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Topics Covered in the ECE ;P Course

1. The register and chip architecture of the 68000 CPU.
2. Assembly and emulation of 68000 assembly language files.

(a) Demonstration of the above. Dumping memory, tracing, breakpoint-
ing, register and flag display.
(b) The V-flag from the supplementary notes.

3. The ASCII table. The landmarks are: ‘A’ = 41H, ‘a’ = 61H, ‘0’ = 30H,
SP = 20H, CR = 0DH, LF = 0AH.

4. Interpretation of Motorola HEX S-files. Consult the supplementary notes.
5. Hand assembly.
6. Addressing modes, sign extension must be considered. Examples:

(a) Immediate: MOVE.W #8$4586,D0.
(b) Memory direct: MOVE.B $4586,DO0.

(¢) Memory direct: LEA $8600,A3, sign extension depending on how
it’s assembled.

(d) Address register indirect:

i. MOVE.L (A1),D1
ii. With predecrement MOVE.L —(A1),D1. Decrement depends on

.B, W or .L.

iii. With posticrement MOVE.W (A1)+,D1. Increment depends on
.B, W or .L.

iv. With displacement MOVE.B d;6(A2),D1. Note size of displace-
ment.

v. With displacement and indexing MOVE.W dg(A2,A3.W),D2.
Note size of displacement.

7. Conditional branches. Differences between arithmetic and logic branches.
8. Shifts, ROLs for bit manipulations.
9. ANDing and ORing with MASKs.

10. Distinctions between ASCII, BCD and packed BCD data.

11. The stack. PUSHes, POPs and subroutine calls and returns. Stack dia-
grams are very helpful and should be used to avoid confusion.

(a) A registers get stored in higher memory, D registers in lower memory.
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12.

13.

14.

15.

16.

17.

18.

19.

20.

(b) Higher number registers go into higher memory, lower number regis-
ters into lower memory.

The exception table. It contains longwords (vectors) which are the ad-
dresses of the service routines for the individual exceptions. The first two
vectors are used by the CPU to initialize the SSP and the PC after reset.

Interrupts. There are two varieties.

(a) Autovectoring is signaled when the VPA pin on the M68000 CPU is
pulled low. (This is done with the AVEC on the M6S8EC000 CPU.)
The IPL; ...IPLy CPU pins define the autovector number.

(b) User vectoring is signaled when the DTACK pin on the CPU is pulled
low. The CPU then reads the user vector off the lowest 8 pins of the
data bus.

Base conversions and IEEE floating point format as covered in the sup-
plementary notes.

Address decoding.

(a) X’s are variables and are used to denote address pins going directly
to the memory or I/O chips.

(b) Y’s are don’t cares and are used to denote address pins which are
unaccounted for, and determine the number of address ranges for the
decoding system.

The use LDS and UDS with 16-bit memory systems.

(a) LDS is used to read the LSB to data pins Dy — Dy at odd addresses.
(b) UDS is used to read the MSB to data pins D15 —Dg at even addresses.

Timing diagrams and the significance of using DTACK for creating wait
states.

Serial port transmission. Waveforms illustrated in the supplementary
notes. Studied in connection with the UART on the single board computer
schematic.

Parameter passing for reentrant subroutines and the LINK and UNLK
instructions as covered in the supplementary notes.

Programs, programs, programs, but usually short ones.
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The ASCII Chart

The code that is used for the transfer of information between computers and
their peripheral devices is the American Standard Code for Information Ex-
change, commonly referred to as ASCII code. A tabulation of the code is shown
in table 1.1. Below is a summary of the salient points of the ASCII chart.

The portion of the ASCII code in the range $20 to $7E represents readable
characters corresponding to the Roman alphabet in both upper and lower case,
the numbers from 0 to 9, special symbols such as (, }, $, &, as well as punctuation
marks. Thus a $50 sent to a computer monitor or a printer will cause a letter P
to appear on the peripheral. If the character wis typed on a keyboard, then the
code $77 is sent to the computer. Some landmarks in the ASCII table worth
noting are the capital letters, which begin with $41 representing the letter A, and
ascending in proper order. The lower case letters begin with $61 representing
the letter a. The lower case and upper case letters differ from each other by
$20. It is also notworthy that $20 is the code for a space.

