 Equivalent circuit used for calculating T.

proceed to calculate I,,. The negative of I,, will be T. The resultant
circuit is shown in Fig. 2.3.

Before proceeding, we replace @, with another equivalent circuit
according to the principles presented in App. A, so that the calculations
can be made much simpler. As seen by an observer standing at the
emitter of Q,, all impedances above the emitter are reduced by a factor
(1 + h;) as shown in Fig. 2.4. The part of the circuit needed for
performing calculations involving I, is shown on the right.

First, we replace the circuit to the right of the dashed line with a
Thevenin equivalent. Then it readily follows that

_ hszz
Ry+ R+ R|(hy + R,)/(1+ hy)
X R,
R,+(hy+R,)/(1+ hfl)

Iel

Since I, is « times I,, where a = h /(1 + h/), it follows that

Iy = —aqly R 1"+'_1h‘2

Iel Rf l Ib
p— AN . 2
Re+h; | \
+h, Re | Re hs2 I, 2R hiz

Figure 2.4 Simplified equivalent circuit.
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The return ratio is merely the negative of I,,, so that

T— alh/2R2
Ry+ R+ R|(hy + R)/(1+ hy)
R R,
X < 22
R, +(hy+R,)/(1 +h/1) Ry+ hy @2
For the component values shown in Fig. 2.2, this evaluates to
T=349 [ |

Example 2.2: For our second example, we shall find the return ratio for
the amplifier shown in Fig. 2.5.

As in Example 2.1, we draw an equivalent circuit (according to the
principles presented in App. A) in which the independent source ¥, has
been set to zero, and the dependent source p,x; has been replaced by an
independent source of strength ;. The negative of the resultant x, is
the desired value of T.

The equivalent circuit of Fig. 2.6 enables us to calculate V; in one
step once we find the Thevenin equivalent of the circuit to the right of
the dashed line. The resultant return ratio is given by

T = R, Mo R,
at tnt R 1+ p, R +("d2 + Rz)/(l + .“2)
R

X £ 2.3
R, * R+ Ry + K2) /(L% 1) @3)

D D
Ve ¢f”q, e, F2
+ Ri B 2Rz
+ RQ s
v Y Vo
) - ANA, Rs °
< iy L L

Figure 2.5 A two-FET feedback amplifier.

]

AMA
Wy

A
\
f

1

Figure 2.6 Equivalent circuit for calculating 7.
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We chose to calculate the return ratio in both examples with reference
to transistors, which do not themselves have local feedback. Had we
chosen to find the return ration with reference to the alternate transistor,
we would have found that the resultant expressions are quite different,
and in the case of a numerical example, we would have found that the
return ratio is larger when calculated with respect to a transistor
possessing local feedback in addition to overall amplifier feedback. ]

Now that we understand the definition for return ratio, and how to go
about calculating it, we are ready to proceed to find complete expressions
for the feedback amplifier gain.

2.2 Characterization of Signal Transmission

For Fig. 2.1 we already have (2.1) which relates x, to x,. We make the
observation that setting x, to zero can be accomplished by letting & take on
the value of zero. We have to define some additional connective parameters
before proceeding. We shall treat the two quantities x, and x, as outputs,
whereas x; and x, will be treated as inputs. The equations connecting these
four parameters are

X, = Gy0%1 = GpuoXy (2-4)
Xy = Gippxy + Gipox, (2-5)

The terms used in the above expressions have the following meaning;:

G.,0 = x, produced by unit x; when k = 0 (2.6)
G0 = X, produced by unit x, when x; = (2.7)
G130 = X, produced by unit x; when k = 0 (2.8)
G,y = X, produced by unit x, when x;, = 0 (2.9)
G, = x, produced by unit x; when k # 0 (2.10)

The last expression is referred to as the external gain of the feedback
amplifier or the feedback amplifier gain.

To find the return ratio T from the above expressions, we set x; to zero,
let x, take on the value k to find that the value returned to x, is —kG, .
We see from this that

T = kG,,, (2.11)

We shall now make a first attempt at finding an expression for feedback
amplifier gain.
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2.3 Asymptotic Gain Formula

First we substitute (2.1) into (2.4) and (2.5) to obtain
0= Gyox, —(1+ kG, 0)x, (2.12)
Xy = Gpox; + kGpyox, (2.13)

We solve the last two equations for

X
G = x_1 (2.14)

and perform enough algebraic manipulation to get the expression into the
form

- kaaO(GIZO + GlaOGbZO/GbaO) + GlZO

G, T+ kG, (2.15)
Using (2.11) in the above, along with the definitions
Gy = Gio9 + G1,0Gp20/Gpao = asymptotic gain (2.16)
G, = G, = direct transmission term (2.17)
we get the asymprotic gain relation
G = Gw-l——I—T + T% (2.18)
We observe that
Gilraw = Grlino = Gy (2.19)
and
Grlrao = Grli=0= G (2.20)

and it becomes clear why (2.18) is referred to as the asymptotic gain
relation.

To compute G, we need to allow k = oo or T — 0. To see what
condition this imposes on the circuit, we solve (2.12) for x,

GlaO GlaO

Xa=TFKG,, 0 =T+ M (2.21)
and it becomes immediately apparent that
lim x,= lim x,=0 (2.22)

k— o0 T—

The condition x, = 0 must be imposed on the circuit when calculating G,_.
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The method for calculating G, and G, will now be demonstrated in two
examples.

Example 2.3: We shall find G, and G, with reference to Q, for the circuit
in Fig. 2.2. To find G,, we impose on the circuit the condition of (2.22).
Refer to Fig. 2.7 for the following steps.

Since h, is infinite then it follows that I,, is 0. For this to be so, it is
necessary for 1 ; to be 0. Since 4, is finite, it follows that 7,; and I,
are also 0. As a consequence, there is no voltage drop across R, and h,;;
therefore V, must equal V. Since 1,; = 0, resistors R, and R, can be
considered to be in series. Accordingly,

V——R" =V, = 2.23
oRf_Jr_Re_ e_Vi ( )
Solving for V,/V,, we obtain
R,
Ge=1+% (2.24)

For the component values shown in Fig. 2.2, this evaluates to
G, =189

We calculated the above gain without ever having known the value of
I.,. This is finite but of no particular interest. It could be calculated
now, if desired.

The direct transmission term is found from the circuit when /4 ,, = 0;
hence I, is also 0. A circuit is drawn to give correct currents for an
observer standing at the emitter of Q;, when the methods of App. A are
used. This is shown in Fig. 2.8.

It is found without great difficulty that

G. = Vo _ Re
o I/I - Re +(Rs + hzl)/(l + hfl)
X R,
R2 + Rf+ Re”(Rs + hll)/(l + hfl)

(2.25)

Vo

"

Figure 2.7 Circuit for finding G,,.
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R.+h;
+h,, Ry

. A
Vv VVY

Vi Re R2

1 | I

Figure 2.8 Equivalent circuit for finding G,.

For the component values shown in Fig. 2.2, this evaluates to

G, = 0.388 »

Example 2.4: We shall now find the asymptotic gain G, with reference to
0, for the amplifier in Fig. 2.5. When g, goes to infinity, ¥, goes to 0.
The consequences of this are shown in Fig. 2.9.

Since V; = 0, then the current in R, is V;/R, and the current in R,
is readily related to I,, as shown in Fig. 2.9. The current from terminal
a to b is zero. This would be the case regardless of the impedance
connected from a to b since V; is zero. The currents in R, and R, must
be equal and opposite, so it immediately follows that

; V., R+ R,
a2 Rg I
Since V, = —I,,R,, we then conclude that
R, Rf
G, = R_g 1+ R, (2.26)
]
Examination of (2.18) shows that if
G, < G, T (2.27)
Rg a
+ —_— +
v %l Vi=0
= ¢ (Lo
e
@2 R+R;

Figure 2.9 Circuit for finding G, for the feedback amplifier of Fig. 2.5.
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then the gain of the feedback amplifier is given very accurately by

T
1+T

For the amplifier Example 2.1, (2.27) certainly holds, since G, = 0.388,
G, =189, and T = 34.9, so that G T = 1700G,. For certain amplifiers,
however, G, turns out to be 0, in which case G, is the only way to evaluate
the gain of the amplifier when feedback is present. This is brought out in
Prob. 2.7.

If, in addition to (2.27), T > 1 then G, will represent the approximate
external gain of the feedback amplifier. For the example given, saying that
G, = G, gives us a gain of 18.9, whereas using the more accurate (2.28), we
get G, = 18.4. The discrepancy between the two decreases as 7' becomes
large compared to unity. It is important to remember that G gives a good
first estimate of the closed loop gain of the feedback amplifier.

It is clear from the last example that the direct transmission term
represents attenuation, so it will be less than 1. On the other hand, most
feedback amplifiers will possess a return ratio 7 which will be much greater
than 1. They will also have an external (hence asymptotic) gain which will
be 1 or greater. It is clear that the inequality of (2.27) will hold in most
cases, so that (2.28) becomes the expression for determining the external
gain of most feedback amplifiers.

To put (2.28) into better perspective, we start from (1.4) and (1.5) to
obtain

G,=G, (2.28)

A4 1 p4 1 T
T1+4+B4 B1+pB4A B1+T

4y

We see that this last expression is incomplete when it is compared to (2.18),
inasmuch as the G, term is completely disregarded. But by comparing this
last expression to (2.28), we see that G, and 1/8 are identical. As was
illustrated, one can easily calculate G, whereas in most cases it is difficult
to identify those parts of the feedback amplifier needed to calculate the
attenuation .

We see that using the asymptotic gain approach is no more difficult than
using the 4 and B approach found in most control systems texts. Whereas
in most control systems, the question of loading never comes up because the
amplifier 4 is assumed to have a very low output impedance compared to
the input impedance of the 8 network, the same cannot be said for feedback
amplifiers. But this obstacle is easily surmounted when the asymptotic gain
formula (2.18) is used. Only the two quantities 7 and G, need be calculated
in most cases, since G, will contribute very little to the overall feedback
amplifier gain. The benefit of this method is that it is exact, and no
approximations need be invoked before any of the quantities needed for the
asymptotic gain formula are calculated.
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Caution. In order to use the asymptotic gain formula correctly, the
asymptotic gain G, the return ratio 7, and the direct transmission term G,
must be calculated with reference to the same active device. It is usually
easiest to perform all the calculations with reference to an active device
which has a grounded emitter (for bipolar transistors) or a grounded source
(for FETs).

2.4 Blackman’s Impedance Formula

When it comes to calculating impedances in feedback amplifiers there is no
easier method than the one using Blackman’s formula [2], which will now be
derived. More conventional techniques rely on identifying the type of
feedback connection used (e.g., series—series, shunt-series, etc.) in order to
determine whether one should divide or multiply by 1 + 7, the impedance
seen at the terminals before feedback is applied. Blackman’s formula
dispenses with that requirement. One merely substitutes into the formula to
obtain the result in a perfectly straightforward manner.

We shall refer to Fig. 2.10, which is almost identical to Fig. 2.1, except
that the output x, now represents the voltage V' at the amplifier terminals
a-b, and the input x, now represents the current into the amplifier
terminals a—b. '

The relations characterizing Fig. 2.10 are

Xy = GlaOI - Gbaoxb (229)
V=G0l + Gpyypx, (2.30)
and as always (2.1) relates x, to x,, so that setting x, to 0 can be

accomplished by setting k to 0. Before proceeding with the derivation a few
definitions are in order.

Z,, = Impedance seen at terminals a—b when the feedback amplifier
is operating normally.
(2.31)
ZJ, = Impedance seen at terminals a—b when reference source
x, =kx, is 0. (Same condition as k = 0.) This is the null
impedance at terminals a—b.
(2.32)
(To) up = Return ratio with reference to source x, when terminals
a-b are open circuited.
(2.33)
(Ty.) u = Return ratio with reference to source x, when terminals
a-b are short circuited.

(2.34)
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controlled source
F——o0

rest of the feedback amp

Figure 2.10 Feedback amplifier model for deriving Blackman’s impedance formula.

We proceed by making the observation from (2.30) that

Vi ¥V

G = T =0 T

=Z0 (2.35)
k=0

We shall now find expressions for (T,.),, and (7,.),,- We follow the
normal procedures for finding return ratio by replacing the controlled
source x, with an independent source of value k, and then proceeding to
find x,. The desired value of T is the negative of x,. We restate (2.29) and
(2.30) with x, replaced by k,
X, = G0l — kG, (2.36)

a

V=G0l + kGyp (2.37)
When terminals a—b are left open, I is zero and we find from (2.36) that
(Toc)ab = kaaO (238)

When terminals a—b are shorted, V' is zero and we solve (2.36) and (2.37)
for x, whose negative is (T.),,, with the result

(Tsc)ab = k(GbaO + GlaOGb20/Gl20) (2~39)

Now that we are finished with the preliminaries, we find the expression
for the impedance at terminals a—b when the feedback amplifier is normal.
The expression obtained using (2.29), (2.30) along with (2.1) is

_G 1+ k(Gpao + G140Gp20/G10)
120 1+ kG,,,

which can immediatély be reinterpreted in terms of definitions (2.35), (2.38),
and (2.39) into the form,

1+(T,)
— 70 sc/ ab
Zab Zab 1+ (Toc) ab (240)
This result is Blackman’s impedance formula. Some examples will now
be given for its use.
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Example 2.5: We shall find the input impedance Z, and the output
impedance Z, for the amplifier in Fig. 2.2. Transistor Q, will be used as
the reference source for all the calculations. The input impedance is the
impedance seen to the right of terminals a-b with the source V;

removed. The output impedance is defined as the impedance seen at the

terminals ¢c—d when all independent sources (in this case V) are set to
zero, so that terminals a—b are shorted for this calculation.
To find Z? and Z we set h, to 0, with the result that 1, is also 0.

Applying the methods of App. A on Fig. 2.2 we readily find that
Z0=R,+hy +(1+hy)|[RIR,+ R,)] (2.41)
and
Z0=Ryl[R;+ RII(hy + R,) /(1 + hy)] (2.42)

When the input terminals are shorted, the same conditions are
obtained as those that existed when we calculated 7' in Example 2.1. It is
therefore clear that

(T), = Tof Eq. (2.2) (2.43)

When the input terminals are open, I,; = 0, hence any voltage which is
applied at the emitter has no effect on the collector current /. As a
consequence,

(T), =0 (2.44)

All that is left to be done is for (2.41), (2.43), and (2.44) to be substituted
into Blackman’s formula to calculate Z,.

When the output terminals are shorted, any signal coming from Q, is
shorted to ground, so that

(), =0 (2.45)

When we attempt to calculate the return ratio with the output terminals
left open, we see that we have the same conditions as existed when we
calculated 7" in Example 2.1. Therefore

(T,.), = Tof Eq. (22) (2.46)

As before all that is left to calculate the amplifier output impedance, is
to substitute (2.42), (2.45), and (2.46) into Blackman’s formula.
For the component values shown in Fig. 2.2, we get the results:

Z0=478kQ  Z,=171kQ Z°=338Q Z, =943Q
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We see that the effect of feedback was to raise the input impedance, and
lower the output impedance of the feedback amplifier. We say this
knowing full well that it is very difficult to define the input or output
impedance of a feedback amplifier if feedback is absent. If R, is
removed in an effort to get rid of feedback then the input impedance
and output impedance without feedback will not correspond to Z° and
Z9, respectively. This again points out the futility of attempting to
model a feedback amplifier as a nonfeedback amplifier to which feed-
back has been added. Blackman’s formula makes this kind of modelling
entirely unnecessary. u

Caution. In order to use Blackman’s formula correctly, the null imped-
ance Z°, the short circuit return ratio 7., and the open circuit return ratio
T,., must be calculated with reference to the same active device. It is usually
easiest to perform all the calculations with reference to an active device
which has a grounded emitter (for bipolar transistors) or a grounded source

(for FETs).

2.5 Conclusion

The techniques of dealing with feedback amplifier calculations presented in
this chapter represent clear, unequivocal methods for finding all parameters
of interest to the feedback amplifier designer. No approximations need be
made before any of the calculations are carried out, so there is no need for
prior “handwaving” before proceeding to solve feedback amplifier prob-
lems. The methods are very straightforward, and with some practice can be
applied without any hesitation.

When performing gain calculations, a knowledge of the asymptotic gain
G,, and the return ratio T are sufficient, since G, is very small in most cases.
So only two quantities are needed to find the external gain G, in most cases.
The benefit of knowing G, is that this represents a good approximation to
the final external gain of the feedback amplifier. The return ratio T is
needed in order to establish the amount of desensitization of the amplifier
gain with respect to parameter variations, and in order to determine the
amplifier’s stability with respect to oscillation, as will be seen later.

Impedances are very easily calculated by using Blackman’s formula. In
most cases either T, or T, will be zero, and one of the two will usually (but
not always) correspond to the return ratio 7 obtained when the gain
calculations take place. We see that the only new quantity which has to be
calculated is Z°, and the amount of work involved is no greater than that
needed when other methods are used.
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EXERCISES

2.1. For the one-transistor feedback amplifier shown in Fig. P2.1, find the
return ratio 7, the asymptotic gain G, and the direct transmission
term G,.

Vo
2.2. For the emitter follower shown in Fig. P2.2, find the return ratio T,
the asymptotic gain G_, and the direct transmission term G,. Sub-

stitute the resultant terms into the asymptotic gain formula, and see if
the result is the same as would be obtained by conventional methods.

Figure P2.1

Figure P2.2

2.3. For the shunt-series two-transistor feedback amplifier shown in Fig.
P2.3: :
(a) Find the return ratio 7, the asymptotic gain G, and the direct
transmission term G,, with reference to Q,.
(b) To convince yourself that it is easier to calculate all of the above
quantities with respect to a grounded-emitter (or grounded-source)
stage, calculate the return ratio with reference to Q,.
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10k

=  Q=Q, h=2k B=I00 =
Figure P23
2.4. For the series—shunt two-FET feedback amplifier shown in Fig. P2.4,

find the return ratio 7, the asymptotic gain G, and the direct
transmission term G,.

Figure P2.4

2.5. For the series—series, bipolar-transistor amplifier shown in Fig. P2.5,
find the return ratio 7, the asymptotic gain G., and the direct
transmission term G,,. Is inequality (2.27) satisfied?

%3»& %21( 250
|

7k +
Q Q I Q3 Vo
: bl :
vi_ Iy = Ies \’
Q= Q=Q3 i h=2lk (=100
Figure P2.5

2.6. For the series—series FET feedback amplifier shown in Fig. P2.6, find
the return ratio 7, the asymptotic gain G, and the direct transmission
term G,

2.7. In Fig. P2.3 V, = 0. There is a voltage source V}; in series with the 22k
collector resistor. This source represents power-supply ripple.
(a) Find the return ratio T, the asymptotic gain G, and the direct
transmission term G,, which are needed in order to relate the
output voltage V, to the ripple voltage V,;.



2.8.

2.9.

2.10.

2.11.

2.12.

2.13.

Feedback Amplifier Principles

T4z

Q# Q7 Qg

Figure P2.6

1f—o1 <+

(b) Repeat this problem for a ripple source V,, in series with the 3k
resistor in Fig. P2.3. (Note: This problem demonstrates that there
are cases where the asymptotic gain G_ is zero, so the direct
transmission term G, can definitely not be ignored in such situa-
tions.)

Find the input impedance and the output impedance for the amplifier
of Fig. P2.1 using Blackman’s formula.

Find the input impedance and the output impedance for the amplifier
of Fig. P2.2 using Blackman’s formula. Do the results agree with those
that can be obtained if this is treated as a non-feedback problem and
the solution is calculated by the impedance transformation methods of
App. A?

Find the input impedance and the output impedance for the amplifier
of Fig. P2.3 using Blackman’s formula. Did feedback affect both
impedances?

For the amplifier of Fig. P2.4:

(a) Find the input impedance and the output impedance using
Blackman’s formula.

(b) Now find the impedance seen across R 7

Find the input impedance for the amplifier of Fig. P2.5 using Black-
man’s formula.

Find the output impedance for the amplifier of Fig. P2.6 using
Blackman’s formula.



Feedback Amplifier
Connections

3.1 Some Common Feedback Amplifier Connections

There are many ways of using feedback in amplifiers to satisfy different
operating requirements. The feedback connection has an effect on input and
output impedance, and in addition, the connection determines whether an
even number of stages or an odd number of amplifier stages have to be
used. Some of the more common arrangements are the shunt input—shunt
output, the shunt input-series output, series input-series output, and the
series input—shunt output connections. In addition to the above, there is the
less common bridge feedback connection. It is not necessary for us to know
the classification for a particular amplifier, since the theory presented in the
previous chapters does not require the amplifier to be put into a specific
class before the feedback theory is applied. The names (such as shunt-shunt)
are used to identify the amplifiers by a name which is commonly used in
industry.

Figures 3.1-3.8 show eight common amplifier configurations, along with
expressions for the return ratio 7, the asymptotic gain G, and the ratio of
G, T/G,. The last quantity is given so that the significance of the contribu-
tion that G, makes to the asymptotic gain formula can be determined. In
addition to the above quantities, the impedances and return ratios needed
for substitution into Blackman’s formula are also given. Using the expres-
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sions presented, it is easy to see that the input and output impedance is
reduced when shunt-—shunt feedback is used in an amplifier.

The low-frequency equivalent circuits used for the bipolar transistors
and FETs are the same as those discussed in Appendix A. The techniques of
Appendix A are very helpful in arriving at most of these expressions with a
minimum of fuss. The only change in common notation was to substitute
the designation r, in place of 4,, and to use f in place of & ,.

To apply the expressions shown in these diagrams, it is necessary to
reduce the triangular inverting amplifier element to an equivalent form
containing an input impedance, an output impedance, and a controlled
source. The element shown as an inverting amplifier can be an integrated
amplifier, or a discrete amplifier utilizing one, three, or five bipolar tran-
sistors, FETs, or a combination of those.

The amplifiers analyzed are presented in two groups. The first group is
more suitable for performing calculations on amplifiers containing bipolar
transistors, since they are more readily modelled in terms of controlled
current sources. The second group presented is more suitable for analyzing
FET amplifiers, since these are more readily modelled in terms of controlled
voltage sources.

3.2 Bridge Feedback

We have seen that for the shunt and series feedback amplifier connections
the return ratio is affected by the source and load impedances. If an
amplifier is needed for a broad range of input or output impedances, then it
is not desirable to have the return ratio dependent on source impedance or
load impedance. Another characteristic of the typical feedback amplifiers
examined previously is that the input or output impedance is directly or
inversely related to the return ratio. If there are any variations in return
ratio due to component selection or component aging, the input and output
impedances will be directly affected. Another design disadvantage of the
shunt- and series-connected feedback configurations is that since return
ratio is affected by the amplifier terminations, its stability becomes depen-
dent on the source and load impedances. These difficulties are overcome by
the use of the bridge feedback arrangement shown in Fig. 3.9.

In Fig. 3.9 the impedance Z, incorporates the amplifier output imped-
ance, and the impedance Z, incorporates the amplifier input impedance. If
both the input and output bridges are balanced, then any signal that is
returned to the input by means of a voltage developed across terminals 4-5
is not affected by anything that is connected across terminals 2-2'. There-
fore the return ratio is not affected by the load impedance Z;. Hence

(Tsc)zz' = (Toc)22’ (3.1)
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Figure 3.9 Bridge feedback amplifier connection.

and from Blackman’s formula it then follows that
Zyy = Zy (3.2)

Hence feedback leaves the output impedance unaltered from the impedance
seen at terminals 2-2" when k = 0. A similar argument can be made for the
input terminals 1-1, so that the return ratio is not affected by the source
impedance Z;. The feedback amplifier input impedance is also unaltered by
the presence of feedback.

If the bridges are perfectly balanced, then it is apparent from Fig. 3.9
that we can express the return ratio as

T.=T,=T=kK, (3.3)

where K, is a quantity independent of k. If the bridges are not balanced,
then the return ratio becomes dependent on how the input or output
terminals are terminated, and we can write

T, = kK, (3.4)
and
T, = kK, (3.5)

The above can be used in Blackman’s impedance relation, so that we can
write

o1+ kK,

Z=2Z m‘fo—c (36)
If the amplifier has a large loop gain, so that
T.=kK,>1 (3.7)

and

T,,=kK, > 1 (3.8)
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then the impedance at the terminals can be approximated by

K C
Z= ZOTCS,: (3.9)
We see that unbalancing the bridges gives us a method of changing
impedance levels by using feedback, while at the same time they are made
relatively independent of variations of the amplifier gain k. This can be
contrasted with the impedance for the series feedback case ‘

Z=27°1+ T.)=2Z°1+ kK, ) = ZOkKSC (3.10)
and with the admittance for the shunt feedback case
Y=Y+ T,.)= Yo(1 + kK. ) = Y°kKoc (3.11)

in which the impedance (admittance) parameters vary directly with
amplifier-gain variations.

Example 3.1: 1t is not immediately apparent that the amplifier shown in
Fig. 3.10 has bridge feedback at the output. It does not need bridge
feedback at the input because the source impedance has no effect on
return ratio, and the input impedance of the amplifier is so high, that
operation is not affected by R, the output impedance of the source V.

It will be assumed that all bypass capacitors are short circuits, the
radio frequency choke RFC is an open circuit, and the 1-M resistors
can be left out of the equivalent circuit without affecting the analysis
significantly. For finding output impedance, we set all independent
sources to zero, which, in this case, means that the voltage source V; is
replaced by a short circuit.

The first equivalent circuit of the amplifier is shown in Fig. 3.11. The
techniques of App. A were used to replace the first FET with an
equivalent circuit from the point of view of an observer standing at the
source terminal.

{—
Qp

RFC Vo
Rs = o

+ Vd

Vi ‘VAVA' d

- < 2k
al

ri = rg2 = 5k M= Mo = 49
Figure 3.10 Amplifier with bridge feedback at the output.
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Figure 3.11 First equivalent circuit of the amplifier.

We now compute

rat+ Ry S5k + 15k
1+p,  1+49

I, = —V,/400
V, = —R,I, = —(15k) I, = 37.5V,
oV, = 49(37.57,) = 1838V,

=400 Q

The new equivalent circuit is shown in Fig. 3.12. The fact that the
amplifier has bridge feedback is now clear, but it is also apparent that
the bridge is not balanced.

We are interested in finding the output impedance Z, 5. This is done
by calculating the three quantities needed for substitution into Black-
man’s formula. The open-circuit return ratio is easily found from Fig.
3.12.

(), = (150 + 210)]/400
oc/4B (150 + 210)||400 + 12k + 5k

1838 = 20.25 (3.12)

To calculate the short-circuit return ratio, we use the equivalent circuit
of Fig. 3.13 which reflects the fact that terminal 4 is shorted to termi-
nal B.

The short-circuit return ratio is readily found from Fig. 3.13.

210 400

(Tee) 45 = 1838 55575 300 + 150] 12k + 210[ 5%

=395

(3.13)

To find Z° we set the source 1838V, to 0 as shown in Fig. 3.14a. To
carry out the calculation we perform a A — Y transformation, with the
result shown in Fig. 3.14b.
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Figure 3.12 Equivalent circuit reduced to a
bridge.

1838

Figure 3.13 Equivalent circuit for
= = = finding T..

Figure 3.14 Equivalent circuit for finding Z9.

We can now easily calculate
Z9, =3.63k (3.14)

The results in (3.12)-(3.14) can be used in Blackman’s formula to
calculate

1+(T,.) 1+ 395
_ 70 sc/AB __ -0 — 0
Zp= ZAB—————1 (1) an Z4sT 72005 = 19062 (3.15)
If for some reason the gain of the second FET were to double, then
Z2, would be unchanged but (7,.) ,5 and (7,.) 5 would both double,
and the new value for Z,, would become

1+ 79

sT 3305 = 192823, (3.16)

Zip= Z/?
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This represents a change in output impedance of 1.15%. In the case of a
more conventional feedback connection there would have been a factor
of 2 change in output impedance.

EXERCISES

3.1
3.2,
33
34.
3.5.
3.6.
3.7.
'3.8.
3.9.

3.10.

Deﬁve all the results which appear in Fig.
Derive all the results which appear in Fig.
Derive all the results which appear in Fig.
Derive all the results which appear in Fig.
Derive all the results which appear in Fig.
Derive all the results which appear in Fig.
Derive all the results which appear in Fig.