The ASCII code in the range 0 to $1F represents control characters. As an
example, they are the codes sent to a computer by the keyboard when a letter
key is struck while the CTRL key is held down. To determine the HEX code for
this operation, simply subtract $40 from the ASCII value of the capital letter.
Thus CTRL-I produces HT, a horizontal tab. A CTRL-H sends the code for a
backspace, whereas CTRL-L produces a form feed which can be used to clear a
screen or to have a printer eject a sheet of paper.

Typing CTRL-S produces a DC3, which is also known as an XOFF. It can
be used in most programs to stop screen scrolling. The complementary action
is obtained by typing CTRL-Q, which produces a DC1, also known as an XON.
This can be used in most programs to restart screen scrolling. The ACK is
often used in serial MODEM communication systems to acknowledge receipt of
a block of valid data, whereas NAK can be used to as a negative acknowledge.
And when the computer sent to the terminal a CTRL-G, which is a BEL, we
used to get a ring but now get a beep. We should not omit that a carriage
return (CR) is a $0D, and is used to bring the screen cursor to the beginning of
the current line. In addition a line feed (LF) is a $0A, used to bring the screen
cursor to the next line. Both are needed at the end of a line to make an orderly
transition from one line to the next.



Table 1.1: The ASCII Code Chart.

Dec Hex Char H Dec Hex Char H Dec Hex Char H Dec Hex Char‘

0 00 NULJ| 32 20 SP | 64 40 @ | 96 60
1 01 SOH| 33 21 ! 65 41 A || 97 61 a
2 02 STX| 34 22 v 66 42 B 98 62 b
3 03 ETX| 35 23 # | 67 43 C 99 63 ¢
4 04 EOT| 36 24 § 68 44 D | 100 64 d
5 05 ENQ| 37 25 % | 69 45 E || 101 65 e
6 06 ACK| 38 26 & | 70 46 F || 102 66  f
7 07 BEL| 39 27 ° 71 47 G || 103 67 g
8 08 BS | 40 28 72 48 H | 104 68 h
9 09 HT | 41 29 ) 73 49 I || 105 69 i
10 0A LF | 42 2A 74 4A J | 106 6A  j
11 0B VT | 43 2B + || 75 4B K | 107 6B k
12 0C FF | 44 20 76 4C L || 108 6C 1
13 0D CR | 45 2D - 77 4D M || 109 6D m
14 OE SO | 46 2E . 78 4E N || 110 6E n
15 OF ST || 47 2F / 79 4F O || 111 6F o
16 10 DLE| 48 30 0 80 50 P | 112 70 p
17 11 DC1 | 49 31 1 81 51  Q || 113 71 q
18 12 DC2| 50 32 2 82 52 R | 114 72
19 13 DC3| 51 33 3 8 53 S 115 73 s
20 14 DC4|| 52 34 4 83 54 T | 116 74 ¢
21 15 NAK| 53 35 5 8 55 U | 117 75 u
22 16 SYN| 54 36 6 8 56 V| 118 76 v
23 17 ETB| 55 37 7 87 57 W |[119 77 w
24 18 CAN| 56 38 8 88 58 X | 120 78 «x
25 19 EM || 57 39 9 89 59 Y | 121 79 y
26 1A SUB | 58 3A 90 5A 7 122 TA 2
27 1B ESC | 59 3B  ; 91 5B [ | 123 7B {
28 1C FS || 60 3C < 92 5C \ | 124 7C |
29 1D GS || 61 3D = | 93 5D ] |125 7D }
30 IE RS | 62 3E > 94 58 -~ | 126 TE -
31 IF US | 63 3F 7 95 5F _ | 127 7F DEL




The 68EC000 CPU
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Figure 1.1: The block diagrams for the 68EC000 CPU.
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How to Use the Tools for
this Course

The EASy68K Development System

= EASy68K Editor/Assembler v3.5 Jan-06-2006 - [sample.X68] - |0 [X]
File Edit Project Options lindow Help
DedsS & @ & | D

!} Thi= is a very simple sample program rs
START  ORG $8000 left click here to il
MOVE.E DO,D1 assemble the program
AND.W D3,DS
ADD.L D7, DE
CLE.E D3
NOT.B D3
SUB.B  D1,D5 B
END START b

10 coll  Modifiec Insert |

Figure 1.3: Creating the source file SAMPLE.X68

The assembler and emulator that is offered by Antonakos is a perfectly work-
able development system. The assembler ASM68K and the emulator EMUG8K
have to be executed in DOS. Most students have difficulty mastering the intrica-
cies of the DOS operating system. Accordingly it is recommended that students
download the freely distributed and open EASy68K Development System. This
system is windows oriented and it should be easy to become familiar with it.



When you open EASy68K, you have the editor available to you. It is shown
in figure 1.3. Some instructions have been typed in to create the source file.
The fields are separated by TABs to keep the file columns aligned neatly. Once
the file typing is complete it can be saved in a convenient folder, in this case
using the name SAMPLE.X68. This step creates the source file.

Left clicking on the arrow icon shown in figure 1.3 causes the file to be as-
sembled. This creates the two additional files SAMPLE.L68 and SAMPLE.S68.
The latter is a HEX file and will be discussed later on. The file SAMPLE.L68
is the list file and shows the the memory addresses and OP-codes assigned to
each instruction. The listing of this file appears below.

00008000 Starting Address
Assembler used: EASy68K Editor/Assembler v3.5 Jan-06-2006
Created On: 9/11/2006 2:03:20 PM

00000000 1 ; This is a very simple sample program
00008000 2 START ORG $8000

00008000 1200 3 MOVE.B DO,D1

00008002 CA43 4 AND.W  D3,D5

00008004 D487 5 ADD.L  D7,D2

00008006 4203 6 CLR.B D3

00008008 4603 7 NOT.B D3

0000800A 9A01 8 SUB.B  D1,D5

0000800C 9 END START

No errors detected
No warnings generated

The two last lines indicate that there were no problems associated with the
source file. The first line in the source file has a leading semicolon (;) and
is considered a comment by the assembler and does not produce any OP-code.
The ORG in the second line is a directive telling the assembler that we will want
the file to reside (originate) starting in memory location $8000. Accordingly all
the instructions that follow are assigned addressed starting with $8000.

In this particular case, the instructions typed into this program all assemble
into one word OP-codes. The instruction MOVE.B D0, D1 will be loaded into
memory location $8000. It has the opcode $1200 which, when executed, will
copy a byte of data from data register DO into data register D1. Similarly for
the other instructions.

An instructive example

In figure 1.4 we have typed the source file for another example. In the first
two lines we initialize the registers DO and D1 with longwords. The # signs
preceding the hex numbers indicate that these are immediate data operations.



m EASy68K Editor/Assembler v3.5 Jan-06-2006 - [sample1.x68] - | 0| X

Ded& R
; Another example program
here org $38000
move.l #H#51234569F,d0 :Initialize 2
move.l #$A98T72DS8E,dl :registers
add.b do, dl sadd the bytes
end here

S col4s  Modifiec Insert |

Figure 1.4: The emulation window for the file SAMPLE1.X68

The data to be moved into the registers consists of the hex numbers immediately
following the # signs. It is not necessary to clear the registers before moving
data into them. The data will overwrite the existing data in the registers.

In the third line the CPU will add the byte in register DO to the byte in
register D1, and the result will be stored in the byte portion of the D1 register.

Once the file is assembled (consult figure 1.3 to see how that is done) the
window shown in figure 1.5 appears on the screen. To single step through
the program you can left click on the icon indicated or simply type F8. This
procedure is called tracing.

After we trace the first instruction we see that indeed D0 = $1234569F. The
Z-flag and N-flag are both zero indicating that the value in DO is not 0, and
that it is not negative. After the second instruction is traced we observe that
indeed D1 = $A9872DS8E. This time the N-flag equals one, indicating that the
longword in D1 is negative. This is indeed the case since the longword has a
binary 1 in the most significant bit position.