Derive all the results which appear in Fig.

3.1.
3.2
3.3.
34
3.5.
3.6.
3.7.
3.8.

Find the asymptotic gain G, for the bridge feedback amplifier of Fig,

3.10.

Find the direct transmission term G, for the bridge feedback amplifier

of Fig. 3.10.



Loop-Gain Measurement

PREVIOUS CHAPTERS HAVE DEALT with the calculation of loop gain (return
ratio) from the schematic diagram of the feedback amplifier. Now we wish
to examine methods of loop-gain measurement and the problems that arise
in their application. The methods involving the breaking of the loop have
always been in common use, and we will merely attempt to clarify their
basis and see what inaccuracies are introduced if some simplifications are
made to the circuits before measurements are made. Other methods will
then be presented, which are more tedious to carry out, but are useful for
amplifiers with special requirements.

4.1 Breaking Loop— Voltage Ratio Measurement

Any feedback amplifier can be drawn in the kind of diagram shown in Fig.
4.1. All passive and active elements have been collected into the block
within the dashed lines. The only element which is external to this block is
the feedback connection, shown here as a solid wire. The feedback connec-
tion will be broken between the terminals marked c—c'.

The return ratio calculated from Fig. 4.1 is

T =G, 2222

"7 T 7, (4.1)

The loop is broken at ¢—¢’, and the cut end at ¢’ is terminated with the
38
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r 1
: Z \: GV Z, ;
e

Figure 4.1 Feedback amplifier model.

1T ¢l

~

[ [+
+ + *
v, Z2V GV Z, Ve

Figure 4.2 Amplifier with feedback loop cut and terminated.

impedance Z; as shown in Fig. 4.2. A voltage source V, is connected at
terminal c.
The ratio of V. /V, is calculated and it is found that

V. _ 2,2,
?“ - - Gmm (4.2)

It is therefore apparent that we can obtain the return ratio by cutting and
terminating the feedback loop and calculating the return ratio using
v,
T=~- A (4.3)

(4

Clearly, we have to terminate at the cut with the impedance that the
signal would encounter if it continued around the loop. If the cut is chosen
so that the impedances on both sides of the cut are such that Z; is large
compared to Z,, then Z, can be replaced by an open circuit, but an
inaccuracy will be introduced into the measurement. To find the error in the
measurement, we observe that when 7T is calculated using (4.2) and (4.3)
and Z, is replaced by an open circuit, the approximate return ratio using
the voltage ratio is

Toc = GmZZ . (44)
The departure from the exact value of T is given by the ratio
Toc _ Z2
T = 1+ 71 (45)

The smaller the ratio of Z, to Z;, the more accurate this method becomes in
the absence of a proper termination.
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’

c ¢
+ I
I. 3V GV Zy Z

Figure 4.3 Amplifier with feedback loop cut and terminated.

4.2  Breaking Loop— Current Ratio Measurement

We start again from Fig. 4.1. The loop is broken at c—¢’, and the cut end at
¢’ 1s terminated with the impedance Z, as shown in Fig. 4.3. A current
source now excites the amplifier on the left and the current /. is measured
on the right.

The ratio of 1,,/1, is calculated and it is found that

- -G Z,Z,
A

Nlﬁ’j

(4.6)

¢

We see that we can measure the return ratio by cutting and terminating the
feedback loop and calculating the return ratio using

T= —

~|,;\~

(4.7)

¢

As was mentioned in connection with the voltage ratio measurement, we
have to terminate at the cut with the impedance that the signal would
encounter if it continued around the loop. If the cut is chosen so that the
impedances on both sides of the cut are such that Z; is small compared to
Z,, then Z, can be replaced by a short circuit, but an inaccuracy will be
introduced into the measurement. To find the error in the measurement, we
observe that when T is calculated using (4.7) and (4.6), and Z, is replaced
by a short circuit, the approximate return ratio using the current ratio is

T.=G,Z (4.8)

The departure from the exact value of T is very readily expressed by the
ratio

t=1+ 5 (4.9)

The smaller the ratio of Z; to Z,, the more accurate this method becomes in
the absence of a proper termination.



Loop-Gain Measurement o 41
4.3 Combining Voltage and Current Gain Methods

If it is impossible to cut the feedback amplifier loop at a place where there is
a substantial impedance mismatch, or the impedance needed to terminate
the cut is difficult to ascertain, accurate loop-gain measurements can be
performed nonetheless. The feedback loop is cut at any convenient location
and a voltage ratio measurement is taken with the cut terminated in an open
circuit. The location of the cut remains unchanged but now a current ratio
measurement is taken with the cut terminated in a short circuit. We see from
(4.4), (4.8), and (4.1) that the actual return ratio T can be calculated from
T,. and T,. by using

T..T.

T = -5 410
T, + T, (4.10)

The above can also be written in the form

T~ T. + T (4.11)
From this expression it is clear that the smaller return ratio on the
right-hand side of (4.11) controls the accuracy of the return ratio T on the
left. If, for example, T, and 7,  can be measured with an accuracy of +5%,
and the values are 1 and 20, respectively, then it is clear that there is hardly
any point in measuring 7, since its contribution to the final answer is of
the same order of magnitude as the uncertainty in the final answer. It is
therefore desirable to exercise greater control over the accuracy of the
measurement of the smaller of the two return ratios, which is 7, in this
example.

Example 4.1: For the amplifier shown in Fig. 4.4, the loop will be cut at
c—c’ and the return ratio will be calculated. All the methods discussed so
far will be employed.

The calculation of return ratio for this amplifier was carried out in
Example 2.1 and it was found that 7 = 34.9. In preparation for measur-
ing the loop gain, the loop is broken at c—¢” and the cut is terminated by

!

Figure 44 Two-transistor feedback amplifier.

B,= B,= 100
T b= b= Ik

1”—1
s
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2 28
I,

Figure 4.5 Amplifier of Fig. 4.4 prepared for loop-gain measurement.

¢ 500 '\Im . wlbz V500

—_—
le/

%Ie, 10k 2k (DIOOL, Ik 285 98

l
l

Figure 4.6 Equivalent circuit of Fig. 4.5.

the impedance the signal would encounter if it proceeded around the
unbroken loop. The 19.8 £ shown on the right represents the equivalent
resistance seen looking up at the emitter of Q,. The circuit for measuring
loop gain is shown in Fig. 4.5. The equivalent circuit for Fig. 4.5 is
shown in Fig. 4.6.

When the switch at the input source is at position 1, we can calculate
the return ratio by using (4.3). The calculation is

po_Ve_ 1 28 10010k
o V. 511.6 28 + 19.8 101 11k

4

100(1k(|511.6) = 34.9

(4.12)

The switch at the input is now thrown to position 2 and the
calculation of return ratio is carried out according to (4.7). The calcula-
tion is

1. 28 100 10k 1000

T= -7 =2+198 101 11% %7000 + 5116 ~ 49

(4.13)

It comes as no surprise that when the cut is properly terminated, the
return ratio agrees with the theoretically obtained value. Now we are
ready to calculate the results for an improperly terminated loop.
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With the switch in position 1 and the impedance to the right of ¢’
replaced by an open circuit, we calculate T .:

Vo 1 28 100 10k _
Toe = =7 = 3116 28 + 19.8 101 11k 100 " 1k =103.1
(4.14)
The ratio of T,_ to the actual T is
TOC
T =2.955 (4.15)

This large error is due to the fact that Z, << Z; does not hold in this
case. From (4.5) we see that the above error is due to

Z, 1k

T+7 =1+ 3575

= 2.955 (4.16)
With the switch at position 2 and the impedance to the right of ¢’
replaced by a short circuit, we calculate T, :
I. 28 100 10k

L= -7 = ®+ stk 0-27  (417)

¢

The ratio of T, to the actual T is

T,
== 1512 (4.18)

This large error is due to the fact that Z; << Z, does not hold in this
case. From (4.9) we see that the above error is due to
z 511.6

—1=
1+ 1+ 1%

> =1.512 (4.19)

Substituting the results of (4.14) and (4.17) into (4.10) we obtain the
exact result

T,.T. 103.1 - 52.7

r= T,.+ T, 1031+527 34.9 (4.20)
This agrees with the theoretical value calculated in Example 2.1. ]

4.4 Iierating the Amplifier to Terminate at the Cut

To perform the measurements using only the voltage-gain method or the
current-gain method, we have to cut the feedback loop and terminate the
cut properly. The impedance needed to terminate the cut may vary with
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— " Ist iteration ~2nd iter...

Figure 4.7 Feedback loop cut and terminated by using iteration.

frequency and its frequency dependence may be difficult to determine. To
avoid this problem, the cut can simply be terminated in another stage of
amplification. The stage would have to correspond to the one that the signal
would see next as it traverses the feedback loop. If any uncertainty exists as
to whether one additional stage of amplification is adequate to properly
terminate the loop, any number of stages can be added to iterate the
structure. The iteration process can continue until there is confidence that
nothing is to be gained by iterating further. Usually one stage is enough to
terminate a feedback loop.

Example 4.2:  To illustrate the method, the amplifier of Fig. 4.4 is shown in
Fig. 4.7, with the loop cut at c—c’, and the cut terminated by using
iteration. The cut is shown terminated by repeating three stages of the
amplifier. Usually one stage of iteration is adequate, and the three stages
of amplification in the iteration in Fig. 4.7 are shown for purposes of
demonstrating the method. The negative of the ratio of V. to V,
determines the return ratio. |

4.5 Breaking the Loop Using an Inductor and Terminating

Suppose the loop cannot be cut because the amplifier’s dc-biasing scheme
depends on keeping the loop intact for dc signals. This issue was addressed
by Rosenstark in [1]. To get around this problem we cut the loop at ¢—¢’ in
Fig. 4.1 and terminate the right-hand side of the cut in Z; in series with a
blocking capacitor. We also introduce a large inductor between terminals c¢
and ¢’ as shown in Fig. 4.8. If the inductor’s reactance is large enough in the
frequency range of interest to prevent ac-signal propagation around the
loop, then the loop is effectively cut at c—c’. We are now in a position to
measure loop gain according to (4.3) by adding a veltage source V. and
terminating at ¢’ with Z,.
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Figure 4.8 Amplifier with feedback loop broken inductively.

The approximate return ratio 7" can be calculated from Fig. 4.8 directly

Ve A
LM = -3 = GulZIZIZ) -~ 7377 (4.21)

(4
The above expression can be rewritten in the form

lez ZL - 1/Gm
mZ,+ 2, Z, + Z,||Z,

T-=G (4.22)

We recognize from (4.1) that the first term on the right of the above
expression is the actual return ratio 7, so we rewrite (4.22) in the form

Tt z,-1/G,

a

T = Z, % 2,12, (4.23)

It is clear from (4.23) that the ratio 7,/ /T tends to unity if Z, is chosen
so that
|Z,| > 1/G,,| (4.24)
and

1Z.1 > 124112, (4.25)

so that this method is capable of producing accurate results if the above
inequalities are maintained. An illustrative example will now be given to
show that this method can be used to produce accurate results.

Example 4.3: The model shown in Fig. 4.9 represents a three-transistor
feedback amplifier.
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Figure 4.9 Feedback amplifier with inductively cut feedback loop.

The amplifier has three high-frequency poles. Two of the poles are
shown incorporated into the expression for the transconductance, which
18

_ 0.5
(1 + jf/50)*

The variable f is in units of kHz. The third pole results from the
frequency-dependent input impedance of the first stage

~ 1000
=1+ 7/100

(4.26)

m

Z, (4.27)

We are interested in measuring the loop gain starting at midband and
continuing beyond the loop-gain crossover frequency (which is the
frequency at which the magnitude of the return ratio is unity). We shall
take midband to be 5 kHz, which is 1 decade below the first critical
frequency of 50 kHz. At 5 kHz an inductance of 159 mH for Z, results
in a reactance of 5 k2, which is 10 times the parallel combination of Z,
and Z, (which is 500 ), so that (4.25) is reasonably satisfied.

At midband (4.24) is also satisfied, but to see if it will still be satisfied
at loop-gain crossover, we use the expression for the actual return ratio
T to calculate the loop-gain crossover frequency. That expression is
found from (4.1)

Z,7, 250
T=C,z—7 = 2
1T %2 (1 + jf/50)°(1 + jf,/200)

(4.28)

By trial and error, it is determined that loop-gain crossover occurs at
486 kHz. At this frequency |Z, | is 486 kQ whereas [1/G,| is 191 , so
at loop-gain crossover (4.24) is still well satisfied.

To show the errors involved in carrying out a loop-gain measurement
by cutting the feedback loop and inserting an inductance, the ratio of
approximate loop-gain T,* to actual loop-gain T is calculated using
(4.23). The results are tabulated in Table 4.1. It is seen that as frequency
increases the errors in measurement fall below the accuracy of measure-
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Table 4.1 Errors in magnitude and phase measurement for Example 4.3

/ \TF/T / TH/T

5 0.9999 5.75

10 1.0037 2.86
20 1.0045 1.39
50 1.0039 0.46
100 1.0024 0.14
200 1.0009 0.02
390 1.0002 0.01
500 1.0001 -0.02
kHz — deg

ment that can be expected in the laboratory. The frequency region in
which it is desirable to determine loop gain accurately is the one in the
vicinity of gain crossover (which is 486 kHz in this case). It is apparent
from Table 4.1 that this objective is readily achieved. u

We are still left with the problem of measuring the loop gain for
feedback amplifiers for which the loop must be kept intact and which have
the additional problem that it is difficult to ascertain the impedance needed
to terminate the loop. The following methods address this problem. The first
method is based on the method of this section.

4.6 Node Injection— Voltage Ratio
To make sure that the dc performance of the loop is not affected, a signal is

capacitively coupled into the loop at node ¢ as shown in Fig. 4.10. The
signal propagation in the feedback loop is blocked by means of an inductor,

.
zzv 6.V £Z,
IC,J
z

L

L signal
generator

e

ﬁ

\

Figure 4.10 Signal injected at a node.
Feedback loop signal blocked by an
inductor.

1ot < +90
I”—Ol 5 +
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whose impedance Z,; is chosen to satisfy
1Z.] > 1Z,] (4.29)

As a consequence of (4.29) the current [, is zero. We now evaluate the
open circuit return ratio by using

V.
To’; = — = (4.30)
to find
Toﬁ =G,2, (4.31)

We note in passing that this would be the loop gain of the amplifier if
the measurement were performed at a location at which

1Z:] > |2, (4.32)

We see that this method used by itself has the potential for producing
accurate results for special cases.

4.7 Branch Injection— Current Ratio

To make sure that the dc performance of the loop is not affected, a signal is
transformer coupled into the loop in series with branch c¢-¢’ as shown in
Fig. 4.11. The signal propagation in the feedback loop is prevented by
means of a capacitor, whose impedance Z. is chosen to satisfy

|Zcl < |2, (4.33)

-
0,

signal
generator
ol
o

Figure 4.11 Signal injected into a
branch. Loop signal shunted to ground
by a capacitor.

0
N
o1 2+ o,
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As a consequence of (4.33), the voltage V. is zero. We now evaluate the
short-circuit return ratio by using

1,

TS =~ 1—‘( (4.34)
to find
T¢ =G,Z, (4.35)

In this case, we note that this would be the loop gain of the amplifier if
the measurement were made at a location at which

|Z,] < |Z, (4.36)

We see that this method carried out by itself has the potential for producing
accurate results for special cases.

4.8 The Exact Result— Combining the Measurements

The method of Sec. 4.6 is useful for measuring loop gain in feedback
amplifiers in which a node is accessible at which inequality (4.32) applies.
The method of Sec. 4.7 is useful in feedback amplifiers possessing an
accessible node at which inequality (4.36) is valid. We need a method that
will work for all amplifiers without any constraints. By comparing (4.1),
(4.31), and (4.35), we see that we can calculate the loop gain T by using

1 1 1
T L 7c

sc

(4.37)

Middlebrook [2, 3] presented a similar method, which also required that
two measurements be performed and then an equation similar to (4.37) be
used to find the loop gain. The technique—the double null method—
required two signals, with a specific amplitude and phase relationship,
which had to be used simultaneously in order to carry out the loop-gain
measurement. This meant that the two signals had to be derived from the
same signal source, with the attendant need for buffer amplifiers, variable
attenuators, and variable phase-shift networks. The advantage of the method
presented in this section lies in the fact that the two measurements needed
to obtain Tk and TS, can be made using relatively simple instrumentation
(the most complicated items required are coils with large inductance and
some current transformers or current probes). This method dispenses with
the need for two ac signals with a specific amplitude and phase relationship.
It is useful for all feedback amplifiers without any constraints, but as is the
case in Middlebrook’s double null method, it requires that the loop gain be
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Figure 4.12 Two-transistor feedback amplifier.

measured at every frequency of interest by two methods, in effect doubling
the amount of work that has to be performed in the laboratory.

Example 4.4: A Two-Transistor Feedback Amplifier

To get a feel for the method, the two-transistor dc-coupled feedback
amplifier of Fig. 4.12 was thoroughly analyzed by use of digital com-
puter circuit analysis programs. It was decided to simulate the mea-
surements on a computer, so that the data would not contain any
experimental errors, and also the question of the accurate representation
by the model of the transistors selected for the test would not have to be
raised.

This amplifier was designed to yield a transimpedance of 28 V/mA.
The fact that it is dc coupled presents problems when attempts are made
to perform the loop-gain measurement, since physically breaking the
loop will upset the dc bias of both transistors. The first transistor has a
collector current of 1 mA and the second transistor has a collector
current of 3 mA. The hybrid-pi transistor model parameters were
calculated from the manufacturer’s specifications and the equivalent
circuit is shown in Fig. 4.13.

Since we have a substantial impedance mismatch (approximately
92:1) for a signal traversing the loop from right to left at nodes b'-b,

B, " l2pF cl Bg " |2PF Cz
! ? Ay ! ! h
T :
I0ks | 2.5k2V, Foow 04y, 72% 83072 Ti200pF Q.lzv2 2k
= = = = = 'LEE =
7« ¢ ¢ 3k b b £750

Figure 4.13 Equivalent circuit of the amplifier.
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then the node injection method of Sec. 4.6 applied at this point can be
expected to yield very accurate results and use of the branch injection
method of Sec. 4.7 would be superfluous. When the short circuit b—b’ is
cut, it is found that the output impedance at node &’ is less than 110 €.
An inductance of 200 mH inserted between terminals » and b’ will have
a reactance of 1260  at the midband frequency of 1 kHz. Thus the
inequality (4.29) is modestly satisfied with a ratio of impedances slightly
exceeding 10.

To proceed with the analysis, a voltage source is attached from node
b to ground and the voltage is calculated at node b’. The negative of the
voltage gain is the return ratio. The results of this calculation are shown
in the curves labelled (b) in Fig. 4.14. The curves labelled (a) were
obtained for the feedback amplifier loop gain, with the loop cut and
properly terminated, something that can be done computationally for a
dc-coupled amplifier in spite of the fact that it could not be readily
performed in the laboratory. The curves labeled (a) serve as a reference
for all the other calculations.

To have a reasonable example for which the use of the method of this
section cannot be avoided, we deliberately chose to test the amplifier at
the nodes marked c-c¢’. There is no particular impedance mismatch at
this location so we have to obtain 7% and 7.5, and then calculate the
loop gain T using (4.37). A 5-H inductance was chosen to connect nodes
c—c’. This inductance has a reactance of over 31 k@ at the midband
frequency of 1 kHz; this value being slightly greater than 10 times the
resistance seen to the right of node ¢’. This size inductance can be
readily constructed, in practice, using a toroidal core. If in performing a
practical loop-gain measurement, the self-resonant frequency of the coil
is reached as the test frequency is increased well above midband, then
the coil can be replaced with one having a much smaller inductance, and
the test continued, the only consideration being that (4.29) should be
satisfied.

To measure TS, a capacitor of 100 uF is connected from node ¢’ to
ground, and a signal source is connected from node ¢’ to node ¢. The
negative of the ratio of the currents I, and I, is T.S. When this result is
combined in (4.35) with the T.Z obtained with the 5-H inductance, we get
the curves labelled (c¢) in Fig. 4.14.

To see what would happen if we have an inadequate impedance
mismatch needed to satisfy (4.29), the last calculations were redone, but
the 5-H inductance was replaced with a 500-mH inductance. The results
of this calculation are shown in the curves labelled (d) in Fig. 4.14.

It is well known that a transfer-function critical point (a transfer-
function pole or a zero) has almost no influence on the amplitude
characteristic at a frequency one decade below the break frequency,
whereas it changes the phase characteristic by a fairly significant 5.7°. A
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similar effect can be seen in the results plotted in Fig. 4.14. It is apparent
that the phase characteristic is much more sensitive to improper selec-
tion of the reactance which is used to open the feedback loop, than is the
amplitude characteristic. But even if the ratio of impedances is unity, so
that there is no significant impedance mismatch at the point at which the
loop is broken, which is the case for the curves labelled (d), the phase
characteristic is still very accurate at gain crossover. Of course, we are
dealing with a midband loop gain of over 36 dB. For a smaller loop gain
this would not hold. It is reasonable to conclude that it is safest to have
an impedance mismatch of at least 10 in the range of frequencies at
which loop-gain measurements are taken. |

4.9 Conclusion

The methods which were presented in this chapter show that it is possible to
perform accurate loop-gain measurements in feedback amplifiers including
those in which the feedback loop has to be kept intact for dc signals. It is
easiest to measure the loop gain of feedback amplifiers in which it is
possible to break the loop and terminate properly. If the loop has to be kept
intact for dc signals, then opening the loop using an inductor and terminat-
ing properly is a little more complicated but can be carried out without too
much difficulty. The most complicated case is that presented by the amplifier
in which the loop has to be kept intact because of dc considerations, and for
which it is not possible to ascertain the impedance required to properly
terminate the loop. In this case the methods of Secs. 4.6—4.8 are a little more
trouble to carry out, but the results are well worth the extra effort.

The methods of this chapter are easy to apply because the equipment
required consists of readily available instruments. The most exotic devices
required are coils of large inductance for the measurement of 75, and
current probes and current transformers for the measurement of the cur-
rents for determining T.S. Finally, if the point at which the measurements
are taken has a large impedance mismatch, then one set of measurements is
sufficient. If such a point in the feedback amplifier cannot be found, or
happens to be inaccessible, then two sets of measurements make it possible
to produce accurate results at the expense of a slight inconvenience.
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EXERCISES

4.1.

4.2.

4.3.

The remark was made in Example 4.4 that “it is well known that a
transfer-function critical point (a transfer-function pole or a zero) has
almost no influence on the amplitude characteristic at a frequency one
decade below the break frequency, whereas it changes the phase
characteristic by a fairly significant 5.7°.” Evaluate the magnitude (in
dB) and the phase for the transfer function

1
H(f)= T+ 47,
at the frequency f = f,/10.

For the shunt-series two-transistor feedback amplifier shown in Fig.

P4.2 it is assumed that the loop is not dc coupled.

(a) If the loop is broken at a—a’, draw the excitation (voltage or
current source) and the proper termination and determine the loop
gain using Eq. (4.3).

(b) How large is the error if the cut is unterminated?

(¢) The impedance from Bl to ground is frequency dependent and
takes some trouble to determine, so it is decided to replace it with a
short circuit in the termination. How large is the error in measure-
ment at midband and how does the error change as frequency
increases?

H—o 1 & +6

= Q|=Q2 hi=2k B=I00 =
Figure P4.2

For the shunt—series two-transistor feedback amplifier shown in Fig.

P4.2, it is assumed that the loop is not dc coupled.

(a) If the loop is broken at d-d’, draw the excitation (voltage or
current source) and the proper termination and determine the loop
gain using Eq. (4.7).

(b) How large is the error if the cut is terminated in a short circuit?

(c) The impedance from Bl to ground is frequency dependent and
takes some trouble to determine, so it is decided to replace it with a
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4.5.

4.6.
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short circuit in the termination. How large is the error in measure-
ment at midband and how does the error change as frequency
increases?

For the shunt-series two-transistor feedback amplifier shown in Fig.

P4.2 it is assumed that the loop is not dc coupled.

(a) If you have not previously solved for the loop gain in Prob. P2.3
then now is a good time to do so.

(b) The loop is opened at a—a’ and the cut is terminated in an open
circuit. Calculate the loop gain which would be measured by the
voltage ratio method.

(c) The loop is opened at a-a’ and the cut is terminated in a short
circuit. Calculate the loop gain, which would be measured by the
current ratio method.

(d) Combine the results of parts (b) and (c¢) using Egs. (4.10) or (4.11).
The result should correspond to the value calculated in part (a).

For the shunt-series two-transistor feedback amplifier shown in Fig.
P4.2 it is assumed that the loop is dc coupled. Assume that midband
occurs at 1 kHz.

(a) The loop is cut at a—a’ and an inductor is inserted. Draw the model
equivalent to Fig. 4.8 and assign numerical values to all the
parameters.

(b) Choose a value of inductance which satisfies (4.25) by a factor of
10. Make sure (4.24) is also satisfied.

(c) What will be the error in the loop-gain measurement at midband?

For the shunt-series two-transistor feedback amplifier shown in Fig.

P4.2 it is assumed that the loop is dc coupled.

(a) The loop is cut at a—a’ and an inductor is inserted. Draw the model
equivalent to Fig. 410 and assign numerical values to all the
parameters.

(b) Choose a value for the inductance L which will satisfy (4.29) by a
factor of 10. Will the inequality improve as frequency increases?

(c) Calculate the loop gain T.L on the assumption that L is infinite,
and also T' for the value of L chosen in part (b). Compare these
values to the theoretical loop gain found in Prob. 4.4a.

(d) Draw the model equivalent to Fig. 4.11. Choose a value for the
capacitance C which satisfies (4.33) by a factor of 10. Will the
inequality improve as frequency increases?

(e) Calculate the loop gain T. on the assumption that C is infinite,
and also T.C for the value of C chosen in part (d). Compare these
values to the theoretical loop gain found in Prob. 4.4a.

(f) Substitute the results of parts (c) and (e) into (4.37).



High-Frequency Analysis
of Loop Gain

WE HAVE SO FAR DEALT with the problems of calculating the feedback
amplifier loop gain without any concern that this quantity may be frequency
dependent. The solution is not complete until the frequency dependence of
the loop gain is determined. Without this knowledge it is impossible to
predict the stability of the feedback amplifier (Chap. 6), and the steps
needed to obtain a desired frequency response or transient response
(Chap. 7).

Various methods are used to find the frequency response of electronic
circuits. The most common method is to determine the poles of the
frequency response using the Miller approximation (or the Miller effect). It
will be demonstrated that this method gives reasonably good results only for
the dominant loop-gain pole, and is therefore relatively useless for obtaining
frequency response data at frequencies beyond the first pole, which is to say
that it does not give good results beyond the loop gain 3-dB frequency. It
will be seen in Chap. 6, that to assess the stability of feedback amplifiers, it
is necessary to know the loop-gain frequency response at loop-gain cross-
over. This is the frequency at which the loop gain equals unity (or 0 dB),
and this frequency usually lies substantially beyond the loop-gain 3-dB
frequency. In spite of the shortcomings of the Miller approximation, it will
nonetheless be covered in Sec. 5.4, and it is applied to the examples in this
chapter for purposes of comparison, because it can at the very least be used
to obtain a very crude idea of the high-frequency behavior of the loop gain.

In addition to the Miller approximation, which is of limited usefulness
for feedback amplifier loop-gain calculations, methods will be presented
56
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which can be used for finding transfer function critical points by using hand
calculation. Even when powerful computer circuit analysis programs such as
PCAP, CORNAP, and SPICE are available, a great deal of insight may still be
gained by use of these methods of hand calculation. The above techniques
will be presented in later sections. The first item of interest will be a review
of useful equivalent circuits for performing high-frequency response calcula-
tions.

5.1 High-Frequency Models for Bipolar Transistors and FETs

When transistors first came into use, there were many different models
available for the calculation of the high-frequency response of electronic
circuits. Eventually the hybrid-pi model became accepted as the most
reasonable for performing frequency response calculations. The advantage
of this model is that it is equally useful for bipolar transistors and FETs.
The transistor and FET models, which are presented in App. A and used in
the previous chapters, are useful for performing low-frequency response
calculations, and they are related to the hybrid-pi model which will be
discussed presently. This presentation is given as a review. To get a very
thorough discussion of bipolar-transistor and FET models, the reader
should consult Ref. [1].