The third instruction should only affect the byte portion of D1. After tracng
it we find that D1 contains the longword $A9872D2D, confirming that predic-
tion. The sum of the HEX bytes $9F and $8E is $12D. Since this operation was
restricted to one byte, the 1 in the result $12D could not possibly spill into the
word portion of D1. It was stored in the C-flag which has changed to 1. In this
instruction the X-flag always copies the C-flag so it is also equal to 1. Since
two negative bytes $9F and $8E were added, we should have gotten a negative
result. But the sum $2D in the byte position of the D1 register is positive,
contrary to what was expected, so the oveflow V-flag is set to 1.



=t EASy68K Slmulatnr v3.5 Jan-06-2006

File Run WView left click here to single step the instructions

of @] w7 ~E ¢ e

~Registers

DO=|ppoooooo  P4=|oooooooo AO=|00000000 Ad=|00000000 TS INT XNZVC Cycles
D1=|ppoooooo P5=|oooooooo Al=|o0000000 AS=|00000000 5R0010000000000000 | 2
D2=|pooooooo  Pé=|oooooooo A2=|o0000000 A6=|00000000 VUS=|00FFO0O0 “ea":"":'&*l
D3=|ppoooooo  P7=|oooooooo A3=|oooooooo A7=|01000000 SS=|01000000 PC=|00005000

Address ---—----- Code--—---—-—— Line ——-————————- Source-------—-—-—--— b

oooooooo0 1 ; Another example program
||unuanun Z here org $8000
o : C 3 move,l #H51234569F,d0 Initialize 2
o 223C ASBTZDGE 4 #$A9872ZD8E,dl ;registers
o pzoo g do, d1 radd the bytes
0000800E 6 end here

Figure 1.5: Emulation of the program SAMPLE1



A portion of the list file, samplel.L68, appears below. The first program line
is a comment and produces no OP-code. The assembler was instructed in the
second line that this program must be originated at at memory address $8000.
Therefore it assigns the value $8000 to the label here. The symbol table at the
end of the list file confirms this. The ORG is a directive to the assembler and
produces no OP-code. The third line contains the opcode $203C, which instructs
the CPU to move a longword of immediate data into the DO register. The data,
$1234569F, immediately follows the OP-code, hence the name immediate data.

00000000 1 ; Another example program

00008000 2 here org $8000

00008000 203C 1234569F 3 move.l #$1234569F,d0 ;Initialize 2
00008006 223C A9872DSE 4 move.l #$A9872D8E,d1 ;registers
0000800C D200 5 add.b do,d1 ;add the bytes
0000800E 6 end here

No errors detected
No warnings generated

SYMBOL TABLE INFORMATION
Symbol-name Value

It is recommended that you try a few sample programs using this system in
order to become acquainted with it.

The emulator in this system has a number of functions built in. In order to
make the transition from the ECE252 lecture course to the ECE395 laboratory
seamless, I've taken the trouble to build many of these functions into the monitor
program for the ECE395 single board computer (SBC). Table 1.2 shows all the
functions of Sim68K that the single board computer of ECE395 will recognize,
so students in ECE252 should confine themselves to these.

The Antonakos Development System

If you know DOS quite well then you can use this system without difficulty.
Otherwise it is recommended that you go back to the preceding section.
Working in a DOS window, create a subdirectory \ASM68K on your hard
drive. Copy to that subdirectory the files of ASM6S8K.EXE and EMUG68K.EXE
from the compact disk which comes with Antonakos’s book. Consult the website
http://www.sunybroome.edu/ antonakos_j, if you want to download later
versions of these files. These will undoubtedly contain corrections and updates.



Table 1.2: The features available in the Sim68K simulator and on the SBC. Put
the task number in D0.B and use TRAP #15 for all the tasks.

’ Task \ The function and its requirements.

0 | Display string at (A1), D1.W long (max 255) with CR, LF.

Display string at (A1), D1.W long (max 255) without CR, LF.

Read string from keyboard and store at (Al), length in D1.W (max 80).

Read a number from the keyboard into D1.L.

Read single character from the keyboard into D1.B.

Display the character in D1.B on the screen.

| O O = DO

Set D1.B to 1 if keyboard input is pending, otherwise clear it.
Use task 5 to read it.

9 | Terminate the program gracefully.

12 | Controls keyboard echo. D1.B = 0 to turn it off, D1.B # 0 to turn it on.
Echo is restored on ‘Reset’ or when a new file is loaded.