To determine the parameters of the hybrid-pi bipolar-transistor model
shown in Fig. 5.1 it is necessary to know the collector bias current of the
transistor. For a collector bias current of /- we can calculate g, at room
temperature using

g, =401 (5.1)

The transistor current gain 8 is found in the transistor manufacturer’s
specification sheet. With this information and the value of g,, calculated
from (5.1), r, can be calculated using the relationship

B=gnl, (52)
Ip 4 Cu I
B o AvAvAv e _H OC

) InV EE T4
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Figure 5.1 Hybrid-pi equivalent circuit.
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Other items contained in the manufacturer’s data are values for the
current-gain - bandwidth product f and the output capacitance C,, some-
times identified as C,, and also as C,,. The value of C, can be calculated

from the relationship

Em

1= 2a(C, + C) (5.3)

The ohmic (base-spreading) resistance r, is usually not specified, and
may be assumed to have a value between 10 and 500 €. If it is disregarded,
then the effect on the frequency response is usually not very great. In the
absence of a specified value an assumption of 100 & is quite reasonable for
a low-frequency transistor. The transistor output resistance r, is usually not
found in the manufacturer’s data. It is some multiple of 10 k€ in most
transistors. Since most transistor circuits contain a collector resistance of a
few kiloohms or less, then ignoring the output resistance will have a small
effect on frequency response calculations, and that is usually what is done.

The same model that was used for bipolar transistors can also be used
for FETs, but r. must be replaced by a short-circuit, and 7, must be
replaced by an open circuit. The values of g, and r, can be found directly
in the manufacturer’s specifications. The low-frequency model parameter p,
if desired, can be found from the relationship

The capacitance C, is found in the manufacturer’s specifications as C,,,
G, or C .. C, is sometimes specified directly as C,,. Otherwise, if C;; or G

rs? rss*

is specified, then C, can be found from the relationship
C,=Cy=C,+C, - (55)

15

The above is given as a review. It must be understood that almost all the
parameters discussed above are dependent on the point of device operation
and temperature, and the manufacturer’s instructions on the use of the
specification sheets should be consulted carefully.

5.2 The Complete Loop-Gain Solution

To be able to make a comparison of the various methods for calculating the
loop-gain frequency response, the two-transistor amplifier example shown in
Fig. 5.2 was very thoroughly analyzed by use of the computer circuit
analysis program CORNAP.

This dc coupled amplifier was designed to have a transimpedance of 28
V/mA. Both transistors have a collector current of 1.33 mA. The hybrid-pi
model transistor parameters were calculated from the manufacturer’s
specifications and the equivalent circuit is shown in Fig. 5.3.
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Figure 5.2 Two-transistor feedback amplifier.

The loop is cut at ¢—¢’ in accordance with the principles of Chap. 4 and
a voltage source is connected from terminal ¢ to ground. The output
impedance at terminal ¢’ is less than 105 £, whereas the input impedance at
terminal ¢ lies between 8660 @ at midband and 6800 £ at very high
frequencies. The cut in the loop was terminated with a 6800-§ resistance, so
that the error in loop-gain measurement would be minimized at high
frequencies, where it is desired to have greater accuracy. Since the loop gain
depends on the parallel combination of the output and input impedance at
the cut, as indicated by (4.1), then the error in loop-gain measurement due
to improper termination at low frequency cannot be larger than 0.33%.

The poles and zeros for the loop gain were determined by using the
CORNAP circuit analysis program, and it was found that the poles are located
at

p; = —0.139 Mrad /s
P, = —9.57 Mrad /s
2 (5.6)
py = —682 Mrad /s
ps = —1353 Mrad/s
oo %o 08 S
VVy—¢ ’ Wy 1T
+ +
12k

B D
os2ev,| 19K |BOPF G.oszsv2
Ez

e L+ +
?vc VC%G.BR 200

Figure 5.3 Two-transistor amplifier equivalent circuit.
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and the zeros are located at
z; = —16.7 Mrad /s
z, = —665 Mrad/s (5.7)
zy = +10526 Mrad /s

The loop gain corresponding to these critical points is shown in Fig. 5.4,
curve a. Clearly poles p, and p, and zeros z, and z; are so far removed
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Figure 5.4 Loop-gain amplitude and phase characteristics. (¢) Loop gain with all
poles and zeros. (b) Loop gain with only significant poles and zeros. (¢) Loop gain
with significant poles only. (d) Loop gain with poles calculated using the Miller
effect.
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from the origin that they should have a negligible effect on the loop-gain
characteristic. Curve b was plotted to see what would happen if the poles
and zeros at very high frequencies are totally ignored. We see that these
results depart so negligibly from those of curve a, that the amplifier
loop-gain characteristic can be very adequately obtained from what will be
henceforth referred to as the significant or principal poles and zeros, in this
case p,, p,, and z,.

The question that comes to mind now is whether a simple method exists
for finding the principal poles and zeros without resorting to computer
calculation.

5.3 The Zeros of Transistor Circuits

For the purpose of deriving equations for the calculation of the zeros of
transistor circuits, the source-free hybrid-pi model of Fig. 5.5 will be
analyzed. This model describes bipolar and field effect transistors equally
well. The active device is shown resistively loaded, because the assumption
at this point is that the other active-device stages are not yet exhibiting
frequency-dependent behavior. In a bipolar transistor the terminal marked 1
would correspond to B’, hence R, would have to include the effects of r,,
the ohmic resistance connecting the base terminal B to B’. In an FET
circuit, terminal 1 would correspond to the gate and the conductance g,
would be zero. The correspondence of the other terminals is self-explana-
tory.

The nodal admittance matrix can be written by inspection from Fig. 5.5
in terms of the Laplace transform variable s,

Gi+gﬂ+s(cﬂ'+ Cp) _(g7r+SCw) _SC#

Y=| —(g.+8& +sC) (G +g,+g, +sC) 0

Em — SC[J, —8m (GL + SC;L)
(5.8)
N 3 I
It

I [ < _L_+ l

Gi=g, Or=7% sC, =V ®sg,Vv =g

2
Te %Gf'ﬁe

Figure 5.5 Source-free model for deriving the high-frequency behavior of a single
transistor stage.
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To abbreviate the notation we define

8§ =8+t 8 =8,(1+1/B)=g, (5.9)

The numerator polynomials are determined from the routing of the
signal. For signal transmission from base to collector (or gate to drain), the
numerator polynomial is

A;=RCCs*>+(1+¢gR,)Cs — g, (5.10)

For signal transmission from base to emitter (or gate to source), the
numerator polynomial is

Ap=(R,Cs+1)(Cps + g,) (5.11)

For signal transmission from emitter to collector (or source to drain), the
numerator polynomial is

Ay =RCCs*>+ RgCys + g, (5.12)

It is noteworthy that (5.10) shows that right-half plane zeros are possible
in active devices, but we have already seen in the two-transistor example,
that the right-half plane zero z, is so far removed from the origin, as to have
no significant effect on the transfer function. Even if the right-half plane
zero did have a significant effect on the transfer function, it would still be no
reason for any misgivings. Networks which are said to be stable (namely
those networks which have decaying transient responses), must have poles
which lie only in the left half of the s plane, but there is no constraint on
where the zeros must lie.

The results obtained from (5.10)—(5.12) can be very accurate. For
example, the only noncapacitive impedance appearing in (5.10) is R,. This
equation finds the zeros of transmission for a signal going from base to
collector. If the impedance at the third terminal, the terminal not directly
involved in the propagation of the signal (in this case, the emitter), is
connected to a resistor, then the solution due to (5.10) will have no error. If
the third terminal is connected to a frequency-dependent impedance, for
which it is possible to determine the frequency-dependent expression, then
(5.10) will still produce accurate results, but the equation will no longer be
of second order. What has been said about (5.10) is also true for (5.11) and
(5.12). The impedance at the third terminal is easy to control in most
electronic circuits, so that (5.10)—(5.12) can all be used to solve for the zeros
of transfer functions without any error.

All transfer functions have in common the denominator polynomial

) 1 - 1
A= CﬂCuS + [(W)Cw +(g, + W)Cﬂ]s
1 + gIRe + g'/rRi
" Re(RL + Rz) + RLRi

(5.13)
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Table 5.1 Summary of parameters from Fig. 5.3 needed

for substitution into (5.10)—(5.12)

Transistor 1 Transistor 2 Units
L 0.0526 0.0526 mho
f 0.000526 0.000526 mho
g, 0.0532 0.0532 mho
R, 10382 12000 ohm
R, 6380 20100 ohm
R, 0 194 ohm
C, 80 80 pF
G 5 5 pF

The use of (5.13) for the finding of the poles for electronic circuits is not
recommended, since the assumption that the stage under analysis is resis-
tively loaded at the input and the output does not generally hold. This
equation is included here for completeness only and should be used only in
situations in which its limitations are clearly understood.

To see what kind of numbers (5.10)—(5.12) produce, the equations were
applied to the two-transistor amplifier of Figs. 5.2 and 5.3. Table 5.1
summarizes the quantities derived from Fig. 5.3, which are needed for
substitution into those equations.

Substitution for transistor 1 into (5.10) and for transistor 2 into (5.11)
results in

A;=5X 107125 — 0.0526 (5.14)
and
A, =(6X% 10785 + 1)(80 x 10~ % + 0.0532) (5.15)
The resultant zeros are
z{ = =16.7 Mrad /s
z5 = —665 Mrad/s (5.16)
z{ = +10526 Mrad /s

A comparison of (5.16) and (5.7) shows that there is no difference between
the results which were obtained by using CORNAP and those obtained by use
of (5.10)-(5.12).

Now that we have a method for hand-calculating the zeros, we need a
corresponding method for finding the loop-gain poles. The desired method
should be suitable for hand calculation, and should not be too difficult to
apply when only principal poles are desired.
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5.4 The Poles of Transistor Circuits—the Miller Effect

One of the best known techniques for finding the poles of electronic circuits
is the Miller approximation, more commonly referred to as the Miller effect
[2]. The effect was used to explain why electronic devices (at that time,
vacuum tubes) with seemingly low input capacitance, behaved at high
frequencies as if the input capacitance was much larger than measured. The
method used for explaining this behavior became one of the most popular
techniques for calculating the high-frequency response of electronic
amplifiers. It has been mentioned previously that this method is useful for
finding the lowest pole, namely the 3-dB frequency of an amplifier. The
range of frequencies of interest to the designer of feedback amplifiers is a
band in the vicinity of loop-gain crossover, and in this region the Miller
approximation yields very poor results. But in the absence of other, more
convenient techniques, the Miller approximation can be used to get a rough
estimate of the frequency behavior of electronic circuits, and for that reason
it will be reviewed presently.

The analysis will proceed from Fig. 5.5. All the remarks made at the
beginning of Sec. 5.3 are still appropriate. The single stage shown has two
energy storage devices, the capacitors C, and C,. To avoid having to deal
with the second-order denominator polynomial (5.13) to which this network
gives rise, it is desired to remove the capacitor C,, and replace C, with a
capacitor of a different value C;, so that the current 7’ will remain
unchanged at midband. The voltage to the left of C, is

V,=V (5.17)

Midband is the range of frequencies that is sufficiently low so that all
circuit capacitors can be considered to be open circuits. To find the voltage
V;, at midband we observe that the current in R; is

I=gV (5.18)

whereas the current in the resistor R, is

1,=Y 4y (5.19)
Using the above we can calculate
vV
V32 = _ngRL - [I’— + ng]Re (520)

The voltage across C, is given by the difference between (5.17) and (5.20)

Vis =

1+g,R, +(rl + gm)Re}V (5.21)
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Figure 5.6 Figure 5.5 without capacitors.

From (5.2) we see that g,, is greater than 1/7, by a factor 8, so that the
above expression can be simplified somewhat into

Vis=[1+g,(R,+ R,V (5.22)

The current in C, is the above voltage multiplied by the admittance 5C,.
The total current I’ is therefore given by

I'= {sC,+ [1+g,(R, + R,)]sC,}V (5.23)

It is clear that in the vicinity of midband I’ will remain unaffected if we
omit C, and replace C, with a larger capacitor C/ whose value is

C/=C,+ [1+g,(R, +R,]C, (5.24)

We can therefore use the above reduction to go from a second-order
network to a first-order network. Once that is accomplished, we need to
determine the resistance r; which shunts the capacitor C/ across the
terminals 1 and 2. It is easiest to start with a fresh diagram in which there
are no capacitors as seen in Fig. 5.6.

The resistor R, was in series with the current source g, V, so it is not
shown in this figure, because it has no effect on the value of the resistance
seen between terminals 1 and 2.

By replacing the network inside the dashed lines with a Norton equiv-
alent, we obtain Fig. 5.7.

Since the current source on the left is dependent on the voltage ¥, which
Is across it, it can now be replaced by an equivalent resistance whose value
is shown in Fig. 5.8a. Combining resistors in parallel leads to Fig. 5.8b. We
see that the resistance between terminals 1 and 2, which represents 7/ is
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Figure 5.7 Figure 5.6 after Norton equivalent reduction.

given by

R, +R,

1+g,R,
Using the results of (5.24) and (5.25), we find the pole of this resistor—
capacitor combination

(5.25)

e =71y

1
Y/ 2wr)C)

We run into some difficulty with (5.24) if R, approaches infinity, a
situation that would apply to the upper transistor in a cascode connection
(see Prob. 5.2). To resolve this dilemma we go back to (5.13) and allow
R, — oo. The result is

(5.26)

C

AlRE—*oo = chus2+[ﬁ:_:—Ri+g,C#]S+Eﬁi—R; (527)
It will be shown later that transistors or FETs contribute a significant
(low-frequency) pole to the transfer function, and a pole which is at a very
much higher frequency than the significant pole. We are interested in the
significant pole only, since the Miller approximation is not valid at much
higher frequencies. Since the roots of (5.27) are widely separated, we can
find the lower root by solving the reduced version of the quadratic. Namely

G & _ _
[m + g,Cu]s + m =0 (5.28)

to find that for this case the pole is given by
7l _ 8:
PRz 2 (G, + g(R, + R,)G]

(5.29)

o |

L Ri+R,
grnRe

AN

L < <
=Ri+Rg =1 E:

YY)
v

A'
T
g
0
@
5

02 , 02
(a) (b)

Figure 5.8 (a) Figure 5.7 after current source replacement. (5) Final reduction.
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Table 5.2 Miller approximation results
for the two-transistor amplifier of Fig. 5.3

Transistor 1 Transistor 2 Units
C, 2815 3292 pF
r 1464 927.3 ohm
5 38.6 52.1 kHz

To illustrate the method, the Miller approximation was applied to the
data of Table 5.1, which lists the parameters of the two-transistor amplifier
of Fig. 5.3. Table 5.2 summarizes the results obtained.

These results are not in the best agreement with those of (5.6), which
were obtained by computer. There the first two poles were found to be at
22.1 kHz and 1.52 MHz. It is not at all surprising that the curve obtained
using the Miller effect, which appears in Fig. 5.4, is in such poor agreement
with the curves obtained by more accurate methods.

5.5 The Poles of Transistor Circuits—the Cochrun—Grabel
Method

We are now interested in finding the poles of active RC circuits more
accurately than the Miller approximation allows. The method of Cochrun
and Grabel [3], which was elaborated by Rosenstark [4], fills this require-
ment, and has the advantage that it can be carried out by hand calculation.
They showed that for an RC network, the poles can be found from the
polynomial

A(s)=ag+ a;s + ays®+ -+ +a,s" (5.30)

n

This can be obtained for a resistive network to which n capacitors are
connected, as shown in Fig. 5.9, by evaluating a number of driving point

PURELY
RESISTIVE
NETWORK

Figure 5.9 Resistive network with external capacitors.
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resistances. The coefficients of (5.30) are given in terms of the time constants

ag=1 (5.31)
n n
ay= Y R)C,=} 1 (5.32)
i=1 =1
n—1 n n—1 n
ay= 32 X RICRCG=3Y ¥ = (5.33)
i=1 j=i+1 i=1 j=i+1
n—2 n-1 n . . n—-2 n-—1 n o
ay=3) Y X RICRGR{=Y Y ¥ i
i=1 j=i+1 k=j+1 i=1 j=i+1 k=j+1
(5.34)

where the following definitions apply:

C, = capacitance connected to port i (5.35)

RY = driving point resistance at port i when all other

ports are open circuited (5.36)
R’, = driving point resistance at port j when port i is

short circuited and all other ports are open circuited (5.37)°
R!/ = driving point resistance at port k when ports i and

J are short circuited and all other ports are open circuited (5.38)
74/ = RY/C, = time constant at port k when ports i and j

are short circuited and all other ports are open

circuited. (5.39)

To expedite the calculation of driving point resistances in transistor
circuits, we need some additional formulas for the resistances seen between
terminals 1 and 3 and also terminals 1 and 2, which appear in Fig. 5.6.

Define

R,=R,+r(1+g,R,) (5.40)
We immediately observe that R, will be infinite for FETs. We also define
g}ﬂ gm

gm N 1 +(gm + 1/r7r)Re = 1 + gm‘RC’ (541)
After some manipulation it is found that
Rz =R, +(RJIR)[1 + g, R,] (5.42)

If terminal 1 is shorted to terminal 2, then

(R13)1-2shorted =R, + (Ri”Re) (5~43)
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For calculation of driving point resistances at terminals 1-2

R, + R,

R12 = I‘77 1—+—g—:R—e (544)
If terminal 1 is shorted to terminal 3, then
(R12)1-3 shoriea = (1/8,) 7[R, + (R /IR )] (5.45)

One additional point needs to be made before the calculations proceed.
In a two-transistor problem, which contains four capacitors, only the two
smaller valued poles need to be found, since the other two poles are much
larger than the first two. This is substantiated by the pole locations for the
two-transistor amplifier of Fig. 5.3, which are given in (5.6). The number of
poles of interest corresponds to the number of transistors in the circuit. So,
for a two-transistor problem, we need to find only the coefficients ag, ag,
and a,. In a three-transistor problem we would also have to find a;. This
consideration reduces very substantially the amount of work needed to find
A(s).

5.6  First Example—the Two-Transistor Amplifier

The calculations were performed on the amplifier of Figs. 5.2 and 5.3. The
equivalent circuit is redrawn in Fig. 5.10 with the capacitors replaced with
the circled numbers, which designate the ports used for calculating the
driving point resistances. Any convenient port numbering order can be
used, and the one appearing in Fig. 5.10 was chosen arbitrarily.

We follow definition (5.39) and supporting Egs. (5.40)—(5.45) to fill in
Table 5.3.

B, 100 B C_ B.100 B;

67ks I00ks 1.9k iv, @ @ 20klgkg§3/2 ® ©® 12k
1

10526V,

] Ee

6.8k 200

Figure 5.10 Amplifier of Fig. 5.3 ready for the application of the Cochrun—Grabel
method.
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Table 5.3 Computation schedule for the two-transistor
amplifier of Fig. 5.10

(03] (2)

0 = 3036 m=15
™ =126
7 =117

) =741 2 =120
72 =117

) = 4059 =15

70 =117

ay = 1.

a; = sum of all terms in column 1.

a, = sum of all row paired products.

Note: All time constants shown are in nanoseconds.

Finding the values for the table is not as formidable as it seems, because
it is found through experience that the work is reduced by the fact that the
driving point resistance at a port often remains unchanged, even though the
conditions at other ports are varied.

Instead of using the rather intimidating (5.31)—(5.33) to evaluate the
denominator polynomial coefficients, the rules given in Table 5.3 are fol-
lowed. The second-order polynomial that results from the data of Table 5.3
is

A(s) =1+ 7.286 X 10% + 7.66 X 10%s> (5.46)

Keep in mind that the time constants given in Table 5.3 are in nanoseconds,
hence the roots of (5.46) will be in gigaradians/second. The poles found
from (5.46), when properly scaled, are

pi = —0.139 Mrad/s

5.47
p5= —9.37 Mrad/s (5.47)

A comparison of (5.47) and (5.6) shows that the first pole is exactly the same
as that calculated using CORNAP, and that the second pole differs by 2.1%.
This error is due to the fact that we used a reduced polynomial of second
degree instead of the complete fourth-order polynomial.

The extra effort needed to obtain the fourth-order polynomial is not
justified, as can be seen from an examination of Fig. 5.4. It is apparent from
the fact that curve (a) hardly departs from curve (b), that the significant
poles and zeros are enough to produce an accurate Bode plot at and beyond
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Figure 5.11 Three-transistor amplifier.

loop-gain crossover. If the zeros of the loop gain are ignored, then we see
from curve (c) that there is a very significant error in the phase characteris-
tic at loop-gain crossover. From curve (d) it becomes clear that if the Miller
effect is used to calculate the poles (and the zeros are ignored), then the
departure of this curve from curves (a) and (b) is so great that no useful
information can be obtained at loop-gain crossover.

For the best results with the least effort, the principal poles should be
calculated by the methods of Sec. 5.5, and the zeros should be found by the
methods of Sec. 5.3. The need for compensation can now be investigated by
any common method, including the Routh test (see Chap. 6), because this
technique requires a knowledge of the transfer function critical points,
which are now available.

5.7 Second Example—the Three-Transistor Amplifier

To offer further evidence of the principal pole and principal zero behavior
in loop gain, we examine the loop-gain characteristic of the three-transistor
amplifier of Fig. 5.11. The equivalent circuit prepared for the
Cochrun—Grabel method is shown in Fig. 5.12.

The poles and zeros for the loop gain of the three-transistor amplifier
were evaluated by using CORNAP, and it was found that the poles are located
at

p1 = —0.927 Mrad /s

P> = —5.65Mrad/s

p3; = —36.9 Mrad/s (5.48)
ps = —1313 Mrad /s

ps = —2510 Mrad /s

D¢ = —2942 Mrad /s
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Figure 5.12 Three-transistor amplifier equivalent circuit.

The zeros are located at

z; = —29.6 Mrad /s
zy, = —475 Mrad /s
zy = —505 Mrad /s (5.49)

z4, = —800 Mrad/s
+10* Mrad/s

N
W
Il

The loop gain corresponding to these critical points is shown in Fig.
5.13, curve (a). Curve (b) is a plot of loop gain, which includes only the
effects of p,, p,, p;, and z,. The phase characteristic shows only a
departure of 6° at loop-gain crossover. This again supports the contention
that the principal poles and zeros describe the loop-gain characteristic very
adequately. Curve (¢) shows that when loop-gain zeros are ignored, drastic
compensation measures might be undertaken for an amplifier requiring only
slight compensation. Curve (d) shows that the results obtained by using the
Miller effect are of very little practical value for the study of stability in
feedback amplifiers. All of the above points have already been made at the
end of the previous section.

To calculate the poles independently, we use the definition (5.39) and
supporting Egs. (5.40)—(5.45) to fill in Table 5.4. The third-order polynomial
that results from the data of Table 5.4 is

A(s) =1+ 1.285 x 10% + 2.27 X 10%2 + 5.494 x 1053 (5.50)

The time constants given in Table 5.4 are in nanoseconds, hence the roots of
(5.50) will be in gigaradians/second. The poles found from (5.50), when
properly scaled, are

pi = —0.926 Mrad /s
p5= —5.66 Mrad /s (5.51)
py= —34.7 Mrad /s
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Figure 5.13 Loop-gain amplitude and phase characteristics. (a) Loop gain with all
poles and zeros. (b) Loop gain with only significant poles and zeros. (¢) Loop gain
with significant poles only. (d) Loop gain with poles calculated using the Miller
effect. '

A comparison of (5.51) and (5.48) shows only a minor difference in the
values of the poles calculated from (5.50). The small discrepancy is due to
the fact that a reduced polynomial of third degree was used instead of the
complete sixth-order polynomial.

The zeros were calculated by the methods of Sec. 5.3, and from the result
it was determined that a principal zero is located at

z{ = —29.6 Mrad /s (5.52)



74 o Feedback Amplifier Principles

Table 5.4 Computation schedule for the amplifier of Fig. 5.12

ay = 1.

a, = sum of all terms in column 1.
a, = sum of all row products of terms in columns 1 and 2.
a3 = sum of all row products of terms in columns 1, 2 and 3.

Note: All time constants shown are in nanoseconds.

1) ) (3)
'T]O = 64 721 =2 7'312 = 36.9
7> = 1216
2 = 496
7t =156
=418 7 =1.56
1'513 =523
3 =156
7 = 1216 4 =473
Tt =156
151 = 496 1'615 =194
=156
) = 91.4 =369 7 =153
7523 =521
2 =156
72 =1216 724 =473
24 =156
™ = 496 0 =1.94
7 =156
) = 3555 7 =1.93 4 =473
24 =156
7 =532 7% =1.69
7 =156
) =121.6 =46 = 1.64
e =156
) = 496 7 =1.94
0 =156
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We see from Fig. 5.13 that the principal poles and zeros give a very close
approximation to the exact frequency response of the loop gain of the
feedback amplifier. If only principal poles are used, then this results in poor
phase information at loop-gain crossover. The results obtained by using the
Miller effect calculation are so poor as to be useless for the evaluation of
performance parameters at loop-gain crossover.

5.8 Conclusion

It was shown that the two-transistor and three-transistor amplifiers have two
and three significant loop-gain poles, respectively. Section 5.4 dealt with the
Miller approximation and in Sec. 5.5 the very accurate Cochrun—Grabel
method of hand-calculating the poles of any RC circuit was presented, and
the method was demonstrated on a two-transistor feedback amplifier prob-
lem in Sec. 5.6. In Sec. 5.7 an example was given of the application of all
these methods to a three-transistor feedback amplifier. The method of zero
calculation was covered in Sec. 5.3 and applications were demonstrated in
Secs. 5.3 and 5.7.

The examples showed that the results obtained compared very favorably
with results obtained by using the powerful computer circuit analysis
program CORNAP. It was shown, by use of examples, that the principal poles
and zeros are needed to obtain adequate results for the loop-gain frequency
response, and that ignoring the zeros produces a definitely inferior result.
Finally, it was shown that calculations based on the Miller effect yield a
totally inaccurate loop-gain frequency response. Blank schedules for the

Table 5.5 Blank computation schedule
for two-transistor amplifiers

D @

= =
-
.

T = Ty =
2
Ty =

0 _ 3

™ = =

0 _

T =

ag = 1.

a; = sum of all terms in column 1.
a, = sum of all row paired products.
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Table 5.6 Blank computation schedule for three-transistor amplifiers

1) ) (3)
0 _ 1 _ 12 _
= = 3=
.
=
5
=
2
1 13 _
T3 = T4
=
@ =
1 _ 14 _
T = Tt =
7 =
1 _ 15 _
5= T =
1 _
‘1'6 =
0 = 2= B =
23 _
75
23
7'6 =
2 _ 24 _
T = 5=
24
Te
- 25 _
5 = T =
2 _
1'6 =
730 = 7'43 = 1'534 =
34
T
= 35 _
S = T =
3
7'6 =
0 = = 745
4 _
1'6 =
0= 765 _
0 _
7'6 =

ay = 1.

a; = sum of all terms in column 1.

a, = sum of all row products of terms in columns 1 and 2.
a3 = sum of all row products of terms in columns 1, 2 and 3.
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calculation of the principal poles by application of the Cochrun—Grabel
method to two-transistor and three-transistor amplifier problems appear in
Tables 5.5 and 5.6. The supply of empty schedules can be increased
endlessly by photocopying.
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EXERCISES

S.1. For the one-transistor amplifier shown in Fig. P5.1:
(a) Find the gain at midband.
(b) Find the high-frequency performance using the Miller effect.

=100 ; rp=2kN
Cr=100pF ; Cy=5pF
gm=.05mho

Figure P5.1

5.2. It is claimed that the cascode-connected amplifier shown in Fig. P5.2
has essentially the same gain as the one-transistor amplifier of Prob.
5.1, but it has a much better frequency response. Verify this by:
(a) Finding the midband gain.
(b) Calculating the high-frequency response using the Miller effect.
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VCC

Vo
Q2

Q=Q,

Q r=100; r,=2k0
Cr=100pF ; Cu=5pF
dm=.05mho

Figure PS.2

5.3. Find the zeros of the amplifier shown in Fig. P5.1.
5.4. Find the zeros of the amplifier shown in Fig. P5.2.

S.5. Find the poles of the source-free network shown in Fig. P5.5 by the

following methods:

(a) Use the two-transistor schedule, but ignore all parts pertaining to
ports 3 and 4.

(b) Write the admittance Y(s) seen between any two convenient
nodes. The zeros of Y(s) should agree with part (a).

(c) Cut any convenient branch. Write the impedance Z(s) seen
between the resulting terminals of the cut. The zeros of Z(s)
should agree with parts (a) and (b).

2uF 6M
—
TuF 3M

Figure P5.5

5.6. Find all the poles of the amplifier shown in Fig. P5.1 using the
Cochrun—Grabel method. Use the two-transistor schedule, but ignore
all parts pertaining to ports 3 and 4.

5.7. (a) Find the two principal poles of the amplifier shown in Fig. P5.2
using the Cochrun—Grabel method.
(b) How much of the schedule would have to be filled if it was only
desired to find the first pole (approximately) of the amplifier.
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Figure 5.3 is the equivalent circuit for finding the high-frequency loop
gain of the two-stage amplifier of Fig. 5.2.

(a) Verify the values in Table 5.1.

(b) Verify the values in Table 5.2.

(c) Verify the values in Table 5.3.

For the amplifier equivalent circuit shown in Fig. 5.12, find the poles
for each stage using the Miller approximation.

Starting with the amplifier equivalent circuit shown in Fig. 5.12, verify
the values in Table 5.4.



Stability Analysis of
Feedback Amplifiers

IN CHAP. 1 the substantial benefits that can be derived through the
introduction of negative (degenerative) feedback into amplifiers were dis-
cussed, but nowhere was it mentioned that some difficulties may arise due to
the use of feedback. Self-oscillation problems may arise in some cases; poor
transient or frequency responses may arise in other cases. In this chapter a
study will be made of the analytical methods needed to determine if an
amplifier is stable, and Chap. 7 will take up the question of how to achieve a
desired time or frequency response. A network will be considered stable if it
has no tendency to oscillate. For stability it is necessary that the poles of the
transfer function be located in the left-half s plane (LHP). The reader in
need of a review of the Laplace transform concepts that are needed for an
understanding of the last statement is referred to App. B.

6.1 Stability of Feedback Circuits

When dealing with the subject of electrical networks it becomes apparent
that a requirement for stability is that all the poles of the transfer function
must lie in the left half of the s plane. Since we are specifically concerned
with feedback amplifiers, we have to see what part of the feedback expres-
sion it is that gives rise to the poles of the network, which will require close
scrutiny to determine whether the feedback amplifier is stable or not.
Consider the asymptotic gain formula (2.18) for feedback amplifiers

T G,
G=OeTyT TIT (61)

80
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We must at first make allowance for the fact that all elements in the above
equation could be frequency dependent, so that (6.1) will be written in the
more general form

G, (s) = Gw(s)lTis}(t)Go(s) (62)

An inspection of the various feedback amplifier configurations, which
appear in Chap. 3, reveals that in most practical feedback amplifiers, G,
and G, are determined by passive elements, which are usually not of a
frequency-dependent nature. At times a capacitor may appear in the feed-
back network, but that will be accounted for in the next chapter when
phantom pole compensation is discussed. The closed loop gain G(s)
acquires its frequency dependence from 7(s) and the next equation reflects
this fact.

q@)=§§§%%§i (6.3)

From (6.3) we see that the poles of G,(s) are due to the zeros of the
denominator, which are the zeros of the return difference

F(s)=1+ T(s) (6.4)

For feedback amplifiers which can be modelled in terms of lumped, linear
elements, T(s) can be written in the rational form

N(s)

T(s) = HD(s)

(6.5)

Using this in (6.3), we see that the poles of G,(s) are due to the roots of the
characteristic equation

C(s) = D(s)+ HN(s) (6.6)

The amplifier stability can be determined from the location of the roots
of the above equation for situations in which T(s) can be determined
analytically. In that case the Routh—Hurwitz criterion can be used to check
if any roots of the characteristic equation lie in the right-half s plane. There
will be cases in which it is either too difficult to determine 7'(s) accurately
by analytical methods, or the designer has very little confidence in the
model used to arrive at the analytical results. In such situations it is
desirable to measure the frequency dependence of the return ratio T in the
laboratory, and then the poles and zeros of (6.6) can only be estimated by
curve fitting. This procedure introduces another element of doubt into the
rational representation of 7(s). To circumvent all these problems, the
Nyquist criterion is applied to the measured data directly, to determine
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the stability of the feedback amplifier. The two methods mentioned will be
covered presently, but the Nyquist criterion is the more useful because it can
be applied to analytical as well as laboratory results.

6.2 The Routh—Hurwitz Criterion [1-3]

The characteristic Eq. (6.6), is a polynomial in the complex variable s, which
will be written in the form

C(s)=aps"+ays" '+ - +a, ;s+a,=0 (6.7)

The coefficient a, is assumed positive. If it is not, then the test proceeds
with a new characteristic equation which is the negative of the old one. To
establish if any of the roots of C(s) lie in the right-half s plane, we start by
listing the polynomial coefficients in the top two rows of the array as shown
below. If the polynomial is of even degree, then the polynomial coefficients
of the even powers of s are listed in the first row, and the odd powers in the
second row. Conversely, for a polynomial of odd degree:

a, a, a, ag

s a, a; as a,
-2
s" by, by by b
. 1 3 5 7 (6.8)
s” ¢ €3 €5

The coeflicients below the second row are calculated using the following
rules:

a;a, — aya,

b, = e (6.9)

by = ‘Ha_‘t;ﬁ(_)a_s (6.10)
biay; — ab

¢ = 103—1)1‘11._3 (6.11)

The rules for the other elements of the array can be inferred from the three
rules given. The Routh-Hurwitz theorem states that for nondegenerate
cases, the number of changes in sign of the first column of the array is equal
to the number of roots of the polynomial C(s). Degenerate cases will be
covered later.
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Example 6.1: Consider the characteristic equation
C(s)=s*+ 105> + 35s% + 50s + 24
The Routh-Hurwitz array is shown below

s4 1 35 24
s31 10 50

s 30 24

st 42

s91 24

There are no changes in sign in the terms in the first column of numbers
of the array, so we conclude that C(s) has no roots in the right-half
plane. In fact

C(s)=(s+1)(s+2)(s+3)(s+4) |
Example 6.2: Consider the characteristic polynomial
C(s)=s>+25%+ 25+ 40
The Routh-Hurwitz array for this polynomial is

s? 1 2

s? 2 40

st —18

50 40
There are two changes of sign in the first column of the array, so this
polynomial has two roots in the right-half s plane. n

First Degenerate Case

A zero results in the first column of the nth row but no other element of the
nth row is zero. If no remedial action is taken then the array cannot be
continued. To circumvent this problem, we replace the zero in the nth row
with a positive quantity ¢, continue to fill the array, and then see what
happens as & approaches zero )

Example 6.3: Consider the characteristic polynomial
C(s)=s*+s+2s2+2s+3
The Routh—Hurwitz array for this polynomial is

s4 1 2 3
s? 1 2

s? € 3

st 2—-3/e

50 3
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As e goes to 0, there are two changes of sign in the first column of
numbers, so this polynomial has two roots in the right-half s plane. It is
obvious from the above that there will always be a change of sign in the
first column of the array for this kind of situation, therefore if a zero
appears in the first column the system is unstable. [ ]

Second Degenerate Case

An entire row becomes zero indicating an even power polynomial C,(s) is a
factor of C(s). The coefficients of the even polynomial correspond to the
numbers in the row preceding the row of zeros. The system is distinctly
unstable since polynomials of even power have roots in the s plane which
are 180° apart. At the very least C(s) will have roots on the jw axis.

Example 6.4: Consider the characteristic polynomial
C(s)=s3+s>+4s+ 4

The Routh—Hurwitz array for this polynomial is

53 1 4
52 1 A
st 4—-4

50 A

If 4 = 4 then the third row vanishes, and the even power polynomial
coefficients are given by the elements of the second row of the array, so
that

C(s)=s+4

which has roots at s = +;2. This system is unstable. |

6.3 The Encirclement Theorem

The Nyquist stability criterion is based on the encirclement theorem. This
topic will be the subject of discussion in this section. Consider a function
F(s) of the complex variable s, possessing a zero of order m at z, and a
pole of order n at p, located within a contour C as shown in Fig. 6.1.

It will be assumed that there are no other critical points inside the
contour C. Within the contour C, F(s) can be written in the form

F(s) = %%))’:F”(S) (6.12)

where F,(s) possesses no poles or zeros within the contour C. Taking the
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s-plane

o Figure 6.1 Contour C enclosing an mth-order
zero and an nth-order pole.

natural logarithm of both sides of (6.12),
In[F(s)] =min(s — z) = nln(s — p) + In[ F,(s)] (6.13)
The above is differentiated with respect to s, to obtain

_om n F/(s)
d{In[F(s)]}) = s= ds — 5 =5 & F,(s)

ds (6.14)

The last term on the right-hand side has no poles within the contour C,
hence the right-hand side has the residue m at z and the residue —n at p.
Integrating (6.14) from S’ to S along the contour C, results in

In[F(S)] — In[F(S")] = j27(m — n) (6.15)
Using the fact that F(s) can be expressed in terms of magnitude and phase,
F(s) =| F(s)[ei/2
Then (6.15) can be rewritten into the form

In|F(S) |~ In|F(S") |+ j| /F(S) = /F(5) ] = j2m(m = n)
(6.16)

As we close the gap in the contour C by allowing S to approach §’, the first
two terms in (6.16) cancel out, and we are left with

JE(S) - /F(S) = 2a(m — n) (6.17)

The above result need not be restricted to one pole and one zero within
the contour C. The derivation of the theorem is easily generalized. If C
contains zeros of order my, m,,..., m, and poles of order ny, n,,..., n,
then we can say

JF(S) - /F(s) =2a(M - N) (6.18)
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where
,
M=Y m, (6.19)
i=1
denotes the total number of zeros within the contour C, and
9
N= Y n, (6.20)
i=1

denotes the total number of poles within the contour. The left-hand side of
(6.18) represents the change in angle of F(s) as the variable s traverses the
contour C in a counterclockwise direction. If both sides of (6.18) are divided
by 2, then the left-hand side represents the number of counterclockwise
encirclements of the origin by F(s), and this equals the right-hand side,
which is the total number of zeros minus the total number of poles which
F(s) possesses inside the contour C. This statement is equally valid if the
encirclements in the s plane and the F(s) plane are both taken in a
clockwise direction. The final statement of the encirclement theorem which
leads to Nyquist’s criterion is:

The total number of encirclements of the
.. . . Total number of zeros
origin by F(s) in a clockwise manner, as | _ minus the total numb
s traverses the contour C in a clockwise € 0. number
manner of poles within C
(6.21)
Example 6.5: Consider the function
+
F(s) =341 (6.22)

For the first contour in the s plane choose a circle of radius 0.8 around
the origin as shown in Fig. 6.2a. This circle is described by

s =0.8e/

jw ImF(s)

F(s)-plane

\'j ReF(s)

(@ (b)
Figure 6.2 The mapping of the contour C by (6.22).
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jw ImF(s)
s-plane
C K\F(s)-plane
® aﬁ/ a U 5 ReF(s)
(a) (b)

Figure 6.3 A different contour C mapped by (6.22).

When this is substituted into (6.22), the resultant expression is

1+ 0.8¢/ i

F(S) = W= 1+ 1.25e7
F(s) traces out a circle of radius 1.25, centered on +1, in a direction
opposite to that of contour C as shown in Fig. 6.2b. This encircles the
origin —1 times, which is in agreement with (6.21), because C encircled
only the pole of F(s). When the circle for contour C is increased to a
radius of 1.25, so that it encircles the pole and the zero, the resultant
circle in the F(s) plane does not encircle the origin, in agreement with
(6.21). This is shown in Fig. 6.3. |

6.4 The Nyquist Stability Criterion

Although it is desirable to determine the critical points of the return ratio
accurately when the analysis of a feedback amplifier is carried out, the
location of the critical points in the s plane cannot be verified directly by
experiment. One could perform a loop-gain measurement, draw a Bode plot
of the obtained data, and then attempt to fit the curves with asymptotes in
order to determine the poles and zeros of the loop gain. This procedure is
very error prone, and it is best to use a method for determining feedback
amplifier stability, which uses the obtainable laboratory data directly. The
Nyquist criterion, based on the theory of complex variables, is such a
method.

The Nyquist criterion [4] addresses the question of whether (6.4) has
zeros in the right-hand plane. At the outset it will be assumed that the
system is open loop stable, so that T(s), and therefore F(s), have no poles
in the right-half s-plane. Our only concern now is to discover if F(s) has
any zeros in the right-half s plane. To apply the encirclement theorem to
the right-half s plane we choose a contour C as shown in Fig. 6.4.

As the radius of the circle R approaches infinity, the entire right-half
plane will be enclosed. For the system to be stable, the image of C must not
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jw

c
@ _~\ s-plane

J U

encircle the origin in the F(s) plane. This is equivalent to saying that the
mapping of the contour C must not encircle the point T(s) = —1, since
F(s) and T(s) are related by (6.4). It is more convenient in practice to work
with the return ratio 7(s). In most practical feedback amplifiers, T(s) is
zero or a real constant at infinity, so that the large circle on the contour C
usually contributes only one point to the Nyquist plot.

The steps needed to carry out the Nyquist criterion will now be
summarized.

Figure 6.4 s plane contour for the Nyquist criterion.

1. Ascertain that the amplifier is open loop stable. If it is not, then T(s)
has poles in the right-half s plane, and unless the number of poles
can be determined, the Nyquist criterion becomes meaningless.

2. Using analytical or experimental methods, obtain data for T(s) for
s = jw. Plot this data in the T(s) plane.

3. Determine if T(s) = —1 is encircled. In difficult cases, this is done
by drawing a vector from T(s) = —1 to the contour plot of T( jw). If
the vector goes through a total of zero degrees as it follows the
Nyquist plot from w = — o0 t0 w = oo, then the system is stable.
Otherwise it is unstable.

Since T(s) is the ratio of two polynomials in s with real coefficients,
then T(jw) is Hermitian, namely its amplitude and phase satisfy

IT(je) [=1T(=jw)|

[T(e) =/ =T(je)
Once the Nyquist plot is drawn for positive frequencies, the other half can
be drawn in, or just imagined, since the plot is symmetrical around the
horizontal axis. Before we proceed with examples, the concept of stability
margins will be discussed.

(6.23)

6.5 Stability Margins

The Nyquist plot shown in Fig. 6.5 represents a stable feedback amplifier
loop gain. If the point 7(s) = —1 were encircled then an unstable amplifier
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T(s) - plane

phase Tm—]
crossover\

ReT

T(jw) Figure 6.5 Nyquist plot for a hypo-
crossover thetical stable amplifier.

would result. The point T(s) = —1 represents the threshold of stability for
the Nyquist locus. How close the Nyquist locus comes to that point is a
reasonable indication of the margin of stability of the amplifier.

Phase-Crossover Frequency

This is the frequency at which the loop-gain phase goes through —180°. The
reciprocal of 7,,, the magnitude of the return ratio at this point, when
expressed in dB, is the gain margin of the amplifier. The gain margin
actually compares 7, to unity in an effort to establish how close the
amplifier comes to oscillation when the return ratio phase goes through
—180°. Gain margin is not defined for an amplifier whose phase never
attains —180°.

Gain-Crossover Frequency

This is the frequency at which the loop-gain magnitude is unity (or 0 dB).
The phase margin ¢, is the value of phase attained at this point added to
180°. If the phase attained at gain crossover in our hypothetical case of Fig.
6.5 is —120°, then the phase margin is 60°. For most feedback amplifiers it
is possible to relate step response performance to the phase margin (Chap.
7). For this reason the phase margin is a more important measure of the
stability of feedback amplifiers than is the gain margin.

Example 6.6: The single pole feedback amplifier characteristic

. 7(0)
TUe) = T 0/6;

is not necessarily attributable to a single-stage amplifier. We have seen in
the last chapter than even a single-stage amplifier transfer characteristic
can contain two poles and one zero. Of the two poles, one will be
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ImT
W=-00
_l w=00 w=0 ReT
T(jw) Figure 6.6 Nyquist plot for single pole
amplifier.

significant. The zero may or may not be significant depending on the

connection. v
The Nyquist plot is a circle as shown in Fig. 6.6. The gain margin is
not defined, and the phase margin is at least 90°. n

Example 6.7: Determine if the amplifier whose Nyquist plot is shown in
Fig. 6.7 is stable. Assume that the amplifier is open loop stable, namely
T(s) has no poles in the right-half s plane.

The simplest way to do this is to follow rule 3 of the Nyquist plot
summary. The vector V' shown in Fig. 6.7 follows the contour of T( jw)
as w varies from —oo to +oc. This vector swings through a total of
360°, so 1 + T(s) has one zero in the right-half s plane, and this
amplifier is closed loop unstable. If it was not known that the amplifier
is open loop stable, namely that T(s) has no poles in the right-half s
plane, then the Nyquist criterion would have been totally inconclusive.

|

Example 6.8: An amplifier with three poles in the loop gain has the return
ratio given by
_ 10
(1 + jo/w)(1 + jo/20w,)*

T(je)

An attempt to plot the above on polar paper in order to produce a
Nyquist locus is difficult because the return ratio magnitude changes too

W=-00

M
w=0
\Y
e Figure 6.7 A somewhat convoluted

Nyquist plot.
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Figure 6.8 Bode plot for the three-pole amplifier.

much as frequency sweeps from O to oo. The plot has very poor
resolution in the region in the vicinity of T(jw)= —1, and it is
therefore difficult to determine the stability margins accurately. The
problem is circumvented when the data is presented on a Bode plot as
shown in Fig. 6.8. It is very easy to see from this plot that for this
amplifier, gain crossover occurs at 8.4 on the normalized frequency scale
and the phase crossover occurs at 21. The gain margin is 12.9 dB, and
the phase margin is 51°, and both were determined very accurately from
the Bode plot. ]

It is apparent from the above example that the Nyquist criterion can be
carried out on a Bode plot, and this is much easier to read than the polar
plot needed for a Nyquist locus. Most feedback amplifiers usually do not
have the convoluted Nyquist plot which is commonly found in control
systems, so that the Bode plot facilitates the stability analysis of the
amplifier, and gives better resolution in the region in which the stability
margins have to be computed.

6.6 Conclusion

Two methods were presented for assessing if a feedback amplifier is stable.
The Routh—Hurwitz test is very easy to carry out, but beyond determining
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if an amplifier is stable, it does not disclose just how stable the amplifier
really is. This test relies on analytical results, and uncertainties in the model
used to represent the elements of the amplifier, will affect the outcome of the
Routh—-Hurwitz test. On the other hand, the Nyquist stability criterion not
only determines if a feedback amplifier is stable, but the stability margins
which can be read from it disclose the quality of performance, as will
become apparent in the next chapter. The Nyquist test is also more
desirable because it can be applied both to analytical and experimental
data. This is undoubtedly its most desirable feature, because it allows a final
verification of the reliability of the theoretical calculations.
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EXERCISES

6.1. Just because an amplifier is open loop unstable does not necessarily
mean that it is closed loop unstable. T(s) appears in the numerator and
denominator of (6.2).

(a) Prove that a pole of T(s) is not a pole of Gy(s).

. . . 2
(b) What is the expression for m if T(s) = o1

. . T(S) . _ K
(c) What is the expression for m if T(s) = o1

6.2. Apply the Routh—Hurwitz test to the polynomials.
(a) C(s)=s5*+ 2653 + 25152 + 1066s + 1680.
(b) C(s)=s*+ 55>+ 25 + 10.
(c) C(s) =15+ 25%+ 253 + 452 + 115 + 10.
(d) C(s)=3s%+ 5+ 195 + 65> + 8152 + 255 + 25.
6.3. Consider the polynomial
C(s)=aops* + a;5® + a,s? + ass + a,

Assume all coefficients are positive. Find a set of conditions, which the



Stability Analysis of Feedback Amplifiers o 93

100 REM POLES AND ZEROS : AMPLITUDE AND PHASE RESPONSE
110 DIM T(20),X(20),Y(20)

120 REM The data is defined in terms of the form

130 REM HOF) = HO1+jf/21) ... /C1+jf/p1d ... with complex
135 REM conjugate critical points mentioned only once,
137 REM their value given by their upper half s-plane
138 REM location divided by 2*¥PI. The pole at 2*PIx(
140 REM -10+j100) would be stated below as -1,10,100.
145 REM

150 REM Put into read tables the following:

1460 REM

170 REM Total number of zeros and poles.

180 DATA 3

190 REM

200 REM Indicate poles by -1, then give location.

210 DATA -1,.159,0

220 DATA -1,.477,0

240 REM

250 REM Indicate zeros by 1, then give location.

260 DATA 1,.318,0

280 REM

290 REM Specify the constant H.

300 DATA 66.7

310 REM

320 REM Specify the starting frequency and # of decades.
330 DATA .01,4

340 REM

350 READ M1

360 FOR M=1 TO Mi

370 READ T(M) ,X(M),Y(M)

380 NEXT M

390 READ Al

400 A1=20%L0G(A1)>/L0OG(10)

410 READ F1,L

420 L=10%*L

425 REM Divides decades into 10 equal parts. Can be changed.
430 S=10".1

440 PRINT *NO.",® FREQ"," AMP" ," PHASE"

450 FOR K=0 TO L

440 A=Al

470 P=0

480 =F1%#8~K

490 FOR M=1 TO M1

500 IF Y(M)=0 THEN GOTO 540

310 C=F*Y (M) /(XM #X(MI+Y (M) %Y (M))

520 D=F %X (M) / (XM #X (M) +Y (M) ¥Y (M) )

530 A=A+T(MI #10%L0GCC(1+C) %1 +CI+D*D)> % ((1-C)*(1-C)+D*D)>>/LOGC10)
540 P=P+T (M) #* (ATNKD/(14C) ) +ATN(D/(1-C))>)

550 GOTO 580

560 A=A+T(M) *10%LOG(1+(F/X(M>)>*2)/L0G(10)

570 P=P+T(M) ¥ATN(F/X{(M))

580 NEXT M

590 PRINT K,F,A,P*180/3.14159%

600 NEXT K .

610

END
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64.

6.5.

6.6.

6.7.

e Feedback Amplifier Principles
coefficients must meet if all the roots of the polynomial are to lie in the
left half of the complex s plane.

Plot the Nyquist locus for the value A = 1, and from this determine the
range of A for making the amplifier stable.

-1

(@) T(s)= AT
1

(b) T(s)= A1

From the Bode plots of the given return ratios, deternﬁne the stability
margins. ( )
100(s + 2
@) T(s) = (s+1)(s+3)°

880
(s+1)(s+2)(s +20)°

Determine the range of values of the midband gain T(0) for which the
feedback amplifier is stable. To do this obtain a Bode plot with
T) = 1.

(b) T(s) =

7(0)
(1 + 1) +jf/3)

T(jf) =

What is the value of T(0) needed to get a phase margin of 64°?

T(0)(1 +jf/3)
(1 +)A +jf/4QA + jf/5)
The program appearing on the page preceding can be used to

obtain values for the kinds of expressions found in Probs. 6.6 and 6.7.
It should run without modification with most BASIC interpreters.

T(jf) =



Feedback Amplifier
Compensation

IN THE PREVIOUS CHAPTERS we addressed the questions of how to find the
loop gain, the loop-gain frequency response, and how to determine the
stability margins of a feedback amplifier from the frequency response data.
This chapter will address the questions of how to relate the performance of
the feedback amplifier in the time and frequency domain to its phase
margin, and also how to alter the loop-gain characteristic of the amplifier to
obtain a specific closed loop performance characteristic. To achieve our goal
we shall try to relate the performance of feedback amplifiers to the perfor-
mance of a standard second-order system.

7.1 Second-Order System Response

For this analysis we shall study a very simple second-order system possess-
ing only two poles in the complex s plane. Its transfer function takes the
form

2

w
= (71
T+ Qos + 02 ( )

H(s) =

The parameter { is referred to as the damping factor, and w, is the natural
frequency of the purely sinusoidal impulse response, which occurs when ¢ is
ZEero.

95
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Figure 7.1 Second-order system amplitude response.

When s is replaced by jw, we obtain

LN 1
o) =12 (w/w,)* + j2¢(w/w,) (2)

The magnitude of the above is given by
1
1=(w/,)’]" + 453 (0/w,)?

|H(jo)|" = [ (7.3)

A plot of (7.3) for a few values of { appears in Fig. 7.1.

It is observed that for values of { which are 1/ V2 or greater, the
amplitude characteristic has no overshoot. In fact, { =1/ V2 divides the
amplitude characteristics which have overshoot from those that do not. The
characteristic for this value of { is referred to as the maximally flat response
and it is in fact the Butterworth response of second order. The positions of
the peaks in the amplitude response can be determined by setting to zero the
derivative of the denominator of (7.3). The overshoot peak occurs at

(©/@, )peax = Y1 = 2§? (7.4)

When this is substituted into (7.3), the expression for the value of the
amplitude response at the overshoot is found to have the form

1

H(j = —
| (]w)|pea.k 2{\/1‘_—§3

(7.5)
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Figure 7.2 Amplitude response overshoot versus {.

A plot of the amplitude characteristic overshoot as a function of { is
shown in Fig. 7.2.

The transfer function (7.1) has complex poles for { < 1, and real poles
for { > 1. It will therefore have two different types of step response
corresponding to those two cases. We are primarily interested in the
underdamped case corresponding to ¢{ < 1, and the critically damped case
for { = 1. The response to a unit step of a filter with the transfer function
(7.1) for the underdamped case is

v, (1) =1— e {ent \/iTi._—szsin\ll — {20, + cosyl — Pt

(7.6)

The same expression can be used to obtain results for the critically damped
case, by assigning a value to { which is arbitrarily close to unity. Some
typical step responses are shown in Fig. 7.3.

We see from Fig. 7.3 that the amount of step response overshoot is
related to the value of the damping factor {. To find the position of the first
peak we differentiate (7.6) with respect to w,? and set to zero, to find that
the value where the first peak occurs is

(0,) -7
n* Jpeak — \/1__—53

When this result is substituted back into (7.6), the first peak is found to have

(1.7)
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a value of
- — 2y
(Uo)peak =1+ e C/VI-8) (78)
The relative overshoot in the step response is therefore

Step response overshoot = ¢~ (/Y17 (7.9)

A curve for (7.9) is shown in Fig. 74.

Now that we are familiar with the response of second-order systems, we
can address the question of frequency and time behavior of second-order
feedback systems.

1.2 The Response of Second-Order Feedback Amplifiers

Assume we are dealing with an amplifier whose loop gain possesses only two
poles, as expressed in

TLopp
T(s) = 08172 > 7.10
TN TV Al (710
We define the pole separation factor
}’% = a = pole separation factor (711)
1
Rewriting (7.10) using this definition, we get
Tyap?
T(s) = > a>1 7.12
(s) (s +p)(s + ap,) ( )
The cases of interest are those in which
T,>1 (7.13)

It will be seen later that amplifiers for which T, is small do not usually have
problems with stability, so that the above restriction does not diminish the
scope of the stability analysis which follows.

What should be the relative spacing « of the two poles to obtain a
desired frequency response or a desired transient response from the closed
loop amplifier? To answer this question we shall examine the closed loop
feedback amplifier response by comparing it to the standard second-order
system response examined in Sec. 7.1. On the assumption that asymptotic
gain is frequency independent and that the direct transmission term G, is so
small that it will not have an effect on the closed loop response, we
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substitute (7.12) into (6.3), to obtain

T(S) GooTOap%
G = G =
18) = G T ) T T @) ps + (1L F Ty)ap?
(7.14)
We write this in the standard second-order form, similar to (7.1)
G, Tyap?
G(s) = —=02P1 (7.15)

524 2w,s + w2

When the denominators of (7.14) and (7.15) are compared, it is found
that :

wi=(1+ T,)ap? (7.16)
and
. (1+a) '
§2 = m (7.17)

If the midband loop gain Tj, is fixed, then the only alternative is to move
the poles p; and p, in order to adjust the pole spacing ratio a, for the
purpose of obtaining a response corresponding to some desired performance
parameter {. This value of « is a solution of (7.17), which- leads to the
quadratic equation

2 —-[421+T) -2la+1=0 (7.18)

Our interest will be in cases in which { is 0.5 or greater, so that we can see
that an additional consequence of (7.13) is

40°T, > 1 (7.19)

With the above inequality applied to (7.18), the resultant approximate
solution for «a is

a = 4477, . (7.20)

The above approximation has an error of 10% for T, = 10 and { = 0.5.
The approximation improves very rapidly for larger values of { and 7;. In
order to determine the phase margin of a feedback amplifier designed to
produce the performance corresponding to a given {, we need to calculate
the loop-gain crossover frequency w,, which is the frequency at which the
magnitude of the return ratio is unity. Substituting (7.20) into (7.12), setting
§ = jw, and equating the magnitude of T(jw) to unity, results in the
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equation
(0/p)* + (14 168°T7 ) (w/py)* = (T - 1)164*T2 =0 (7.21)

If (7.13) and (7.19) are satisfied, then the last equation reduces to

(0/p)" + 16¢* T3 (w/p,)” — 16L4T¢ = 0 (7.22)
The above is solved by
(w,/p,)" = 8§4T02[—1 +4/1+ Z}f‘_ } (7.23)

The phase margin is found by substituting s = jw, into (7.12) and
evaluating the phase angle. The phase margin can then be calculated using

¢,, = 180° — tan"'(w,/p,) — tan Y w, /ap,) (7.24)

If (7.19) is satisfied, then from (7.23) we see that

(0/py) > 1 (7.25)
and (7.24) reduces to the slightly simpler form
¢, = 90° — tan" Y w, /ap,) (7.26)

It would be useful to know where the 3-dB frequency w, of the closed
loop amplifier is located. We have to find the frequency at which the square
of the magnitude of the denominator of (7.15) is equal to 2 times its value at
w = 0, when s is replaced by jw. The equation that has to be solved is

[1 = (/e + 483 (0/w,)* = 2 (7.27)
This leads to the quadratic equation

(0/w,)" = 2(1 = 282N (w/w,) > =1 =0 (7.28)

which is solved by

(@3/0,)" = (1=282) + (1 = 2¢%)" + 1 (7.29)

To replace w, by p, in the above expression, we substitute (7.20) into
(7.16), and simplify on the assumption that 7; is much greater than unity, to
obtain

(@,/p1)" = 42T (7.30)
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Table 7.1 Summary of two-pole feedback amplifier performance data

§ a=py/p w./P1 w3/, D
0.5 Ty 0.797;, 1.62 51.8°
0.6 1.44T, 0.867;, 1.60 59.2°
0.707* 2T, 0.917; 1.55 65.5°
0.8 2.56T, 0.94T, 1.48 69.9°
0.9 3.247, 0.96T;, 1.40 73.5°
1.0 4T, 0.97T; 1.32 76.3°
1.1 4.84T, 0.987;, 1.26 78.6°
damping ratio loop-gain closed loop phase
factor of poles crossover 3-dB point margin

*Second-order Butterworth response.

When this is substituted into (7.29), we obtain the final result

(oy/m) =421 20) + [T 237 1] (71

Using (7.20), (7.23), (7.26), and (7.31), we are in a position to compile
the data in Table 7.1. It is more useful to relate w; to w,, so that we can
have some idea of where the closed loop amplifier 3-dB point occurs in
relation to the loop-gain crossover frequency. Accordingly, we divide the
result of (7.31) by the result of (7.23) to obtain the results for Table 7.1.

7.3 Compensation by Narrowbanding

We shall restrict our discussion to compensation using capacitors. This is
the more accepted method, since capacitors are smaller, lighter, less expen-
sive, and more readily available than inductors, and they also do not
produce any undesirable magnetic fields. For ease of reference in all future
discussions, it will be assumed that active device Q, is responsible for p;,
and active device Q, is responsible for p,, even though these devices might
be labelled otherwise in the schematic diagram.

The simplest method of compensation is to lower the pole p,, by
shunting the base to emitter (or gate to source) terminals of Q, with a
capacitor. If the capacitance C, of this stage has been previously calculated,
then the increase in capacitance C, required to lower the pole p, can be
easily calculated. It is fortunate that this method involves the stage with the
lower pole frequency p,, since we know from Chap. 5 that this is the only
pole which can be calculated fairly accurately using the Miller effect. The
capacitance C; cannot be accurately determined for the second high-
frequency pole p, by use of the Miller approximation, since this method
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assumes resistive loading for each stage, a condition that may not exist once
the circuit starts exhibiting frequency-dependent behavior.

Example 7.1: For a two-pole feedback amplifier, the poles are p; =100
kHz, p, = 400 kHz, and the capacitance C/ for Q,, the stage responsi-
ble for p,, is 300 pF. The loop gain T, is 50. Use narrowbanding to
obtain a second-order Butterworth response for the closed loop amplifier.

From Table 7.1 we see that the second-order characteristic of interest
is that corresponding to { = 0.707, which requires that the pole sep-
aration a must equal 27, so that the desired value of « is 100 for this
case. The second pole cannot be increased above 400 kHz in value with
capacitive compensation, so that the first pole must be moved to pi=4
kHz. The value of C/, which is 300 pF, has to be increased to a value of
7500 pF, so that the B-E terminals of Q, will have to be shunted by a
7200-pF capacitor. This analysis ignores r,, the ohmic resistance of the
transistor base region, which is contained in the hybrid-pi transistor
model, but it will be found that this assumption has a negligible effect on
the outcome of the compensation. Final value adjustments should be
performed in the laboratory anyway.

From Table 7.1 we can calculate the loop-gain crossover for the
compensated amplifier

f.=0.91(50)4 kHz = 182 kHz
and the 3-dB frequency of the closed loop feedback amplifier
f3 = 1.55(182 kHz) = 282 kHz

Suppose it is known that the voltage gain of Q, in going from Vo to
Ve is —30, then we could benefit from the Miller effect, and place a
capacitor of 240 pF across the terminals B-C of Q,. This is 30 times
smaller than the 7200-pF compensating capacitor, which was determined
above. Practical considerations of size, cost, and availability determine

which capacitor should be used. u

7.4 Narrowbanding when Q , Is Inaccessible

It may happen that active device Q,, at which the loop must be com-
pensated, is inaccessible, as it might be in an operational amplifier in which
only a few terminals are made available to the user. If a point is accessible
in the amplifier where the resistance to ground is R,, which remains
frequency independent until the operating frequency exceeds p, by one or
preferably two octaves, then compensation can be performed by shunting
these terminals with the series RC combination shown in Fig. 7.54.
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(a) (b)
Figure 7.5 (a) 'Compensating network. (b) Its Bode asymptotes.

It can be seen from Fig. 7.5b, that this resultant impedance has a pole
and a zero. If the zero is forced to occur at p, and the pole at p/, then the
zero will cancel the loop-gain pole at p,, and the result will be that it will be
replaced by the pole at p/.

The network zero is located at

= RC. (7.32)
and the pole at
L (7.33)

Pl N (RO + RL’)CC

The ratio of the two critical frequencies must equal vy, the pole relocation
factor.

% = y = pole relocation factor (7.34)
1
Taking the ratio of (7.32) and (7.33), we find that R, must satisfy
R,
R, = ) (7.35)

The value of C, can now be determined from (7.32), and assuming that p, is
specified in radians/second, then C, is given by
1

C, PR, (7.36)
Example 7.2: As in Example 7.1, p; = 100 kHz, and has to be relocated
to 4 kHz, so that the pole relocation factor y = 25. The active stage Q,
is inaccessible, but a point exists in the amplifier where the impedance to
ground R, is 2.4 k{2, which remains frequency independent until the

operating frequency is 400 kHz, which is two octaves above 100 kHz.
To compensate this amplifier, we can install a series RC branch
across R . The value of the compensating resistor is found from (7.35)

R, 2400



Feedback Amplifier Compensation o 105

The compensating capacitor C, is calculated using (7.36), but it has to be
kept in mind that p, is specified in Hertz and not in radians/second,
hence

1 1
C, = = = 0.016 uF
©~ PR, ~ 27(10%)(100) #
As was discussed at the end of Example 7.1, the compensating
network can alternately be placed across the B—C terminals of Q,, with

the resistor needing a value of 3 k{2, and the capacitor needing a value of
530 pF. |

7.5 Lag-Lead Compensation

Narrowbanding is the least sophisticated of compensation methods, and its
advantage lies in the fact that it is very easy to apply. With a little more
trouble, a feedback amplifier can be compensated in a manner that does not
reduce the bandwidth as much as narrowbanding does.

Assume as before that we are dealing with a two-pole feedback amplifier,
and we wish to remove some area from the Bode plot as shown in Fig. 7.6a.
This is an effort to relocate both poles to locations p{ and pj to obtain the
pole separation found in Table 7.1 for some desired performance specifica-
tion. The cut in the Bode characteristic can be obtained by modifying the
high-frequency response of Q,, the stage responsible for the lower frequency
pole p,, to eliminate the existing pole at p,, and in its place insert a pole at
P}, a zero at p,, and a pole at p5. This modification is shown in Fig. 7.65.

T(w)

6dB/oct

12dB/oct

Z(w)

Figure 7.6 (a) Overall Bode characteristic.
(b) Bode characteristic of stage Q,.
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Equal distances on the horizontal axis of a Bode plot represent equal
ratios of frequencies. In connection with Fig. 7.6b, we define the pole
relocation factor

o~

=P v = pole relocation factor (7.37)

2

"u[}

-

The pole separation factor defined in (7.11) is the desired ratio of the poles
p1 and p; which has to be implemented in order to achieve a specific design
(performance) objective.
-5—;"- = a = desired pole separation factor (7.38)
1
Using the last two definitions we can relate all critical frequencies to p,,
with the result

py=ap,/y (7.39a)
Py = aPl/Yz (7-39b)
Pi=p/Y (7.39¢)

From (7.39b) we obtain

Y = Jap,/p, (7.40)

and this can be used to find y for a given set of poles p,, p,, and a desired
pole separation factor a.

The stage Q, had at its input terminals B—E a parallel combination of a
resistor r; and C/, which for notational convenience will be referred to as
R, and C, respectively. To compensate the feedback amplifier, this will be
shunted by the series network consisting of R, and C, as shown in Fig. 7.7.

To see how compensation is achieved, we observe that prior to the
introduction of the compensating network, the input impedance of this
stage was

R, p;

Z(S) - s+ p,

(7.41)

A
VWA~
po)

3

P4 B
—(i 2R, ==C,

1|

i
(2]
3

Figure 7.7 Compensation network to attain re-
o—0 sponse shown in Fig. 7.6.
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where

1

P = TR, (7.42)

We would like to modify the impedance function of (7.41), so that it will
have the form '

s+ p,
I o0 (s + p5)

Z(s)=R (7.43)
With the compensating network in place, the loop-gain pole at p, will be

cancelled, and new poles will be introduced at p} and p5. Using (7.39), the
last equation can be rewritten in the form

s+ap/y?
pi/Y)(s + ap/v)

Z(s) = Ripi 75y (7.44)

To determine what values to assign to the components, we take the
reciprocal of Z(s) and divide by s in order to perform a partial fraction
expansion

Y(5)= 1 (S+P1/Y)(S+aP1/Y)=A+'£+__D—
s R, p, s(s + ap,/v?) S s+ap,/y?
(7.45)
The coefficients are readily evaluated as follows:
_Y(s) I S
A= R C, (7.46)
_ Y _1
B=s s |, R, (7.47)
Y(s) (e —v)(v—1)
D= (s+ap/y? =t 7.48
( P/ ) S ls=—ap Y’R, ( )
With the above results we rewrite (7.45) in the form
Y(s) = Cps + o + (““72)”‘ D S (7.49)
R, YR, s+apy/y

On the right-hand side of (7.49), the first term is due to the capacitor C; and
the second term is due to the resistor R,, which were part of the original
impedance in (7.41), so they need not be added to the compensating
network. The last term on the right is the compensating admittance, so we
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write the reciprocal of it as the compensating impedance

2 2 2

YRy YRy ap/Y 1
Z.(s) = + =R, +
RS A (e vy y Rl prpmpe o B -t 5T

(7.50)

From the above equation it follows that
2
YR,
R.=7——~——
“(a=-y)(y-1)

and by substituting (7.51) and (7.39b) into (7.50), we see that for p, In
radians,

(7.51)

c 1

=k (7.52)

The above equations are used for calculating the values of the com-
pensating elements needed in the series branch shown in Fig. 7.7.

Example 7.3:  As in Example 7.1, p, = 100 kHz, p, = 400 kHz, and the
desired pole separation factor a is 100. Since C/ = 300 pF, then we can
readily calculate that r; = 5.3 kQ. In terms of the notation of this
section

Ry =r=53kQ
and
C, = C; = 300 pF

The pole relocation factor is found using (7.40)

Y = yap/p, =5

We can now complete the design of the compensating network using
(7.51)

y2R, 25(5.3kQ)

R G-D " w-s)i5 -1 ~#°

and we use (7.52) for C,, but we keep in mind that p, is specified in
Hertz, hence

c =1 1 = 0.00114 uF

<7 PR, 2a(4 x 10°)349

A consequence of this compensation technique is that pole p, is
replaced by

pi=p/y=20kHz
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From Table 7.1 we find that loop-gain crossover occurs at
f. = 0.91(50)20 kHz = 910 kHz
and the closed loop 3-dB bandwidth is
f; = 1.55(910 kHz) = 1410 kHz = 5(282 kHz)

The closed loop bandwidth of the amplifier in Example 7.1 was 282 kHz.
We see that using this technique took a little more trouble, but we
gained approximately two and one third octaves of closed loop band-
width. The bandwidth has been improved by a factor y. ]

7.6 Compensation Using the Compensated Attenuator

The methods of compensation discussed so far relied on the movement of
the loop-gain poles. Pole p, is always moved down in frequency, although
not as much in lag-lead compensation as in the case of narrowbanding. As a
consequence, the closed loop bandwidth is reduced, since w, is directly
related to the value of the lowest pole p,. The method to be presented in
this section relies on changing the position of p,, so that there is no
reduction in closed loop bandwidth. The price, however, is a reduction in
the midband loop-gain T;,.

If it is known at the outset that the amplifier will need to be com-
pensated, then an attempt is made to obtain a midband loop-gain 7;, which
is substantially greater than the one needed to attain the desired perfor-
mance specification. An interstage circuit is then selected, as in Fig. 7.8a,
and a resistive attenuator is introduced into the forward path to reduce the
loop gain to the value needed to meet design objectives, as shown in Fig.
7.8b. The resistor R, and the capacitor C, represent the impedance between
the transistor terminals B—E (or FET terminals G-S) of the device respon-
sible for giving rise to p,. The resistor R is the collector (drain) load of the
preceding stage. The Miller effect has to be considered when calculating C,.
The resistor r, (in the bipolar-transistor model) is ignored in this analysis.

Re
__..Wi
“ g \¢
| J_ — Wl .
gV RE Com= RS Y0 g V(D RE Comk Rz o2
111 1 1 I

(a) (b)- )
Figure 7.8 (a) Interstage before compensation. (b) Interstage after compensation.
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The ratio of the voltage V; to ¥, at low frequencies represents the
attenuation 7 introduced into the circuit and is given by

Ry+R,+R,
=—t 7.53
K R, + R, (7.53)
From this expression we find that
R.=(Ry+ Ry)(n—1) (7.54)

The above can be used to calculate the value of R, for a desired loop-gain
attenuation.

The time constant of the interstage before the loop gain is compensated
is obtained from Fig. 7.8a

RyR,
Ty, = mcz (755)
and the break frequency, which this stage produces, in radians/second, is
the reciprocal of the above

p,=1/7, (7.56)

If the capacitor C, is not selected properly, then the interstage of Fig.
7.8b will produce two poles and one zero, which will make analysis very
cumbersome. This problem can be avoided by selecting the capacitor to
satisfy

R
C = R—j G, (7.57)

This results in the bridge consisting of elements R, C,, R,, and C, being
balanced, and the structure is referred to as a compensated attenuator. For
this condition the operation of the circuit will not be affected by the removal
of branch g—g’, and we can finish the analysis by consulting Fig. 7.9.

The time constant of this circuit is

’ RO(Rc + RZ) CZCC
TR, +R,+R, G, +C,

(7.58)

CC‘L Rc::
amV Ro I 1 +
C R,Z \_/02 )
T 3 Figue79 Equivalent circuit of Fig. 7.9,
= = when branch g—g’ is removed.
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When (7.57) and (7.54) are substituted into the above equation, and then a
comparison is made with (7.55), it is found that

T =T,/ (7.59)

and from the reciprocal of the above it is concluded that the new break
frequency for this interstage is

Py =np, (7.60)

Example 7.4: Tt is desired to get a second-order Butterworth response for a
feedback amplifier. At the outset, p; =1 Mrad/s, p, = 15 Mrad/s,
and T, = 30. T, exceeds specifications by at least a factor of 2. Com-
pensate using the compensated attenuator method.

An examination of the amplifier reveals that the interstage, which
gives rise to p,, is the one shown in Fig. 7.10a. If the loop gain is
reduced by a factor 1 = 2, to T, = 15, then the pole p, can be relocated
to p5 = 30 Mrad/s, which is 7 times its previous value. Now the pole
separation factor a, which is the ratio of p} to p,, will be 30. We know
from Table 7.1 that this value of « is just right to get the desired
Butterworth response.

The value of the compensating resistor R, is found using (7.54)

R.,=(Ry+Ry)(n—-1)=(2+1)2~-1)=3kQ
and the value of the compensating capacitor is found using (7.57)
C.=(R,/R.)C, = (1/3)100 pF = 33.3 pF

The compensated interstage is shown in Fig. 7.105. At this point it is a
good idea to recalculate the loop-gain frequency response. The com-
pensation caused a change in loading of the preceding stage, and this
could very well have caused a shift in its break frequency. u

Cc
(33.3pF)

Rz ng

(1K) _T__

aV(§) R,z Cz Co=x
(2k)]100pF) (IOOPFE[ (1k)

=

@ )
Figure 7.10 (a) Interstage before compensation. () Interstage after compensation.
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7.7 Phantom Zero Compensation

The most desirable method of compensation is one which costs the designer
nothing in bandwidth and which also does not affect the magnitude of the
low-frequency loop gain 7;,. The phantom zero compensation is a way of
introducing a zero into the feedback loop, without having to first reduce the
loop gain to make provision for this zero beforehand. It also does not
disturb the location of the loop-gain pole p;, so that it does not in any way
narrowband the amplifier. If an amplifier has a large asymptotic gain G,
then we know from the formulas for asymptotic gain found in Chap. 3, that
the resistors which are responsible for the value of asymptotic gain, also
introduce substantial attenuation into the expression for return ratio.
Bypassing this attenuation at high frequencies should introduce a zero into
the expression for loop gain, and this should be helpful in correcting
phase-margin deficiencies.

The amplifier shown in Fig. 7.11 has, in the absence of C;, a return ratio
T,(s) whose frequency behavior depends on A(s).

R;
Ta(s) = mA(S) (761)
where
R = R|IR; (7.62)
The simplifying assumption will be made that
Ry < R+ R] (7.63)
so that the return ratio can be written in the simpler form
R;
Ta(S) = mA(S) (764)

In the absence of C;, the low-frequency asymptotic gain for the amplifier
in Fig. 7.11 is given by

G (0)= — %L (7.65)

R
R, "R
W——
+ + -
v, RS Als)u v,
) - * §  Figure 711 A model of a feedback

amplifier.
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If C; is shunting R/, then we replace R, with

R,
Z/(s) mﬁ (7.66)
in (7.64), to obtain
R (R, Cs+1) R
T(s) = Z,+ R,A(s) [R KRG, ] R+ R;A(S) (7.67)
- T /5T
R, + R;

After consulting (7.64) we see that the above can be written in the form

s/zp+ 1
T(s) = 3717/—+TT"(S) (7.68)
where
z;=1/R,C (7.69)
and
R;+ R R/ R | 1
n= %, - [+ 7 7o
Substitution into the above from (7.65) and (7.69) yields
Py = [1 +16.,(0) |%_]zf (7.70)

From (7.62) we know that the ratio R /R’ > 1, so we conclude that
P> [14]|G,(0)]] 2 (7.71)

Even if the magnitude of the low-frequency asymptotic gain G_(0) is small,
then this method of compensation is still useful. In the case of a voltage
follower, in which |G_(0)| = 1, even if it is assumed very conservatively that
the ratio of R, to R} is unity, then the pole p, will be 2z, and this
distribution of critical points is capable of giving a maximum phase correc-
tion of 19.5°. In most cases, a larger phase correction can be obtained.

The analysis which follows will be made much more tractable if it is
assumed that the pole p; is so far removed from all other critical points of
the return ratio 7(s), that it can be disregarded, so that in place of (7.68),
the expression that will be used for T(s) is

T(s) = (s/z;,+ 1)T,(s) (7.72)
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When the compensating capacitor C; is present, then in place of (7.65),
we use for the asymptotic gain

R 1
I
6ols) = ~ R, CRs 71

which after substitution of (7.65) and (7.69), becomes

1

G.o(s) = Gco(O)g/zf—+1

(1.73)

The closed loop response is obtained by substituting (7.72) and (7.73)
into the asymptotic gain formula (7.14), with the result

G (0)T,(s)
Gy(s) = 1 +(s/zf+ 1)7T,(s) (7.74)

We see that the return ratio zero, which would normally be a zero of G (),
has been cancelled by the pole of G_(s), which is located at the same
frequency. The vanishing of the zero is the reason that this is called the
“phantom zero” method of compensation.

We again assume that we are dealing with a two pole feedback amplifier,
so we substitute (7.10) into (7.74), with the result

G,(s) = G (0)Top:1 P
4 s? +(P1 +p,t TonPz/zf)s +(1+ 1) pip,

(7.75)

We could obtain any desired second-order response with the above equa-
tion, but to keep the analysis simple, an attempt will be made at obtaining a
second-order Butterworth response, one corresponding to a damping factor
§ =0.707. For this response we require the terms in the denominator to
satisfy

‘/2_“’;, =p1tp,+ T0P1P2/Zf (7.76)
and
"-’f =1+ Ty) p1ps (7.77)

The last equation allows us to calculate w,, which for the case of the
second-order Butterworth response is the 3-dB frequency of the closed loop
amplifier. Once w, is determined, the location of the zero needed for proper
compensation can be found by solving (7.76) for z;

;= Typyps
g ‘/i"-’n _(Pl +P2)

(7.78)
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The above has a solution as long as the denominator is positive. This is the
case if

(p1+ps)* <202
which on substitution of (7.77), can be reduced to

LAY (7.79)
Py D »
The above results in a quadratic equation in p,/p,. Solving of the
quadratic equation can be avoided if it is assumed that

P

<1 7.80
7 (7.80)

in which case it follows directly from (7.79), that

Ly (7.81)

P

As long as (7.81) is satisfied then (7.78) has solutions. This is not a
limitation at all. If (7.81) is not satisfied, then the feedback amplifier has
sufficient pole separation to have a response which corresponds to ¢ > 0.707,
so that its performance is adequate without the need for further compensa-
tion. If compensation is needed then z, should be calculated from (7.78). If
a response which is more conservative than second-order Butterworth is
desired, then the zero should be moved down in frequency. Moving the zero
up in frequency results in a less conservative performance characteristic,
with a step response which has a greater overshoot than the 4.3% of a
second-order Butterworth response. The step response of the closed loop
amplifier should be checked by computer calculation, or in the laboratory,
to see if the desired performance characteristic has been obtained.

Example 7.5: As in Examples 7.1-7.3, it is assumed that an amplifier has
poles at p, = 100 kHz and p, = 400 kHz. The low-frequency loop gain
is 50. The low-frequency asymptotic gain is G,(0) = 10 and R /R’ = 1.
The feedback resistor R, has a value of 10 kQ. Can phantom zero
compensation be used to get a second-order Butterworth response?
Since all frequencies are stated in Hertz, we get from (7.77)

f, = (1 + 50)(100)(400) = 1428 kHz
From (7.78) we find the location of the phantom zero

50(100)(400)

- = 1316 kH
%7 V2 (1428) — (100 + 400) §
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Figure 7.12 Configuration for simulation.

From (7.69) it is found that to obtain this zero, the feedback resistor of
10 k€ has to be shunted by a capacitor of 12.1 pF. The pole which is
associated with this method of compensation is found using (7.70)

pr=[1+10(1)]1316 = 14.474 MHz

and although it is a decade above the zero, it could have a significant
influence on the phase margin, particularly if the loop-gain crossover
frequency occurs above z,. To examine this influence, we evaluate

50(1 + jf/1316)
(T +jf/100)(1 + jf/400)(1 + jf,/14474)

T(jf) =

at a number of frequencies, to find that loop-gain crossover occurs at
1815 kHz and the phase margin is 62.5°. The pole at p; reduces the
phase margin by 7.16°. The phase margin is a trifle on the low side, so
that we must check to see if we have an amplifier possessing a second-
order Butterworth step response with an overshoot of 4.3%. To evaluate
the transient response using the circuit analysis program SPICE on a
VAX 11 /780 computer, the amplifier was simulated using the configura-
tion shown in Fig. 7.12.

This configuration meets all the specifications stated at the beginning
of this example. The program needed to obtain the step response using
the SPICE circuit analysis program is shown in Fig. 7.13.

The first computer run was made for the calculated capacitance C; of
12.1 pF. Only a small portion of the output is presented in Fig. 7.13.
Since the step response overshoot was 5.7%, a few additional trials were
made with different values of C;. A value of C; of 12.5 pF (see Fig.
7.13b) produced the desired step response with an overshoot of 4.3%.
The results are given in tabular form because the two columns of data
are so close in value, that the difference between the two would have
been almost imperceptible in a graph.



Step Response - 1st try

VIN 1 0 DC -0.102

OOUOD RPWDN PN
NOOGMObWNSNN

E3
JWIDTH

1K

10K

12.1P
205
15.7K
100PF
401
3.98K
100PF
& 01
IN=72

E
50

ouT=80

.OPTIONS LIST NOPAGE
LTF U7y UVIN

.TRAN 2E-8 40E-7 UIC
PRINT TRAN U(?)

.END
TIME

4.000E-08
8.000E-08
1.000E-07
1.200E-07
1.400E-07
1.400E-07
1.800E-07
2.000E-07
2.200E-07
2.400E-07
2.600E-07
2.800E-07
3.000E-07
3.200E~-07
3.400E-07
3.400E-07
3.800E-07
4.000E-07
4.200E-07
4.400E-07
4.4600E-07
4.800E-07
5.000E-07
5.200E-07
5.400E-07
S5.4600E-07
5.800E-07
4.000E-07
6.200E-07

(a

Figure 7.13 SPICE data and output for two values of G.

U7

8.906E-02
1.544E~-01
2.348E-01
3.150E-01
3.980E-01
4.812E-01
5.644E-01
6.399E-01
7.038E-01
7.4673E-01
8.3210E-01
8.833E-01
?.181E-01
¢.530E-01
?.878E-01
1.014E+00
1.0246E+00
1.038E+00
1.050E+00
1.0S7E+00
1.057E+00
1.054E+00
1.056E+00
1.053E+00
1.048E+00
1.043E+00
1.038E+00
1.033E+00
1.02%9E+00
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Step Response - 2nd try

{——peak
peak-->*

VIN 1 0 DC -0.102

RS 1 2 1K

RF 2 7 10K

CF 2 7 12.5PF
El 0 3 2 0 550
R1 3 4 15.9K
Ci 4 0 100PF
E2 05401
R2 3 6 3.98K
C2 &6 0 100PF
E3 07 601

JWIDTH IN=72 OUT=80
.OPTIONS LIST NOPAGE
LTF V(7)) VIN

.TRAN 2E 20E-7 UIC
PRINT TRAN U(7)

.END
TIME

6.000E-08
8.000E-08
1.000E-07
1.200E-07
1.400E-07
1.400E-07
1.800E-07
2.000E-07
2.200E-07
2.400E-07
2.600E-07
2.800E-07
3.000E-07
2.200E-07
3.400E-07
3.4600E-07
3.800E-07
4.000E-07
4.200E-07
4.400E-07
4.4600E-07
4.800E-07
5.000E-07
5.200E-07
5.400E-07
5.400E-07
5.800E-07
4.000E-07
46.200E-07

(b}

A

8.728E-02
1.550E-01
2.302E-01
3.132E-01
3.984E-01
4.813E-01
S5.637E-01
4.375E-01
7.090E-01
7.492E-01
8.264E-01
8.719E-01
?.143E-01
?.462E-01
?.752E-01
?.958E-01
1.014E+00
1.025E+00
1.034E+00
1.03%E+00
1.043E+00
1.043E+00
1.043E+00
1.041E+00
1.038E+00
1.035E+00
1.031E+00
1.027E+00
1.024E+00
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The capacitance C; can be increased further and the step response
overshoot can be completely eliminated, but it is clear from the tabular
data in Fig. 7.13, that a decrease in step response overshoot is accompa-
nied by an increase in step response rise time. This indicates that there is
also an attendant decrease in closed loop bandwidth. If this remained a
purely second-order system after compensation, then the frequency f, of
1428 kHz calculated above would be the closed loop 3-dB frequency.
Since this is no longer a purely second-order system, it becomes neces-
sary to evaluate the closed loop frequency response, by again applying
SPICE to the configuration shown in Fig. 7.12. It was found that the
bandwidth is 1.58 MHz for C;=12.1 pF and 1.5 MHz for Cf = 12.5 pF.
Increasing C; clearly reduces the amplifier bandwidth. ) h

Phantom zero compensation is a very valuable method. The closed
loop bandwidth of 1.5 MHz obtained here is greater than the 1.41 MHz
for lag-lead compensation in Example 7.3. Since p; has not been
changed by the process of compensation, the feedback bandwidth is a
full 100 kHz in comparison to 20 kHz found in Example 7.3 and 4 kHz
found in Example 7.1. : u

We see that phantom zero compensation should be the first choice,
followed by lag-lead compensation, and narrowbanding should be used as a
last resort. Naturally, if it is not necessary to squeeze the last ounce of
performance out of the feedback amplifier, then narrowbanding is the
easiest method to apply, and is also very simple to try in the laboratory. The
stage thought to be responsible for pole p; gets a small capacitor shunted
across its input terminals. If the amplifier performance degenerates, then -
this is not the stage responsible for p,. If it improves, then the value of the
capacitance is adjusted to give the desired performance.

It is possible to apply phantom zero compensation to any amplifier
which has attenuation in its feedback path. If the impedances Z, and Z,
are zero for the feedback amplifier of Fig. 3.4, then phantom zero com-
pensation can still be obtained by putting a small inductor in series with the
resistor, which would be found in place of Z,. This is similar for the
feedback amplifier of Fig. 3.8.

1.8 Compensation of Higher-Order Amplifiers

If feedback amplifiers which have more critical points than the two poles
treated thus far are encountered, then a computer becomes a very useful
tool for finding the best method of compensation. The analysis begins by
finding the loop-gain frequency response by computer calculation or by
experimental method. The compensation technique is independent of
whether the amplifier is stable or unstable.
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The loop-gain crossover frequency f. is found first and the loop-gain
phase ¢,, which is attained at that frequency, is then calculated. The relative
spacing of p, with respect to z, is found from (7.70). The phantom zero
method of compensation augments the loop gain with the transfer function

H(Jf)=ﬁ7f7;f P>z (7.82)

which attains its maximum positive phase at the frequency

The value of this phase is

z D
Prnax = tan‘lll L/ tan"',/ o 2tan“1v Pr_ gpe (7.84)
Zy by Zy

This is the maximum phase correction that could be obtained if H(f)
did not also affect the magnitude characteristic of the loop gain. It is
therefore best to assume that ¢, is 10° smaller than calculated. If

¢ + (Ppax — 10°) = —115° (7.85)

then a 65°-phase margin can usually be achieved using only phantom zero
compensation. If (7.85) is not satisfied, then lag-lead compensation should
be used first to bring ¢, to a value which satisfies (7.85).

For a first try at phantom zero compensation, all but the two lowest-order
poles of the loop gain T'(f) should be ignored. The value of z, should be
calculated using (7.77) and (7.78) and py should be obtained from (7.70).
These should be included in the expression for 7(f) when calculating the
final value of the phase margin. The value of z, (and therefore also Pr)
should be adjusted by trial and error until maximum phase compensation is
attained. If this proves to be inadequate, then more lag-lead compensation is
applied, and subsequently the phantom zero compensation is recalculated.
Finally, the step response of the closed loop amplifier is checked to see if it
meets specifications.

Example 7.6: Assume that we have an amplifier which has loop-gain poles
at p, = 100 kHz, p, = 200 kHz, and p; = 400 kHz and no loop-gain
zeros. The low-frequency value of the return ratio is 500, and the
low-frequency asymptotic gain is 10. The feedback resistor R ; has a
value of 10 k& and R,/R} = 1. Compensate the amplifier so that its
step response has an overshoot of 4.3% or less.
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As a first step, we evaluate the phase at the loop-gain crossover
frequency by examining

. 500
T(Jjf) = (1 + jf/100)(1 + jf/200)(1 + jf,/400)

It is found that the loop-gain crossover occurs at 1.565 MHz, and the
loop-gain phase attained at that frequency is —244.72°. This amplifier is
unstable so that it definitely needs compensation.

To find out how much phase correction can be obtained by using
phantom zero compensation, we substitute into (7.70) to find that

pr=11z,
and the maximum phase correction is found from (7.84)
Orax = 56.4°

Using (7.85) we find that we need lag-lead compensation to bring the
phase at crossover to a value of approximately —160° before phantom
zero compensation can be considered. After a small amount of trial and
error work, it is found that if the pole p, is moved to p} = 3.33 kHz and
pole p, is moved to p5 = 6 MHz (which in lag-lead compensation terms
means that the pole relocation factor y = 30), then an evaluation of

, 500
TUN = A5 5773330 + /30011 + J7,/6000)

shows that at the crossover frequency of 736.6 kHz, the loop-gain phase
is —159°.

The two lowest poles of 3.33 kHz and 400 kHz and the return ratio of
500 are used to find that for phantom zero compensation we need
z;= 542 kHz and p, = 11(542) kHz. Those (initial) values are used to
perform some additional numerical exploration to find locations of z ’
and p, that produce the desired phase margin. After a few calculations it
is found that with z, = 640 kHz and p, = 11(640) kHz, the expression

N 500(1 + jf,/640)
TR = T 3773330 +J7/300)(1 £ J7,/6000)(1 = J7,/7040)

shows that at the loop-gain crossover frequency of 1.11 MHz the phase
is —119.4° for a phase margin of 60.6°. This is not the 65° phase margin
sought, but this was never a second-order system, so it is possible that
this phase margin is adequate to produce a reasonable step response. A
SPICE simulation of the final data, which was arranged in the manner of
Fig. 7.12, shows that this amplifier has a relatively conservative closed
loop step response with an overshoot of 0.1%. ]
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EXERCISES

7.1

7.2.

7.3.

74.

7.5.

Some approximations were used to obtain the data for Table 7.1. We
want to see which makes the amplifier appear more unstable, Table 7.1
or the equations from which the data for the tables was obtained.

A two-pole feedback amplifier has the parameters T, = 3, p; = 10
krad/s, and p, = 30 krad/s. Find §, w,, ¢,,, and w; of this amplifier
from Table 7.1 and again directly from the equations. Compare the
values. Is (7.19) satisfied?

Repeat Prob. 7.1 for an amplifier with T;, = 50, p, = 10 krad/s, and
P, = 500 krad/s.

What is the effect on the loop-gain 3-dB frequency and on the closed
loop-gain 3-dB frequency of the amplifier of Example 7.1, if the
capacitor used for compensation is twice the calculated value?

A feedback amplifier with a second-order Butterworth response is

desired. At the outset the loop-gain poles are at p, = 1 Mrad/s and

p, = 10 Mrad/s. T, = 100 but it is much greater than the needed loop

gain of 50.

(a) Obtain as much compensation as possible using the compensated
attenuator method.

(b) The performance obtained is inadequate, so now apply narrow-
banding to meet the specification. Calculate the loop-gain 3-dB
frequency and the closed loop-gain 3-dB frequency.

(c) Instead of the narrowbanding in part (b), use lag-lead compensa-
tion to meet the specification. Calculate the loop-gain 3-dB
frequency and the closed loop-gain 3-dB frequency.

A feedback amplifier with a second-order Butterworth response is
desired. At the outset the loop-gain poles are at p; = 1 Mrad/s and
p, = 10 Mrad/s, and T;, = 100.

(a) Compensate using only narrowbanding. Calculate the loop-gain
3-dB frequency and the closed loop-gain 3-dB frequency. Compare
performance to that obtained in Prob. 7.4b.

(b) Compensate using only lag-lead compensation. Calculate the loop-
gain 3-dB frequency and the closed loop-gain 3-dB frequency.
Compare performance to that obtained in Prob. 7.4c. '

(c) The stage responsible for p, has at its input a resistance R, = 20
kQ and a capacitance C; = 50 pF. Find the value of the com-
pensating capacitance needed to obtain the compensation of part
(a).

(d) Find the values of the compensating elements needed to obtain the
compensation of part (b).
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7.6.

7.7.

7.8.

7.9.
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If the capacitor C, which is used in the compensated attenuator is too
large, then the attenuator is said to be overcompensated. If the con-
verse is true it is said to be undercompensated. In Example 7.4:

(a) Write the expression for return ratio before compensation is ap-
plied and find the phase margin.

(b) Write the expression for the return ratio when the attenuator is
perfectly compensated and find the phase margin.

(c) Assume that the attenuator is overcompensated with C. = 66.7 pF.
Working with Fig. 7.10, find the expression for T( jw) and find the
phase margin for this case. (Now T(jw) will have one zero and
three poles.)

(d) Assume that the attenuator is undercompensated with C.=16.7
PF. Again use Fig. 7.10 to find the expression for 7(jw) and find
the phase margin for this case. (Here too T( jw) will have one zero
and three poles.)

A two-pole feedback amplifier has poles at p, = 50 kHz and p, =100

kHz. The low-frequency loop gain T(0) = 100. The low-frequency

asymptotic gain is G,(0) = 50 and R} = 10R,. The feedback resistor

R, has a value of 20 kQ.

(a) Use phantom zero compensation to obtain a second-order Butter-
worth response. Find the location of the loop-gain zero z ; and the
loop-gain pole p,.

(b) Plot the magnitude and angle of T(jf) as a function of frequency
and find the loop-gain crossover frequency and the phase margin.
Note how the zero z; causes an upward swing in the phase
characteristic in the vicinity of loop-gain crossover.

(¢) By how many degrees does the pole py affect the phase margin?

A two-transistor amplifier with T, = 120 has only two significant poles.

They are p; = 0.15 MHz and p, =2 MHz. A second-order Butter-

worth response is desired for the closed loop amplifier. For the follow-

ing three methods of compensation, compare the loop-gain bandwidth
and the closed loop bandwidth.

(a) Narrowbanding.

(b) Lag-lead compensation. If R, = 1 kQ find C, and the components
needed for compensation.

(¢) Phantom zero compensation. If R 7= 10 kQ, what is the value of G
needed for compensation? If the low-frequency asymptotic gain is
G(0) = 20 and R} = 2R, find the influence the new pole has on
the phase margin in this case.

It is desired to verify all the calculations made in Example 7.6.
(a) Find the loop-gain crossover frequency and the phase attained at
that frequency.
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(b) Find the relationship between the zero z, and the pole p, and find
the maximum value of phase correction that this combination can
provide.

(c) Relocate the pole p;, downward by a factor y, and the pole p,
upward by a factor vy, choosing y so that phantom Zero compensa-
tion has a chance to succeed.

(d) Carry out phantom zero compensation and select a value of C;.

(e) Write the resultant expression for T( jf) and find the phase margin.

(f) Draw a diagram similar to Fig. 7.12 which will allow verification of
the design by using a circuit analysis program. If a circuit analysis
program is available, evaluate the closed loop step response.



Feedback Amplifier
Sensitivity

IT WAS LEARNED IN CHAP. 1 that the reason feedback is used in amplifiers is
to obtain good performance from inferior equipment, the price being an
increase in the quantity of equipment needed to obtain a desired perfor-
mance specification. It was also shown that the addition of feedback to an
amplifier reduces its sensitivity with respect to gain variation of the active
elements. It also reduces the distortion of the feedback amplifier by a factor
corresponding to the return difference of the feedback amplifier. The latter
statement is exact, whereas the results pertaining to sensitivity with respect
to gain variation were based on the assumption that the variations in the
gain of the active amplifier elements is very small. A more accurate equation
for sensitivity will now be derived and methods will then be presented for
specifying the loop gain required for meeting a desired design objective.

8.1 Some Definitions

Before we proceed we need to introduce the following notation

T, = nominal value of T (8.1a)
T, = high value of T (8.1b)
T, = low value of T (8.1c)

124
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The loop-gain fractional variations are defined as

5 = (change in T')

T (8.2a)
T,-T,
d,= th L (8.2b)
_L-T
o_= T (8.2¢)

n

In order to get a feeling for the above definitions, we shall define an ideal
i-stage hypothetical amplifier. Assume it is possible to connect i common
emitter transistors in cascade, (ignoring the fact that this cannot be done for
even /), and to apply feedback by connecting a resistor from the collector of
the last transistor to the base of the first transistor. Then it is clear that T is
proportional to 87, so that T = kfB‘, where k is a proportionality constant.
The transistor current gain 8 can take on the nominal value 8,, the high
value B,, and the low value 8,. The high and low values of return ratio for
this amplifier are related to the nominal value by

T, = (%)ITn (8.3a)
T, = (%)ir,, (8.3b)

The fractional variations in return ratio for this hypothetical amplifier
are

5. = (%)— 1 (8.4a)
(5 - (5.40)

Care must be exercised not to assume that for all i-transistor amplifiers
the loop gain will be proportional to beta to the ith power. It depends
entirely on the configuration of the amplifier. In a three-transistor
shunt—shunt connection the loop gain will depend on B3, but for a
three-transistor series—series amplifier the loop gain depends directly on the
beta of the second transistor, but not as strongly on the betas of the first
and third transistors. To assume that for an n-transistor amplifier the return
ratio depends on B" does no harm in a preliminary analysis, since this takes
the most pessimistic point of view. The dependence of T on beta should
eventually be established for the amplifier configuration under considera-
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tion, and some of the exercises at the end of this chapter address this
question.

It will be assumed in this analysis that in the asymptotic gain formula
(2.18), the last term makes an insignificant contribution, so we shall use

G,T

‘to relate loop gain T to the closed loop gain G,. Corresponding to 7,, T,
and 7T;, we have

G, = nominal value of G, (8.6a)
Gy, = high value of G, (8.6b)
Gf,‘E low value of G, (8.6¢)

The feedback amplifier closed loop-gain variations are defined as

change in G
= (———%———l—)— (8.7a)
f
G,— G
A,= %L (8.7b)
G,— G
A = —5’—@—1— (8.7¢)

8.2  Sensitivity with Respect to Loop-Gain Variations

The sensitivity Sy of the closed loop amplifier gain G, with respect to
variations in the loop gain T, is defined as the fractional change in the
closed loop amplifier gain divided by the fractional change in the loop gain

B (change in Gf)/Gf (8.8)
T~ (changein T)/T )

If the loop gain 7T changes by a fraction § then the closed loop gain G, will
change by a fraction A. When the two are related by (8.5) we obtain
G,T(1+89)

Gf(]- + A) = 1+_T(T-T§7 (89)

Subtracting (8.5) from (8.9) we obtain

G,TS

GyA = A+ T)1+ 71 +9)]

(8.10)




Feedback Amplifier Sensitivity o 127

This is divided by (8.5), with the result

[

A=1+T(1+8)

(8.11)

From (8.11) and (8.8) we see that the sensitivity of the amplifier closed
loop gain with respect to loop-gain variations is

A 1
Sr=%=1+% T(1 +9) (8.12)

We note that if the loop-gain variations are small, then (8.12) reduces to

Sr for§ < 1 (8.13)

“1+T

which is in agreement with (1.15), which was derived for differentially small
changes in the loop gain T.

Example 8.1: Let G, = 11. Suppose the nominal value of T is 10 and it
varies by +20%. Find the nominal value, and the high and low values of
the closed loop gain G,.

From the specification we have

T,=10 T,=12 T,=38
Using (8.5) we find
G, =10 Gy, = 10.1538 Gy =9.7778
From this data we find that
A= 0.0154 = 1.54% A_=-0.0222 = -2.22%

It becomes apparent that for equal upward and downward variations
in 7, the variations in G; turn out to be unequal, the downward variation
being larger than the upward variation. |

8.3 Choosing Loop Gain to Meet Specifications Approximately

We are now in a position to specify the required loop gain T, to meet a
given sensitivity objective. From (8.11) we obtain

T = .__(3{{2 = 1 (8.14)

Example 8.2: Consider a three-transistor shunt-shunt feedback amplifier,
with the three common emitter transistors connected in cascade. The
current gain B of each transistor can vary from the nominal value 8, by
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1+20%. It is desired that closed loop amplifier gain vary no more than
+1% from design center value.

The amplifier loop gain is proportional to 8°. Therefore the loop-gain
nominal value T, is related to the nominal value of transistor current
gain B,, through some arbitrary constant k:

T, = kB;

When B takes on its high value, the fractional change in return ratio is

_ Kk[8,(1+02)]* - kg;

8, PV =0.728
and when B is low it is
5 _ kIB,( —]?;3)13 = kB _ s
From the closed loop-gain specification we have
A =0.01
and
A_= -0.01

Substituting the data for A_ and & _ into (8.14) we obtain
T=0934

This is the required nominal value of 7 when the current gain 8 is at its
nominal value of B,. That value of T is needed to meet the specification
for A_ and &_. Again using (8.14), we find that the required nominal T
needed to meet the specification for A, and §, is

T =416 ]

We see from the last example that the computed nominal value for T

when we are dealing with upward variations is inadequate if 8 varies
downward, and the opposite is true for the reverse situation. There must be
a value of nominal T which lies somewhere between 41.6 and 93.4, which
could meet the specification if it were restated properly.

8.4 Choosing Loop Gain to Satisfy Specifications Exactlyv

If we wish to obtain a nominal value for T that will keep variations in G
within specifications, we must find an expression that takes all the specified
data into consideration. To do this, only the location of the extreme points
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of operation will be considered. The question of where the nominal point of
operation ends up will not be of interest right now. Previously, we consid-
ered all variations of G, to be computed relative to a nominal value G,,, and
we saw in Example 8.1 that G,, was tied to 7, through (8.5). Now all
variations in G, will be taken relative to G/,, whose value is not known at
the outset. v

When T takes on its largest value, we expect G, to do the same.
Equation (8.9) must now be recast into the two relationships

G,T,(1+3,)

G/h = an(l + A+) = m (8.15)
, _ G T,(1+3)
Gﬂ = an(l +A )= m')- (8.16)
Dividing (8.15) by (8.16) and solving for 7,,, we obtain
A 1+
T 1 1+A_ A, (8.17)

TA A |T+5. "1+,

This is a very useful expression for finding the nominal value of T to
meet a high and low specification, simultaneously. To find G;, from G, or
Gy, we get from (8.15) and (8.16)

G G
, I _
Gfn=17% A, 1+A_ (8.18)

An application will be demonstrated in the following example.

Example 8.3: 1t was found in Example 8.2 that we had an amplifier with
8,=0728,8_= —0488, A, =0.01, A_= —0.01. In addition let G, =
11. It will be interesting to see if the specification that (8.17) produces
for T, is much different from the result obtained in Example 8.2.

Applying (8.17) to the data we obtain

r 1 1+(=001) 1+0.01

"~ 001 —(—001) | T +(-0488) 1+0.728| 6748

which is somewhere between the two values of T found in Example 8.2.
We now list the correspondence between the various values of T and G,
which are related through (8.5).

T,=3454  G,=10.69
T,=67.46 G, =10.84
T,=116.6 G, =1091
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Using (8.18) we find that

Gy 1091

T+4A, ~ To1 ~ 1080

G}, =

and this value of closed loop gain does not equal G,,, and it was not
meant to do so. It is merely a more reasonable basis of reference for the
closed loop amplifier gain variations than is Gj,.

We can finally conclude that we can obtain the nominal closed loop
amplifier gain G/, = 10.80 which will vary within +1% when the nomi-
nal value of loop-gain is set at 67.46 and is allowed to vary +72.8% and
—48.8%. ]

8.5 Impedance Specification

There are situations in which an amplifier voltage-gain variation is specified
that must not be exceeded as the load impedance is varied over a range of
values. It might be stated, for example, that the output voltage of the
amplifier may not vary more than +10% as the load is varied from an open
circuit down to 100 2. We need to find the value of output impedance that
will allow us to meet this specification.

The Thevenin equivalent circuit at the output terminals of the amplifier
is shown in Fig. 8.1 for two load impedances.

It is assumed that Z,, > Z,,, hence V, > V,. We shall define as in (8.7),
using V.. as an output reference voltage

- Ve
AL+E LI};—K-—f (8.19)
and
Vi — Ve
A== (8.20)
The output voltages for the two situations depicted in Fig. 8.1 are given by
__Zn
Vi=Ve(l+4,,)= Zo+ 7, Eo (8:21)

(a) (b)
Figure 8.1 Thevenin equivalents of an amplifier.
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and

z
L E (8.22)

M=Va(l+4,)= Zy F Z;, 00

Taking the ratio of the last two equations and solving for the required
output impedance, we find

A, — AL‘
ZO = 1+ AL— 1+ AL+ (823)
ZLl ZL2

Example 8.4: It is specified that for an amplifier, the load voltage may not
vary more than +10% and —5% from some imaginary reference value
as the load impedance varies from 5000-100 Q. What should be the
amplifier output impedance?

From the data it is clear that Z, = 5000 2, Z, = 100 @, A, .= 0.1,
and A, _= —0.05. This is substituted into (8.23) to produce the result

0.1 —(—0.05)

%0= 1095 /100) — (1.05,/5000)

=16.15 Q

If the output impedance is kept below this value, then the output voltage

variation will fall within the specified range. [ 3

8.6 Conclusion

We have shown that it is possible to arrive at accurate values of return ratio
from a stated set of specifications. If the specifications pertain to loop gain
and closed-loop gain variations, then we proceed to use (8.17) in a very
straightforward manner. If there are additional specifications pertaining to
input and output impedance variation, then (8.23) can be used to determine
the required feedback amplifier output impedance. In case there are further
constraints imposed on the feedback amplifier design, such as requirements
on distortion and power-supply ripple suppression, then the material of this
chapter can serve as a good starting point, but further progress must be
made by using trial and error techniques.

EXERCISES

8.1. For the series-shunt two-transistor feedback amplifier of Example 2.1,
which is reproduced in Fig. P8.1, it was found that T, = 34.9. Both
transistors have current gains of 100, with a tolerance of —50% and
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Rg [+]
(k) 2
h,= hf; 100

fi
Yo hj = hig= Ik

(5000

Vv

Figure P8.1

+100%. Find 7, and T, and compare them to the hypothetical ideal
amplifier of Sec. 8.1.

8.2. For the shunt-series two-transistor feedback amplifier of Prob. 2.3,
which is reproduced in Fig. P8.2, both transistors have current gains of
100, with a tolerance of —50% and +100%. Find 7, and T, and
compare them to the hypothetical ideal amplifier of Sec. 8.1.

10k

= Q=Q, h=2k (=100 =
Figure P8.2

8.3. For the series—series three-transistor feedback amplifier of Prob. 2.5,
which is reproduced in Fig. P8.3, all transistors have current gains of
100, with a tolerance of —50% and +100%. Find 7, and 7, and
compare them to the hypothetical ideal amplifier of Sec. 8.1.
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We saw in Example 8.1 that equal up—down variations in T do not

produce equal up—down variations in G,.

(a) Find a new nominal reference value Gf,, which is the mean of G,
and Gy, Verify that &', and A"_ are equal in magnitude, when the
closed loop gain departs from G/,

(b) Find a new nominal loop-gain reference value 7, which corre-
sponds to Gf,. Find &', and §’_ relative to 7}/.

For a certain amplifier application, transistors are available, which may
be represented to an adequate approximation by the following parame-
ters at room temperature:

h; = input impedance = 2k

B = current gain = 50

As temperature is varied from the nominal value to the operating
limits, it may be assumed that the only change in transistor parameters
is a change in B by +100% and —50%. To assure adequate
collector-emitter voltage, and to limit dissipation to safe limits, the
load resistor for each transistor must be chosen in the range 1-10k%Q.

The amplifier is supplied by a source that may be represented by a
generator of open-circuit voltage E, in series with a resistor of 100
ohms. For a fixed operating temperature and with external load resis-
tance in the range of 400-4000 ohms connected to the output of the
amplifier, the voltage across the load shall not change by more than
+ 5% (for constant E.) under the worst conditions of operation. The
nominal gain G,, which is the ratio of voltage across the load to E,is
to be 20. For a fixed load impedance, as the temperature is varied
throughout the operating range, G, should not change by more than
+10%.

Ignoring the effect of impedance associated with bias circuits,
determine:

(a) An amplifier configuration that will be capable of meeting these
requirements including the number of transistors necessary.
(b) The values of all circuit elements used in the amplifier.
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WHEN DESIGNING FEEDBACK AMPLIFIERS, every effort is made to ensure that
the amplifier should be stable and never oscillate under any operating
conditions. Oscillators are circuits, which are deliberately designed with
enough positive feedback to cause instability. The circuit components are
intentionally chosen so that the oscillator will output a sinusoidal wave at a
very specific frequency and will continue doing that as long as power is
applied to the circuit.

An oscillator can be viewed as a feedback amplifier which is deliberately
made unstable. When the Nyquist plot for a feedback amplifier passes
through the point s = —1, then it is an indication that the closed loop
response has a pole on the jw axis at some frequency w,, and is capable of
maintaining a sustained sinusoidal oscillation at this frequency. We there-
fore use T( jwy) = —1 as a minimum condition for oscillation.

A slight change in circuit parameters could cause the jw-axis pole to
move into the left half of the s plane, causing oscillations to cease. For this
reason, it is desirable in practical oscillators to have the Nyquist plot pass to
the left of the point s = —1. This is equivalent to requiring the magnitude
of T to exceed unity at the frequency of oscillation, so that most oscillators
will, in fact, have poles slightly to the right of the jw axis. So for practical
oscillators, we require that

ReT(jw,) < —1 (9.1a)

Im T( jw,) = 0 (9.1b)
134
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Zl(jw)

\

+
0] l— 3R =C L Ve

Figure 9.1 Parallel-tuned RLC circuit.

The oscillation buildup is eventually limited by the nonlinearities of the
active elements, namely the active-device approaches saturation or cutoff or
both. A frequency-selective circuit serves two purposes in feedback oscilla-
tors. Its first function is to ensure that the conditions of oscillation are met
only at the desired frequency w,, and its second function is to remove the
higher harmonics of the distorted output signal, so that a “clean” sinusoidal
signal may be seen by the load. Before proceeding with the subject of this
chapter, a short review of tuned circuits will be undertaken.

9.1 Parallel RLC Circuits

We shall analyze the parallel RLC circuit of Fig. 9.1, to see how the output
voltage V, varies as a function of frequency for a constant input current I,.
The output voltage V, is related to I; through Z(jw), which is given by

. 1 R
Z(jo)=71— = ' = (9.2)
E+jwc+7";z 1+ijR+wL
Define
Wy = 27fy = 1/ VLC = resonant frequency (9.3)
and
R .
Q = 7 = wRC = quality factor (9.4)
Wo

Then (9.2) can be written in the very convenient form

Z(jw) = : +jQ[I;iO - %] (9.5)

It is clear from (9.5) that the impedance of the parallel-tuned circuit is
highest at resonance, when it is equal to the parallel resistance R. The
impedance decreases as the operating frequency is increased or decreased
away from resonance. To find the 3-dB frequencies of Z( jw), we equate the
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imaginary term in the denominator to +1 and solve the resulting quadratic
equation. Only the positive root is retained and it is found that the upper

3-dB frequency f, is
1 1\
%’=E+V”(E) ©-6)

When the imaginary part of the denominator is set to —1 and again only
the positive root is retained in the resultant quadratic equation, it is found

that
2
{,—OL=—§1—Q—+\/1+(—21—Q) (9.7)

The difference between the frequencies f,; and f, is the 3-dB bandwidth of
the tuned circuit and is given by

fo )
BW = 1) (Hz) = 0 (rad/s) (9.8)

Now it becomes apparent why Q is referred to as the quality factor of
the resonant circuit. The higher the value of Q, the narrower is the 3-dB
bandwidth of the resonant circuit, the better its frequency selectivity. It
must be kept in mind that the value of R used in all the above relationships
must account for all resistive losses in the parallel resonant circuit.

9.2 Parallel-Tuned Circuits with Series Loss

Before we can include all resistive losses in the calculation of the Q of the
resonant circuit, we have to consider the fact that usually the inductor used
in resonant circuits has a series resistance which represents the coil losses, as
shown in Fig. 9.2a. It would be useful to convert this circuit to the parallel
form shown in Fig. 9.25, so that the expressions derived in Sec. 9.1 can be
applied directly.

Y (jw)

LT

L

M
a
\}
I
(@]
r

16

Al

(a) (b)
Figure 9.2 (a) Inductor with series loss. () Desired equivalent.
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To find the equivalent circuit of the coil in a narrow band of frequencies
in the vicinity of w,, we write the admittance of the coil in Fig. 9.24 at the
resonant frequency w,

1 _r — jwoL
r+jwgl 24 w(z)L2

Y, (Joo) = (9.9)

If the series resistance is much smaller than the inductive reactance, namely
r < w,L (9.10)
then (9.9) reduces to

r 1

Y, (Jeoo) = ar et (9.11)

We see that for frequencies which are very close to resonance, we can use
the parallel equivalent circuit of Fig. 9.25, in which

272
wyL
r

R =

(9.12)

and the value of the coil is left unchanged.
Using this value of R in (9.4), we find that Q can be expressed in terms

of the parameters of the series coil

_ %L

== (9.13)
This is the Q of the inductor in which a series resistor is used to characterize
the coil losses, and now we see that condition (9.10), under which the
transformation applies, is equivalent to saying that Q must be much greater
than 1. Another form used for finding the shunt resistance R from the series
loss resistance r is obtained by substituting (9.13) into (9.12) resulting in

R= Q% (9.14)

Example 9.1: A coil has an inductance of 100 mH and a series resistance
of 25 Q. The coil is in parallel with a 0.1 pF capacitor and also in
parallel with a 120 kQ resistor. Find the parameters of the circuit near
resonance.

We will assume at the outset that the Q of this resonant circuit is high
and later verify that this is a valid assumption. The resonant frequency is
found using (9.3), hence w, =10 krad/s. The Q of the coil (not
including the effect of the 120 kQ shunting resistor) is found using
(9.13), hence Q; = 40. Using (9.14) we find that the equivalent parallel
resistance for the coil is 40 kQ. This is now combined with the parallel
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120 kQ resistor, for a total shunting value of 30 kQ. The equivalent
circuit of the form of Fig. 9.2b will contain a 100 mH coil, a 0.1 uF
capacitor, and a shunt resistance of 30 kQ. The Q of this equivalent
circuit can be calculated using (9.4), so that Q = 30 and it is substan-
tially greater than 1. The bandwidth of this tuned circuit is found from
(9.8) with the result BW = 333.3 rad/s. n

9.3 Transformerlike Resonant Circuits

In this section we consider parallel resonant circuits in which the lossy
element appears across a portion of the inductor or capacitor as shown in
Fig. 9.3a. The elements Z, and Z, represent either capacitive elements and
Z; then represents an inductive element, or Z; and Z, can represent a
tapped coil, in which case, Z; would represent a capacitive element. Some
equivalent circuits for transformer coupled coils will also be derived.

Consider the parallel-tuned circuit of Fig. 9.3a. We wish to find a
resistance R, shown in Fig. 9.3b, which can replace the resistances R, and
R,, leaving the power losses in the circuit unchanged. Assuming the
resistors load the circuit only slightly (which is tantamount to saying that
the Q of the circuit is very high), then the reactive elements determine the
voltages V, and V,, and are given by

Z

h=g3zV (9.15)
ZZ

Equating the power lost in Figs. 9.3a and 9.3 we conclude that

(Z,+2,)
R =-"17 %2) 917
= 72 . Z2 (9.17)
R R.

<
AAA
WA
2
®
o

() (b)
Figure 9.3 Parallel-tuned circuit with light loading,
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Figure 9.4 (a) Transformer. (b) Mesh impedance matrix equivalent. (¢) PI equiv-
alent.

We make the observations that if R, and R, are of the same order of
magnitude, then

R.,=R, ifZ, < 2Z, (9.18)

eq i

R,=R, ifZ > Z, (9.19)

Another useful transformation is needed before we get into the subject
of LC-tuned oscillators. We wish to find the PI equivalent of the trans-
former shown in Fig. 9.4a.

We assign voltages and currents to the two port, and write the mesh
equations. We find that the same mesh equations can be obtained for Figs.
9.4a and 9.4b, so that these two circuits are equivalent. We use the Y-delta
(or star-PI) transformation (which can be found in any elementary circuit
theory text) to go from Figs. 9.4b to 9.4¢, to complete the solution.

9.4 The Colpitts and Hartley Oscillators

In Fig. 9.5a we have a very general circuit, which represents either a
Colpitts or a Hartley oscillator. The resistance R, is included to take into
consideration the load on the oscillator output, and R, is included to
account for the biasing resistors for the active device. In the equivalent
circuit of Fig. 9.5b, the resistance R, is the parallel combination of the
transistor (or FET) input resistance and the resistances of the biasing
circuitry. The resistance R, is the parallel combination of the load resis-
tance R, and the output resistance of the transistor (or FET). The imped-
ances Z;, Z,, and Z; are purely reactive. Figure 9.5b is the equivalent
circuit which will be used for the calculation of return ratio.

We replace the dependent source g, by an independent source of
value g, and calculate V. The return ratio is the negative of the returned
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Figure 9.5 (a) Colpitts or Hartley oscillator. (b) Equivalent circuit.

voltage V, so after a little simplification it is found that T(jw) is given by

T( . _ ngiRoZIZZ
Jo) = RZ(Zy+ Z,) +R,Z,(Z, + Z,) T RR(Z, + Z, + Z,) + 2,2, 7,

(9.20)

Since Z,, Z,, and Z, are purely reactive, then the numerator and the first
two terms in the denominator are real. The last two denominator terms are
imaginary. To meet the condition of oscillation of (9.1b) the imaginary part
of (9.20) must vanish. We therefore require

RR,(Z + Z,+ Z,) + 2,2,Z, = 0 (9.21)

and it will be found later that the solution to this equation will yield the
frequency of operation w, of the oscillator.

We shall assume at this point that the term Z,Z,Z, does not affect the
solution sufficiently to be needed in the above equation. Later it will be
shown what conditions the circuit parameters must meet for this to be true.
Therefore the following approximate condition will henceforth be used

Z +Z,+Z,=0 (9.22)

to find w,. Having eliminated the last two terms in the denominator of
(9.20), we substitute (9.22) into the remaining terms, and impose condition
of oscillation (9.1a) on the result, to obtain

—8nRR,Z,Z,

< -1 9.23
R,Z2+ R,Z2 (923)

T(]""o) =
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From the above it follows that the requirement for oscillation is

Z, R,Z,

g.R, = Z, + R, Z, (9.24)
The left-hand side represents the voltage gain of the active device. It is
best to have the left-hand side of the equation exceed the right-hand side by
a small margin, otherwise the magnitude of 7 becomes much greater than
unity and the active device has to go very far into the nonlinear region of
operation to reduce the magnitude of 7. This can cause a great deal of
distortion, which the tuned circuit may be incapable of removing. In FET
oscillators R, is the gate bias resistor R, and it is so much bigger than R,
that Z, would have to be extremely large in comparison with Z, if the
second term on the right were to be used to bring both sides of (9.24) into
reasonable balance. It is more practical to use the first term on the right to
achieve that objective, hence we shall choose Z; > Z,, so that for all

practical purposes (9.24) reduces to

z
g, R, > 7: (9.25)

The same expression is used in bipolar-transistor oscillators, but for a
different reason. In most bipolar-transistor oscillators, the resistance R,
loading the output is an order of magnitude greater than the resistance R,
loading the input side of the resonant circuit. In view of this and the results
of (9.18) and (9.19), we see that for minimum loading (hence for higher Q)
of the resonant circuit, we should choose to make Z; > Z,, and then (9.24)
reduces to (9.25) as it did for FETs.
For FETs we can substitute g,, = u/r, and R, = r,||R,, to obtain
ra |4

b [1 ; RL] g (9.26)
For bipolar transistors we can substitute g,, = 8/h,, and R, = R,|(1/h,,),
to get the form

hie Zl
b= Ram,) Z 627)
The foregoing results will now be applied to the Colpitts oscillator of
Fig. 9.6. The radio frequency choke (RFC) is used in place of a collector
resistor so that the loading on the resonant circuit will be minimized in an
effort to keep its Q value high.
From the diagram it is clear that

Z, = jwL (9.28)
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A}l
n Figure 9.6 A practical example of a

Ro=Ri[[Ras Ri=Ry||hie 3 Ro=RL|(1/hoe) Colpitts oscillator.
We get upon substitution of these values into (9.22)
1{1 1
A
W=7 [ C + Cz] (9.29)

It becomes clear from the above expression that the inductor L resonates
* with the series combination of the capacitors C; and C,. Had we substituted
into (9.21) instead, we would have obtained the result

1(1 1 1
2 | — —_— —_—
@ =T [Cl + Cz] + RRCC, (9.30)

If the reactive elements of the Colpitts oscillator are chosen to satisfy

a—é—a << RiRo (931)
then the frequency of oscillation becomes independent of the resistive
loading the resonant circuit, and the result produced by (9.22) is indis-
tinguishable from that obtained from (9.21). Condition (9.31) is not difficult
to obtain in practice.

When the values of (9.28) are substituted into (9.27), we find that the
transistor voltage gain must satisfy

C
g.R, = é (9.32)

It is clear from the above that we must choose C, > C,. If the oscillator is
to be tunable over a range of frequencies, then C; is a variable capacitor,
since the series combination of the two capacitors is approximately C,. The
disadvantage in this method is that varying C, affects the ratio on the
right-hand side of (9.32), which can cause variations in the output signal
distortion as the frequency is changed. To remedy the situation a Hartley
circuit is used if a tunable oscillator is desired.
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Figure 9.7 A practical example of a Hartley oscillator.

The Hartley oscillator is another example of a very common type of
tuned circuit oscillator as shown in Fig. 9.7. It requires a tapped inductance,
which is more difficult to obtain than the fixed inductance of the Colpitts
oscillator, but as can be seen in Fig. 9.7, its resonant frequency is very
readily varied by using a variable capacitor in place of C. The drain supply
is introduced through the tap in the coil to dispense with the radio
frequency choke that would otherwise be needed. The equivalent circuit was
drawn using the transformations shown in Fig. 9.4. From the diagram it is
clear that

. LiL,- M? . LiL,— M? L\L, — M?
L= LTl Lty
(9.33)

We get upon substitution of these values into (9.22)

2 _ 1
O (L, + L, + 2M)C

(9.34)

It becomes clear from the above expression that the entire inductor reso-
nates with the capacitor C. Had we substituted into (9.21) instead, we would
have obtained the result

1
w= (9.35)

L,L,— M?
(L1+L2+2M)C++Rzo—Ri—
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o :TE = paper Figure 9.8 A working example of a Colpitts
oscillator.

If the reactive elements of the oscillator are chosen to satisfy

L,L, — M?
(L, +L,+2M)C

< R,R, (9.36)

then the frequency of oscillation becomes independent of the resistances
loading the resonant circuit, and the result produced by (9.22) is identical to
that obtained from (9.21). Condition (9.36) is not difficult to obtain in
practice, particularly if the coil is very tightly coupled, in which case the
numerator of the left-hand side of (9.36) tends to zero.
When the values of (9.33) are substituted into (9.26), we find that the
voltage gain must satisfy
L +M
g.R, = I, M (9.37)

Example 9.2: A working model of a Colpitts oscillator is shown in Fig. 9.8.
This oscillator was built with readily available components. The air core
inductor consists of 21 turns of 16 gauge copper wire wound on a 25.4
mm form. Its Q was measured at 66. The 0.22 uF capacitor was selected
by trial and error to give the biggest output for the lowest possible
distortion. The calculations associated with this oscillator are left to an
exercise at the end of this chapter. |

9.5 Oscillator Crystal Control

For very good frequency stability, the inductor in a Colpitts oscillator (or
any oscillator requiring an inductance) can be replaced by a quartz crystal.
As we shall see presently, a quartz crystal appears inductive for a very
narrow band of frequencies only, so the frequency of operation of the
oscillator must confine itself to that band. The symbol and the equivalent
circuit are shown in Figs. 9.9a and 9.9b, respectively.
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Figure 99 (a) Quartz-crystal symbol. (b) Equivalent circuit. (¢) Reactance func-
tion.

If the resistance r is assumed to have a negligible effect on the operation
of the crystal at its operating frequency, then the crystal is seen as a purely
reactive element. Its reactance as a function of frequency is shown in Fig.
9.9¢. The two critical frequencies associated with that plot are

1
R re (9.38)
and i
C
o = o [1 ; —C;] (9.39)

The Q of the crystal is the quality factor of the inductance and is given
by
w, L
Q=— (9.40)

and is usually well in excess of 1000.

Example 9.3:  Some typical values for a clock oscillator crystal are: f, =
32.768 kHz, C, = 1.7 pF, C = 0.0034 pF, and r = 30 kQ.

From (9.38) we find that L = 6940 H, and from (9.40) we calculate

QO = 47617. From (9.39) it follows that /, = 1.001f,, hence the crystal

appears inductive within a bandwidth of only 32.75 Hz, which lies to the

right of f.. n

9.6 The RC Phase-Shift Oscillator

The Colpitts and Hartley oscillators are commonly used at frequencies
above the audio band. As frequency is decreased, then it is readily apparent
from (9.13) that the inductor needed for one of these oscillators becomes
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Figure 9.10 The RC phase-shift oscillator.

impractically large if a high value of Q is to be obtained for the resonant
circuit in the presence of a fixed series resistance. At audio frequencies the
oscillators usually employ RC phase-shift networks.

In Fig. 9.10a we have a bipolar-transistor version of the RC phase-shift
oscillator. The equivalent circuit for the derivation of the conditions of
oscillation is shown in Fig. 9.10b. The source on the left-hand side of the
equivalent circuit has been changed to a Norton equivalent in anticipation
of using mesh analysis to arrive at the expression for the circuit loop gain.
After some algebra (which has been left for an exercise), the expression for
the oscillator return ratio can be shown to have the form

r BR,R? R,
= R + 5R i TR, + h,
3R?R,+ R> — =2 + L |4rR, + 6R? = —L_| Ro ¥ e
o 22 o 2,2
wC JwC | wC
(9.41)

Setting the imaginary part of the last equation to zero produces the
result

- 1 (9.42)

“0T RC/6 + 4(R/R)

When this is substituted back into (9.41) and condition (9.1a) is applied, we
obtain

R R,
B = 29R_0+4T+23

[1 ¥ H (9.43)
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The right-hand side of the last equation can be minimized by choosing

R=73 =~ 2.69 (9.44)
in which case (9.42) and (9.43) reduce to
. 9.45
® = Z09RC (9.45)
and
h,,
8= 44.54[1 + R—'] (9.46)
b

The minimum obtained by choosing R,/R according to (9.44) is very
flat, and it can be readily shown that departures from the ideal of as much
as 30% have a very small effect on (9.43) but a somewhat larger effect on
(9.42). The optimum choice of the resistor ratio for FET oscillators of this
type is different from the above result. The analysis of the FET phase-shift
oscillator is left as an exercise.

The advantage of the RC phase-shift oscillator is that it is very easy to
construct using a single low-gain transistor. The disadvantage is that if it is
desired to change the operating frequency, three capacitors must be varied.
As with all RC oscillators, there is no frequency-selective network at the
collector to remove distortion components of the collector signal, hence it is
very difficult to obtain a clean sinusoidal output using this kind of oscillator.

9.7 The Twin-T RC Phase-Shift Oscillator

The twin-T' RC phase-shift oscillator shown in Fig. 9.11 is another con-
figuration that can be used at audio frequencies. It is best to have a high
gain amplifier as the active element in order for the relationships which are
derived to be accurate. It is assumed that the left-hand side of the twin-T _
network is driven by a very low impedance voltage source, and that the
right-hand side sees a very high amplifier input impedance, so that loading
on the network is negligible. The resistors R, and R, are included to obtain
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Figure 9.11 The twin-7 RC phase-shift
oscillator.
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Figure 9.12 Twin-T to lattice transformation.

some control over the amplifier gain. The analysis proceeds most easily from
Fig. 9.12.

It is very difficult to find the ratio of open-circuit output voltage to input
voltage in the twin-T network as it appears in Fig. 9.12a. But a symmetri-
cal-T network can be changed into a balanced lattice using a well-known
network transformation [1]. Figure 9.12b shows each of the parallel-T
equivalent networks of Fig. 9.12a transformed into a lattice. Since the two
lattice networks are in parallel, the two can be combined into one, as shown
in Fig. 9.12¢. If a voltage source is connected at terminals a—b, then the
voltage at terminals c-b is obtained by using voltage division. Similarly
voltage division is used for finding the voltage at terminals d—b. The voltage
at c—d is the difference of the two previously obtained voltages. After some
simplification, it is found that the voltage transfer function for this network
is

. 1 —(w/wo)z
= 9.4
H(J“’) 1 _(‘*’/“’0)2 + 4j(‘°/°-’o) ( 7)
where
w,=1/RC (9.48)

It is apparent from the above equation that this network provides a
—90°-phase shift for input signals whose frequency is slightly less than w,
and a —270°-phase shift for input signals whose frequency is slightly
greater than w,. At w, the magnitude of H( jw) equals zero and it can be
reasonably argued that the phase shift is —180°. Such an oscillator could
not work since the amplifier gain cannot be expected to be infinite. For the
oscillator of Fig. 9.11 to work, the twin-T must be unbalanced by reducing
R, below the ideal value of R/2. The consequences of this action were
analyzed by using a digital computer and the results are summarized in Fig,
9.13. For realistic choices of the resistor R,, the actual frequency of
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Figure 9.13 The consequences of reducing R, below R /2.

operation, designated wj, is increased relative to the ideal frequency w,. The
amplifier gain required to obtain oscillation is also shown. In practice a high
gain amplifier is used and R, is made slightly adjustable.

As with the phase-shift oscillator, the disadvantage with the twin-T
oscillator is that if it is desired to change the operating frequency, three
capacitors must be varied. The advantage is that the closer R, is to its ideal
value of R/2, the greater is the phase variation of H( jw) with respect to w.
So this oscillator can be made very frequency stable if the components of
the twin-T network are stable.

9.8 The Wien-Bridge Oscillator

This oscillator consists of an amplifier whose output is connected to the
input by means of a Wien bridge as shown in Fig. 9.14. The FET labelled
R, is used to provide the resistance needed for the fourth arm of the Wien
bridge, and its presence will be explained later.

For the conditions of oscillation to be met, the bridge is operated near
balance. This occurs at the frequency at which

1 R
RZ{R+75—C—J =R1[m} (949)
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QUTPUT

Figure 9.14 The Wien-bridge oscillator.

The above equality is satisfied when the frequency takes on the value

w, =1/RC (9.50)
and the resistive arms of the bridge satisfy

R, =2R, (9.51)

When the bridge is perfectly balanced, there is no input to the amplifier,
so that in practice R, is made slightly smaller than the value determined
from (9.51), in order to obtain some amplifier drive. If the bridge is
unbalanced too much, then the output becomes highly distorted, but if the
unbalance is insufficient, then the oscillations cease. Some circuitry is
usually added to the oscillator to assure that the bridge is maintained very
near the balance point. In this case, the circuitry at the oscillator output,
which appears in Fig. 9.14, applies a fraction of the negative of the peak
output voltage to the gate of the FET labelled R,. If the amplifier output
becomes too great, then the FET is driven closer to pinchoff, raising its
resistance, thus bringing the bridge closer to balance, causing a reduction in
the oscillator output. The converse is true if the amplitude of the oscillations
decreases. Numerous other schemes exist for stabilizing the oscillator ampli-
tude output.

The advantage of this oscillator is that only two capacitors have to be
changed if a frequency range change is desired. The frequency within the
range can be controlled by varying the values of the two bridge resistors
labelled R. The Hewlett—Packard company was founded on a single pro-
duct—the Wien-bridge vacuum-tube audio oscillator. A problem that had
to be solved was the attainment of good amplitude control with simple
circuitry. In that product, a light bulb (which is a positive coefficient
temperature-dependent resistor) was used in place of R, to get the desired
level of amplitude control.
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9.9 Frequency Stabilization Factor

When an oscillator is in operation, the angle of the loop gain, which we
designate ¢, is equal to —180°. Let us suppose, for the sake of argument,
that the phase angle of the amplifier changes by some amount —A¢,. The
phase-shift network has to compensate for this change in amplifier angle by
an amount +A¢, by changing the frequency of oscillation by a relative
shift in operating frequency of value Aw/w. We see that it is sensible to
define a frequency stabilization factor of the form

Adr Adr

S vy T 9Ra |, .,

(9.52)

w=w,

If S; is a large number, then that implies that a small value of Aw/w can be
used to compensate for a large change in A¢,. In differential form the
above becomes
d¢
S = wo—Jf (9.53)

w=w,

Example 9.4: In an FET Colpitts oscillator we assume that R, — co,
hence (9.20) reduces to

. _ ngoZIZZ
T(je) = Z(Z,+ Z,) +R,(Z, + Z, + Z,) (9:54)
After substituting the values in (9.28) in the above, we have
R
T(jo) =1 Em (9.55)

~- LG, + jo(C, + C, — w’LC,G,)R,

To meet the condition of oscillation, the term within the parentheses
in the denominator must vanish at w, namely

(CL+ ¢ — WILC,G) =0 (9.56)

from which it follows that the frequency of oscillation is given by

C, +C
2 _ Y 2
“=IcC, (9.57)
The angle of T( jw) in (9.55) is given Qy
C,+ C,— w’LC,C,)R
tang, = — (€ , — @LC,G)R, (9.58)

1 - szC2
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which, at the frequency of oscillation, evaluates to
¢r= —180° when w=w, ' (9.59)

Differentiating both sides of (9.58) with respeét to w, and using (9.59),
(9.56), and (9.57), it easily follows that

dor _ 2w¢LC,C, (9.60)
do |y, 1—W2LC, ° '
Substituting into (9.53) and using (9.57) we get
C,+C
S, = =20, | =R 9.61
f Woly (oA 0 ( )
From (9.17) we get for this case
G+ G
Ry = [———C—z—] R, (9.62)

and for the resonant circuit used in this case, the equivalent capacitance
is the series combination of C; and C,, namely

__GG
Ceq = m (9.63)

When the last two equations are substituted into (9.61), we obtain

eq”teq
From (9.4) we recognize that the above can be written in the form
S;=-20 (9.65)

The higher the quality factor of the resonant circuit the higher is the
frequency-stabilization factor. It therefore comes as no surprise that
high-quality Colpitts oscillators are usually built with quartz crystals,
since their Q is orders of magnitude greater than that of magnetic
inductors. u
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EXERCISES

9.1. An inductor L is available whose quality factor is Q,. The inductor is

9.2.

9.3,

shunted by a resistor of value R, and we define 0, = R,/w,L.
(a) Calculate the equivalent resistance shunting the coil and show that
the Q of the entire circuit is given by

1 1
[N

1
Q

(b) Can this result be generalized to any number of resistors shunting
the coil?

In the working example of a Colpitts oscillator shown in Fig. 9.8, the
transistor is biased for a collector current of 4 mA and its current gain
is 100.

(a) Find the resonant frequency of the oscillator.

(b) Find the output resistance R, and the input resistance R, for the
circuit. Lump the effects of the inductor loss into R,

(c) Find the Q of the resonant circuit, accounting for all resistive
loading.

(d) By how great a margin is (9.32) satisfied?

(e) Redesign this oscillator with the idea that the second term on the
right-hand side of (9.24) be used to balance the left-hand side of the
equation by the same margin as was found in part (d). Find the
new values of C; and C,.

(f) What is the overall Q of the resonant circuit for this design?

A typical crystal has the parameters L = 1.6 H, C, = 10 pF, C,/C =

355, and Q = 10°.

(a) Find f;, f,, and r for this crystal and draw the equivalent circuit.

(b) Ignoring r, write an expression for the driving point impedance of
the crystal. ‘ ‘

(c) At what frequency is the impedance of part (c) equivalent to a
9-pH inductance (which could be used in the oscillator of Example
9.2)?
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9.5.

9.6.

9.7.

9.8.

e Feedback Amplifier Principles

Using the equivalent circuit for the transistor phase-shift oscillator
shown in Fig. 9.10b derive an expression for the return ratio of the RC
phase-shift oscillator.

(a) Verify the connection between (9.43) and (9.44) and (9.45) and

(9.46).

(b) Computationally show that the claim in the paragraph following
(9.46) is correct.

R, jwC jwC jwC
AAA, IL IL I
Wt 1 l "y

Rq
ry + Ry

Figure P9.6

W=p Ro=r4||Rq

The equivalent circuit for an FET phase-shift oscillator is shown in Fig.

P9.6.

(a) Derive the expression for return ratio.

(b) Find the conditions of oscillation.

(c) What is the best choice of R relative R, so that the oscillator will
work with FETs with low values of u? What is the corresponding
value of w?

In Fig. 9.12a the resistor labelled R/2 in the lower T network is
replaced by a resistor whose value is aR /2.

(a) Find the lattice equivalent of this new twin-T" network.

(b) Write an expression for the voltage transfer function H( jw).

(c) Verify some of the points in Fig. 9.13.

Hint: 1t is advisable to use a computer or a programmable calcula-
tor for this purpose.

In the Wien-bridge oscillator of Fig. 9.14, assume the amplifier has an

infinite input impedance, zero output impedance, and a voltage gain A.

Assume the FET is replaced by a resistor of value aR, /2.

(a) Find the expression for the return ratio T( jw).

(b) Apply the conditions of oscillation to find the oscillator operating
frequency and the required amplifier gain.

(c) Derive the expression for Sy (see section 9.9).



Transistor Equivalent
Circuit Transformations

IT IS SOMETIMES DIFFICULT TO CALCULATE the gain or impedances for a
bipolar-transistor or FET connection, without getting involved in tedious
simultaneous equations solutions. This is usually a consequence of the need
to use mesh or nodal equations for solving these problems, methods which
need not be resorted to when the proper equivalent circuit transformations
are used. Four equivalent circuit transformations will be presented in this
appendix. Two will apply to bipolar transistors and two will apply to FETs.
Their use will facilitate the analysis of feedback amplifiers.

Bipolar-Transistor Equivalent Circuit

The schematic symbol and the small signal equivalent circuit for a bipolar
transistor for the low-frequency case are shown in Fig. A.1. The currents
and voltages shown denote small (incremental) signals for a transistor.

In practice, it is found that the parameters %,, and 4,, do not signifi-
cantly affect the final answers when performing transistor circuit analysis
[1], and so the simpler model of Fig. A.2 can be used for greater conve-
nience. Throughout this book the common emitter model will be used for
bipolar transistors, so that the “e” subscript will be suppressed in all
bipolar-transistor diagrams which follow.

The parameter &, sometimes referred to as 8, links I, to I, by the
equation

I, =h,=pI, (A1)
155
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(b) EJ l I

Figure A.1 Schematic representation (a) and small signal equivalent circuit () for
a bipolar transistor.

Iy I
Bo— —————C

she  (Dhel,

MIE Figure A.2 Simplified equivalent circuit for
E bipolar transistors.

From Fig. A.2 it is clear that
I,=1,+1, (A2)
Substituting (A.1) into (A.2) we get,
IL=(1+h)I,=(1+B)I, (A3)
We can furthermore establish that
I, =al, (A.4)

where we define

h B
“=1J@=1+3 (A.5)

Since B is substantially bigger than unity, it follows that « is very close to
unity.

When utilizing small signal equivalent circuits to solve small signal
problems, direct voltages and direct currents are set to zero when drawing
equivalent circuits.

Example A.1: We wish to find the gain G =V, /V, for the two-stage
amplifier shown in Fig. A.3.
To solve this problem we draw the small signal model for the
two-transistor amplifier as shown in Fig. A.4.
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Rc2

_'VW—’

Figure A.3 Two-stage transistor amplifier.

\'IbZ )
%ﬁllm Rei hip Balps 2Rcp

o1 < +o

Figure A4 Equivalent circuit of the two-stage amphﬁer

Using current division, we can obtain directly from Fig. A.4,

Rcl

=5 'BZR TR R (A-6)

Equivalent Circuit Transformations

When dealing with complicated circuits, the basic equivalent circuit dis-
cussed in the previous section can lead to a great deal of tedious work. We
shall take the transistor equivalent circuit a step further in an effort to
achieve some simplification. In Fig. A.5 we have a transistor configuration
with a very general circuit appearing below the emitter. We are interested in
finding its equivalent circuit from the point of view of an observer looking
at the base side of the transistor at terminals B-G.

. (a) (b)
Figure A.5 Diagrams used for deriving equivalent circuits with respect to the
transistor base.
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= (b)

Figure A.6 Equivalent circuit of a bipolar transistor. (a) From the point of view of
the transistor base. (b) As seen at the collector. .

When terminals B-G are left open circuited, we observe that I, is zero,
hence I, and I, are also zero. Using superposition we readily obtain the
open circuit voltage at terminals B-G:

(Vhe)oo = Vi + RI I, (A7)
When node B is shorted to ground, we solve for I, using superposition,

R, R, 1
(Ib)sc - mﬁ(lb)sc - R, + hl_Il - R, +h, " (A8)

Solving the above for (1,),., we obtain

o v, L (1L+B)R,
(b)sc“_hi+(1+B)R1—1+,3h,-+(1+:8)R1

(A.9)

The last equation and (A.7) characterize the circuit shown in Fig. A.6.

The most noteworthy feature of the equivalent circuit of Fig. A.6a is
that the collector current source BI, does not appear in it. It is not needed in
this equivalent circuit, which is used to perform calculations on the base
side of the transistor, and it would be incorrect to include it in the diagram.
To make calculations on circuitry that is connected to the collector, Fig.
A.6b is totally adequate. It is perfectly acceptable to draw the collector
current source connected to ground, since the impedance seen at the far side
of the current source (at the emitter) does not affect the calculations of
voltage or current at the collector.

The equivalent circuit of Fig. A.6 has other noteworthy features. It raises
the levels of all impedances connected below the emitter by a factor of
(1 + B) and reduces currents by the same factor. Voltages are unchanged by
this transformation. The current I, cannot be shown in this diagram,
however, once I, is calculated then I, can be found using (A.3).

We can arrive at the same kind of equivalent circuit transformation for
the transistor from the point of view of an observer standing at the emitter
of the transistor. The circuits used for this derivation are shown in Fig. A.7.

The procedure used follows along lines similar to that used in obtaining
(A.7) and (A.9). We again use superposition to obtain

(Voe) .= Va+ LR, (A.10)

eg
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Figure A.7 Diagrams used for deriving equivalent circuits with respect to the
“transistor emitter.
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Figure A.8 Equivalent circuit of a bipolar transistor. (a) From the point of view of
the transistor emitter. (5) As seen at the collector.

and

V, R
(1) =(1 +’B)"R_2+2-—h,. +(1 + B)j{szh:lz (A.11)

The last two equations characterize the equivalent circuit shown in Fig.
A.8. We note that the collector current source does not appear in Fig. A.8a.
It is not needed in the equivalent circuit, which is used for performing
calculations on circuitry connected to the emitter of the transistor, and it
would be incorrect to show it. To make calculations on circuitry connected
to the collector we can make use of the circuit shown in Fig. A.8b."

In this equivalent circuit, all impedances connected above the emitter are
lowered by (1 + B), whereas all currents above the emitter are increased by
the same factor. Voltages remain unchanged by this transformation. The
current /, cannot be shown in this diagram, but once 7, is known, I, can be
calculated using (A.3).

Example A.2: Suppose we wish to find the relationship between V;, V5,
and V, for the differential amplifier shown in Fig. A.9. The simplest way
to solve this problem is to draw the equivalent circuit of Fig. A.95,
which is correct for an observer standing at the common point E. Using
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=t
—o1 < +

= = = (a) (b) = = =
Figure A9 (a) Differential amplifier. (5) Equivalent circuit.

superposition we find

o= —5—— . 7 Reh T . 7
g PR TR T TEE TRR T R|TER
(A.12)
Once the above is calculated, we need only
I,=a,l, (A.13)
and '
V,=—-I,R, (A.14)

to find the relationship between ¥}, V,, and V. This example shows how
fairly complicated circuits can be analyzed with ease when the proper
transistor equivalent circuits are used. |

FET Equivalent Circuit Transformations

The schematic symbol and the small signal equivalent circuit for an FET are
shown in Fig. A.10. The currents and voltages shown in the diagram denote
small (incremental) signals. As was previously done for bipolar transistors,
an equivalent circuit will be derived for the FET, which will facilitate
analysis of very complicated configurations.

D
7] 1 Id
G _
e +I-lVgs
Vs

Figure A.10 Schematic representation (a) and
® S small signal equivalent circuit (b) for an FET.
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(@)

Figure A.11 Schematic diagram (a) and equivalent circuit (b), for deriving the
equivalent circuit with respect to the FET drain terminal.

In Fig. A.11 we have an FET configuration with a general circuit
appearing below the source. We are interested in finding an equivalent
circuit with respect to the drain terminal D. When the terminal D is left
open circuited, I, is zero and the voltage at the source terminal S is

V.=V, + LR, (A.15)
Hence

Ves=Vi—Vi=V,—V, = LR, (A.16)
The voltage at terminal D, which is open circuited, is
idoo =V, = ¥, (A17)
Substitution of (A.15) and (A.16) into (A.17) yields
(Vi)oe = =1V, +(1 + p)(V, + L,R)) (A.18)

To find the output impedance with respect to terminal D, we set all
independent sources in Fig. A.11 to zero. We attach an external current
source of value I from D to ground, so that the current I, is equal to I, and
proceed to calculate the voltage at terminal D. The resultant circuit is
shown in Fig. A.12.

First we find

V.= 1R, (A.19)
and

Vo= —-V,= —IR, (A.20)
The voltage at terminal D is

Vi=rd — wV, +V, (A.21)
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D1

Figure A.12 Resultant circuit for finding the output
= = impedance with respect to terminal D.

Substitution of (A.19) and (A.20) into (A.21) yields
Vy=[r,+(1 + p)R]I (A22)

The output impedance at terminal D is given by the bracketed portion of
(A.22). This output impedance and the open-circuit voltage expression of
(A.18) characterize the circuit shown in Fig. A.13.

Substantial simplification is obtained when the equivalent circuit of Fig.
A.13 is used to replace the more conventional equivalent circuits of Fig.
A.11. A few facts about Fig. A.13 are worth noting. The dependent voltage
source is not expressed in terms of the less convenient V,,, but directly in
terms of the independent source ¥, which is the source connected from the
gate of the FET to ground. All voltage sources and impedances, which are
connected below the FET source terminal S, are multiplied by a factor
(1 + p). Currents are unchanged by this transformation. The terminal S
cannot be shown in Fig. A.13 and this figure cannot be used directly to
calculate any voltages below the source terminal S. Once I, is known,
however, then this information can be used to proceed with calculations of
any desired parameters by reverting to Fig. A.11.

We shall examine the FET equivalent circuit as viewed from the source
terminal S, as seen in Fig. A.14. We follow a procedure similar to that used
in arriving at the results (A.15)—(A.22). In this case we find the expression
for (1), and the output impedance from S to ground. Inspection of the
equations then shows they characterize the circuit of Fig. A.15.

Figure A.13 Equivalent circuit of Fig. A.11 as seen
from the drain terminal D.
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Figure A.14 Diagrams used for deriving the equivalent circuit with respect to the
FET source terminal.

— Figure A.15 Equivalent circuit of Fig. A.14 as seen
= from the source terminal S.

This circuit is much easier to use than the circuit of Fig. A.14. The
voltage V,, does not appear in the circuit, hence the solution can be written
directly in terms of V; and any other sources appearing in the circuit.

Example A.3:  We wish to find the relationship between V, and V;, V,, and
V; for the cascode amplifier shown in Fig. A.16.

This problem is easily solved by replacing Q, with an equivalent
circuit appropriate for an observer looking at its drain terminal, and
replacing Q, with an equivalent circuit appropriate for an observer
looking at its source terminal, as shown in Fig. A.17.

By use of superposition and voltage division, we readily find that

vV = Ry+ry +(1 + #1)R1 o)
° R o T+p, 2

n (Ry + 1) /(1 + 1y)
R

[T+ p)Vs—ph]  (A23)

tot
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Figure A.16 Cascode amplifier excited
by three independent voltage sources.

_Bl Tz __/'_‘2_V2 Rz

I+H2  |+H2 T+lp

rdl

I

o <+

+

(I+&4)R,

(|+#|)V3
Figure A.17 Cascode amplifier as seen
= from the output terminal.

where

R;+ry

tot = —TI_‘J;"

The techniques learned so far can also be used for finding imped-

ances. To find the output impedance for this example, we follow the rule

that output impedance is defined as the impedance seen at the output

terminals when all independent sources are set to zero. From Fig. A.17 it
readily follows that the output impedance Z, is given by

Z,=[(1+p)R +ry + R |[(rys + R3) /(1 + )]
(A.25)
|

R + R, +ry+(1+p)R, (A.24)

Special Considerations

Many FETs have drain characteristics which are so flat, that r, can be
considered to be infinite in those cases. The techniques described in this
section remain applicable for those special cases. The problem is solved as
before, but at the conclusion a substitution should be made for p in terms of
r, and g, using the well known identity

B=T8m (A26)
The result is then evaluated in the limit as r, —» co. The transconductance
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8,, Temains finite in the limit, consequently, for that condition, p — oo.

Conclusion

The amount of work that is needed to analyze fairly complicated bipolar-
transistor and field-effect transistor structures is greatly reduced when the
principles presented in this appendix are applied. When these methods are
applied to most feedback amplifier problems, the structures are reduced to
the point where finding the solution becomes an almost trivial problem of
applying voltage division, current division, and superposition.
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EXERCISES

A.1. For the differential amplifier of Fig. A.9, find the impedance seen by
the input source V.

A.2. For the transistors shown in Fig. PA.2, 8 = 50 and h, = 1k. Find the
gains:
(a) Al = IeZ/V;’
(d) 4, =V, /V.
(©) 45

Vo/ Vs

Figure PA.2

A.3. Using appropriate equivalent circuit transformations in Fig. PA.3, find
expressions for:
@ A=V,
(b) The input impedance seen by the input source V.
(c) The output impedance Z,,,.
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Figure PA3

A.4. For the transistors shown in Fig. PA4, h, = 1k and 8 = 100. _
(a) Find the gain 4; = V,/V..
(b) Find the gain 4, = V,,/V..
(c) The impedance seen by input source V; is Z,,. Find Z,,., Z,,,
and Z,,.

Figure PA4

A.5. Using appropriate FET equivalent circuit transformations in Fig. PA.5
find:
(a) The voltage gain V,_/V..
(b) The input impedance Z,.
(c) The output impedance Z,,.

Figure PA.S

A.6. For Fig. PA.6 obtain a simple equivalent circuit suitable for finding V/,,
and then find an expression for it.
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Figure PA.6

A.7. In Fig. PA.7 assume the two FETSs are identical. Find:
(a) The gain V,/ V..
(b) The output impedance.

Hint: Observe that G2 is connected to V.

Vo
A.8. In Fig. PA.8 both FETs have u = 50 and r, = 5k. V, represents the
power-supply ripple voltage. How much of it will appear at the output?

Figure PA.7

I

A.9. Investigate Eqs. (A.23)—(A.25) as r;, = co.

Figure PA.8

Hint: See the discussion surrounding (A.26)



Laplace Transform and
Complex Variable Review

IN THIS APPENDIX a short review of the Laplace transform will be under-
taken so that the relationship between transfer function pole location and
impulse response will be understood. In addition, a short review of complex
variable theory will be presented, so that the derivation of the Nyquist
criterion in Chap. 6 can be more easily understood.

Laplace Transform and Impulse Response [1,2]
Consider a linear circuit with the transfer function

N(s) b,s+b, s+ - +bs+b,

H(S) = D(s) a,s+a,_s+ - +as+ a,

(B.1)

It is well known that networks consisting of lumped, linear elements have
transfer functions, which are the ratios of two polynomials (rational func-
tions) of the complex variable s, with real coefficients {a, } and {5, }. If the
input to the network is a unit impulse 8(¢), which has a Laplace transform
of unity, then the output will be the product of the input transform and the
transfer function H(s). It is clear that the Laplace transform of the output
is H(s) when the input is a unit impulse §(¢). The inverse transform of
H(s), which is A(t), is therefore referred to as the impulse response of the
network. The impulse response of the network is determined by the poles of
the transfer function H(s). A short review will be presented on how to find
the impulse response from a known transfer function.

168
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Transfer Functions with Simplex Poles. The simplest case to consider is
that of transfer functions with first order (simple) poles only. Assuming that
the poles are located at py, p,,..., p,, then H(s) can be written in the form

N(s)

HO) = == G =)

(B.2)

To find the impulse response A(t), H(s) is ekpanded into a partial fraction
expansion of the form

A A A
Ly == z (B.3)

H(s)= + -+
§=P1 S—D S = Py

where the coefficients 4; are found using the equation
A4;= (s —Pi)H(S)|s=p, (B.4)

From a knowledge of the fact that the Laplace transforms of exponen-
tials give rise to poles, namely

Ller] = S—EI—) (B.5)

we see that the inverse Laplace transform of (B.3) is given by
h(t)=Ae?' + A,eP? + -+ + A4, (B.6)
Example B.1: 1t is desired to find the impulse response of a network whose
transfer function is given by ’

9(s? + 7s + 10)
HS) = GG+ a6 + 7

(B.7)

As a first step, it is desired to put (B.7) into the form shown in (B.3).
By the repeated application of (B.4), we find that 4, = 2, 4, = 2, and
A; = 5. The transfer function H(s) can therefore be written as an
equivalent partial fraction expansion

2 2 5

H(s)=s+1+s+4+s+7

(B.8)

Using (B.5) it is readily apparent that the impulse response, which is the
inverse transform of H(s), is given by

h(t)=2e "+ 2e % + 5S¢ ' (B.9)
| |

In this example, we had poles located on the negative real axis of the s
plane, at s = —1, s= —4, and s = —7. These gave rise to decaying
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exponentials in the impulse response. Had the poles been located on the
positive real axis, then /(¢) would have contained rising exponentials and
would have represented an unstable network, one whose energy output rises
indefinitely. A pole at s = 0 would give rise to a constant (dc) output, which
is considered undesirable from a stability point of view. We are interested in
finding the conditions that are necessary for networks to be stable. We see
that for networks to be stable, all real poles must lie on the negative real
axis.

Transfer Functions with Multiple Poles. If H(s) has a root of multiplicity r
at p; as shown below

N(s)
H(s) = - (B.10)
(s =p)(s=py)...(s = p))
then it can be written in a partial fraction expansion of the form
A A A, A, A,
H(s)= =+ 4+ Ly 2 T
S—=p1 STP STh (s—p) (s=p)

(B.11)

The numerator coefficients for the simple poles can be evaluated using
(B.4), but for the multiple poles we use

A4, = ﬁjs_;;;[(s _Pj)rH(S)]

(B.12)

s=p;

The inverse transform for the simple pole terms is found using (B.5). The
inverse transform of the higher-order pole terms is found using

g[Lepl] = _1_ (B.13)
=D | T G- p)

It is readily apparent that multiple poles produce polynomials multiplied by
exponentials.

Example B.2: The application of the above is very simple. Take, as an
example,

H(s)=252+35+7___ Ay + Ay + Ay
(s+1° Tl G+1)? (s+1)°
(B.14)

To find the numerator coefficients of the partial fraction expansion,
we form the expression

(s+1)°H(s) =252+ 3s + 7= A, (s + 1)* + A, (s + 1) + 4,
‘ (B.15)
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The value of A4,; is obtained from (B.15) by setting s = —1. It follows
that 4,; = 6. Next (B.15) is differentiated with respect to s, to obtain

%[(s +1)°H(s)] = (45 + 3) = 245, (s + 1) + 4;, (B.16)

When we set s = —1, we obtain 4;, = —1. D1fferentlat1ng (B.16) again
with respect to s, we get

2
:i—z(s +1)°H(s) = 4 = 24, (B.17)

and it follows from this that A4,; = 2. The partial fraction expansion
therefore takes the form

H(s)= 751 - G +1 o (Sf1)3 (B.18)

The above is inverted using (B.13), and the result is
h(t)=[2—1t+3t]e! (B.19)
"

It is clear that multiple poles produce exponentials which are multiplied
by polynomials. In this case, the pole lies in the left half of the s plane
(at s = —1), so we have a decaying exponential, which very rapidly
overpowers the polynomial as ¢ increases, and we therefore have an impulse
response, which goes to zero as ¢ approaches infinity. A multiple pole at
s =0 would give rise to an impulse response consisting entirely of a
polynomial, which would increase with time and therefore be representative
of an unstable network. We see that the claim that real poles must lie on the
negative real axis for stable systems is supported by the last example, and
that no poles should be allowed on the jw axis.

Transfer Functions with Complex Conjugate Poles. The partial fraction
expansion treatment when complex conjugate poles occur in H(s) is the
same as it is for real poles, but the resulting impulse response is somewhat
different. Since the polynomial coefficients in H(s) are real, then complex
poles must occur in conjugate pairs. If p; is a complex pole, then a portion
of H(s) will be the partial response H,(s) which will have the form
A, A¥

+
s—p; s—pf

H(s) = (B.20)

The asterisk above signifies the complex conjugate. The right-hand side
of the last equation produces a real H,(s) because of the simple fact that the
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sum of a complex number and its conjugate, equals twice the real part of
either the number or the conjugate,

A + A* = 2Re(A4) = 2Re( 4*) (B.21)

The inverse Laplace transform of (B.20) is obtained using (B.5), with the
result

hi(t) = A;ePi' + A*eP' (B.22)
Applying (B.21) to the above we have
h(t) =2Red,er" (B.23)
Writing A4, in terms of magnitude and phase
A; = |A]es (B.24)
and p, in terms of its real and imaginary parts
P =0, + jw, (B.25)
then (B.23) can be rewritten
h,(t) = 2Re|A4,|e/ et/ (B.26)

To put the above into real form we need to use Euler’s formula, which
states that any complex number can be represented equivalently in polar or
rectangular form

Ve’® = Vcoso + jVsin¢ (B.27)
Using this on (B.26), we get the impulse response in real form

h(t) =2|4,le""cos(w,t + 8,) (B.28)

Example B.3: As an example, take

352+ 225 + 29
H(s) = G+ D(s+2+3)(s+2-,3) (B.29)

Using (B.4) to find the partial fraction expansion, we obtain

1 + 14,2 + 1-,2
s+1  s+2+4+j3 s+2-;3

H(s) = (B.30)

In finding the numerator coefficients of this partial fraction expan-
sion, only two had to be found, the last being the conjugate of the
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previous. Using (B.5) the impulse response 4(¢) is found
h(t)=e " +(1+,2)e @ +(1 - j2) e~ @1 (B.31)

According to (B.23), the last can be written in the form

h(t) = e~ + 2Re[2.24¢/1 Mg~ 473 (B.32)

Now Euler’s formula (B.27) is used to obtain the final real form
h(t) =e '+ 4.47e *cos[3t + 63.4°] (B.33)
| |

In this example we had a pole located on the negative real axis of the s
plane, at s = —1, and a pair of complex conjugate poles located in the left
half of the s plane at s = —2 + ;3. The real pole gave rise to a decaying
exponential, whereas the complex conjugate poles gave rise to a sinusoid
multiplied by a decaying exponential. Had the real part of the complex
conjugate pole pair beeen zero, which is to say that these poles would be
located on the jw axis, then the impulse response /() would have con-
tained a pure sinusoid, and this response would have been representative of
an unstable network, one whose power output continues indefinitely. A
worse situation occurs when there are complex conjugate poles on the jw
axis of multiplicity greater than unity. Then the impulse response would
contain a sinusoid multiplied by a polynomial, and this rising output is very
distinctly representative of an unstable network. To have a stable output the
poles must be located in the left-half plane, so that the exponential decay
will dominate over the rising polynomial.

We are now in a position to state the rule for stable networks, which is:
“The transfer function poles of stable systems must lie in the left half of the s
plane.”

Some texts on the subject of stability consider poles on the jw axis to be
conditionally stable. The stricter point of view will be taken here that poles
on the jw axis are undesirable, and a system possessing such poles is
unstable.

Complex Variable Review [3]

Analyticity.  F(s) is a function of the complex variable s, and can be
written in terms of a real part X(s) and an imaginary part Y(s)

F(s) = X(s) +,Y(s) (B.34)
F(s) is said to be analytic in any part of the
' s=0+jw (B.35)
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plane, if it satisfies the Cauchy-Riemann conditions

ax _ay
do  dw

ax e (B.36)
dw  Jdo

The above conditions guarantee that the derivative is unique and is indepen-
dent of the direction of the differential change in s.

Singularities. Those points at which F(s) fails to be analytic are consid-
ered singular. A singularity of great importance is the pole, which is a point
at which the function goes to infinity. To ascertain the degree (multiplicity)
of the pole we use the pole removal procedure as follows: F(s) has a pole of
order (multiplicity) m at s, if

lim [(s = 50)"F(5)] = finite # 0 (B.37)

Example B.4: For the function
1
F(s) = ———
(S) 1-— esT

it is suspected that poles exist at s = jn2# /T for integer values of n,
since the function goes to infinity at those points. It would be interesting
to ascertain the order of the poles. The pole removal procedure (B.37) is
used (along with L’Hospital’s rule)

. : . s —‘jHZTr/T}
1 —jn2a/T)F = lim [ =-1/T
sq,;:.glw/T[(s jn2m/T)F(s)] x—»jilzz'zr/T 1—eT /
(B.38)
Since the above result is finite we conclude that F(s) has first order
poles at s = ju2w/T. ]

Residues. If F(s) has a pole of order m at s = s,, then it is possible to
expand F(s) in the vicinity of s, into the Laurent series

F(s)= - +4,(s —55)" + A,(s — 55) + 4,
B B B
L4 e (B.39)

ST (s5—s) (s = s5)

The constant B, is the residue of F(s) at s,.
The evaluate the residue of F(s) at the mth-order pole s,, use

RES[F(5)] e, = Ty et 5 = 50)"F()] e, (B0
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If F(s) is a rational function of s, namely, it can be written as a quotient
of two functions
N(s)

and the pole at s, is simple, then the simpler formula can be used for
finding the residue

(B.41)

N(s)

Res[F(s)]],-,, = D'(s

(B.42)

N—'

s=s,

Residue Theorem. Let C be a closed contour within and on which F(s) is
analytic except for a finite number of finite multiplicity poles inside of the
contour C. The integral around the contour C taken in a counterclockwise
direction can be evaluated in terms of the residues within the contour C,

¢F(s) ds = 2mj(sum of the residues within C) (B.43)
c

Example B.5: Take the function
55 — 4
s(s —2)

There are two first-order poles, one at s =0 and one at s = 2. The
residues are found by using (B.40) or (B.42). The result is

Res[F(s)]],_, =2
Res[F(5)]],_, = 3

For the contours shown in Fig. B.1 the integrals are

F(s)=

¢ F(s) ds = 2mj Res[ F(s)]|,_, = 27j(2)

G

9SCF(S) ds = 2mj{Res[ F(5)]|,_ + Res[F(s)]|,_,} = 27j(2 + 3) m

Figure B.1 Two contours of integration in
-ier the complex s plane.
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EXERCISES

B.1. In each case, find the partial fraction expansion representation, solve

for the impulse response 4(¢), and if appropriate write it in real form.
(s+4)(s+7)

(2) HG) = GG+ DG+ 3G 79)
‘ 1
b H(s)=———
®) (s) (s +1)’(s + 3)
1
H(s) =
(c) (s) (s+1)(s?+ 25 +2)
2
s
d H(s)=———
@ ()= =
1
©) He) = oes
B.2. A counterclockwise contour integral encircles the poles at s = —1 and
s = —2 for the integrand
F(s) = (s+4)(s+7)

(s+1)(s+2)(s+3)(s+5)

(a) Find the value of the integral.

(b) Find the value of the integral if only the pole at s = —1 is
encircled.

(c) What is the result in parts (a) and (b) if the integral is taken in a
clockwise direction?

B.3. A counterclockwise contour integral encircles the pole at s = —1 for

the integrand

1

F(s)=——"—7F——
(s) (s +1)°(s + 3)

Find the value of the integral.
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B.4. A counterclockwise contour integral encircles both complex poles for
the integrand
1
(s+1)(s*+25+2)

F(s) =

Find the value of the integral.
B.5. Find the residues at all the poles for the following rational functions

of s.
(a) F(s) =ES—2+_1)2
1

®) Fo)=o0vs
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Compensation (cont’d)
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example, 115
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bridge feedback, 32

example, 34
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Feedback amplifier (cont’d)
shunt-series, 28, 30
shunt-shunt, 28, 30

FET:
equivalent circuit, 160

transformations, 160
high-frequency model, 57

Gain crossover, 89
Gantmacher, F. R., 92
Grabel, A., 77
Guillemin, E. A, 153

Halkias, C. C., 165

Hartley oscillator, 139, 143

Hayt, W. H., 77
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and FETs, 57

Impedances, 9
(See also Chapter 2)
Impulse response, 168

Lag-lead compensation, 105
Laplace transform, 168
Loop gain, 2, 11
high-frequency analysis, 56
by Cochrun and Grabel method, 67
2-transistor example, 69
3-transistor example, 71
by using CORNAP, 58
zeros, 61
(See also Return ratio)
measurement, 38
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41
current ratio, branch injection, 48
exact method, 49
terminating the cut, using iteration,
43
using current ratio, 40
using voltage ratio, 38
voltage ratio, node injection, 47
related to sensitivity, 127, 129
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Miller, J. M., 77

Miller (effect) approximation, 56, 64
Millman, J., 165

Narrowbanding, 102
Neudeck, G. W, 77

Noise in feedback amplifiers, 7
Nyquist, H., 92

Nyquist criterion, 87

Oscillation:
conditions of, 134
minimum condition, 134
Oscillator:
Colpitts, 139, 141
crystal control, 144
Hartley, 139, 143
phase shift, 145
twin-T, 147
Wien-bridge, 149

Phantom zero compensation, 112
Phase crossover, 89

Phase-shift oscillator, 145

Poles of stable systems, location, 173

Reference-controlled source, 12
Residue theorem, 175
Residues, 174
Resonant circuit:
parallel tuned, 135
series loss, 136
transformerlike, 138
Response:
of second-order feedback amplifier, 99
of second-order systems, 95
to unit step, 98
Return difference, 3
Return ratio, 2, 11
definition, 12
example, 12, 14
(See also Loop gain)
Rosenstark, S., 9, 53, 77
Routh-Hurwitz criterion, 82
degenerate cases, 83

Second-order feedback amplifier response,

99
Second-order system response, 95
to unit step, 98
Sensitivity, 4, 124
(See also Chapter 8)
Sensitivity related to loop gain, 127
Singularities, 174
Stability, 80
characteristic equation, 81
encirclement theorem, 84
gain crossover, 89
Nyquist criterion, 87
phase crossover, 89
Stability margins, 88
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transformations, 157
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