13 | Display a null terminated string at (Al) with CR, LF.

14 | Display a null terminated string at (A1) without CR, LF.

Make sure that you have a path to a non-document type of editor that
produces pure ASCII files. WinWord is distinctly not to be used but NOTEPAD
and EDIT will do the job. The latter is less desirable because it makes a mess
out of TABs.

On page 13 of Antonakos’s book he discusses the Hello program. Create the
source file HELLO.ASM using a non-document type of editor. The source file
should look something like this:

cr equ $d
1f equ $a
org $8000
enter lea hmsg,a3 ;point A3 to the message
trap #3 ;Send the string to the screen
trap #9 ;Do a graceful exit
hmsg dc.b ’Hello!’,cr,1£f,0
end enter

Note the use of equates at the beginning of the program. In general we use
equates to set the values of parameters that we might want to change sometime
in the future.

Assemble the resultant HELLO.ASM program by typing ASM68K HELLO.
If errors are signaled when the assembly is finished then read the file HELLO.LST
to see where the errors are and correct them. Reassemble the program and have
a look at the resultant HELLO.LST and HELLO.HEX files.

The file HELLO.LST lists the assembled instructions and it is largely self
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explanatory. A slightly edited version of the file is shown below:

<0D> cr equ $d

<0A> 1f equ $a

008000 org $8000

008000 47F9 0000 800A enter 1lea hmsg,a3 ;point A3 to the message
008006 4E43 trap #3 ;Send the string to the screen
008008 4E49 trap #9 ;Do a graceful exit

00800A 4865 6C6C 6F21 hmsg dc.b ’Hello!’ ,cr,1f,0

008010 ODOA 00

008013 end enter

8 lines processed.
0 warnings.
0 fatals.

To the left of each line is the loading address of the code and to the right of
that you find the OPCODE (e.g. 47F9 in the first line) followed by from 1 to 4
words of data needed by the opcode.

Emulate the HELLO program by typing EMU68K HELLO.

Creating a Report in DOS

When operating in a DOS window, open the .LST file with NOTEPAD. Emulate
the program in a DOS window. Right click on the top DOS bar, then on EDIT,
then on MARK and then highlight the emulation. Hitting ENTER copies it to
the DOS buffer. Now paste the emulation into the NOTEPAD containing the
.LST file. This is a way of creating a .PRN file showing the .LST file and the
emulation on one page.

An example of such a solution is shown below. This procedure should be
carried out with every assigned programming problem. All programs submitted
for grading should be in this format.

<0D> cr equ $d

<0A> 1f equ $a

008000 org $8000

008000 47F9 0000 800A enter lea hmsg,a3 ;point A3 to the message
008006 4E43 trap #3 ;Send the string to the screen
008008 4E49 trap #9 ;Do a graceful exit

00800A 4865 6C6C 6F21 hmsg dc.b ’Hello!’,cr,1£,0

008010 O0DOA 00

008013 end enter

8 lines processed.
0 warnings.
0 fatals.

11



c:\ECE252\ASMfiles>emu68k hello

68000 Emulator V4.2, 1/10/05

53926 (0xD2A6) bytes allocated for emulator memory.
S008000068656C6CEFE3
S5116800047F90000800A4E434E4948656C6C6F210D0A004B
$90380007C

Starting address: 8000

hello.hex loaded into emulator memory.

Enter ’?’ for help

-7
Author

A
Breakpoint B number (1-4) address (0 to disable)
Dump D [address] [lines]
Fill F start-address stop-address pattern-byte
Enter E [address] (use <cr> to skip over a byte

and any illegal key to exit)
Go G [address] , [break address 1] , [break address 2]

Ex: G 8200 (begin execution at $8200)

Ex: G 8200, 8212 (begin execution at $8200 with
temporary breakpoint at $8212)

Ex: G 8200, 8212, 8348 (begin execution at $8200 with
temporary breakpoints at $8212 and $8348)

Ex: G , 8212, 8348 (begin execution at current PC with)
temporary breakpoints at $8212 and $8348)

Help ?
Hex H numberl number2
Load L filename
Quit Q
Register R [register]
Trace T [address] , [lines]
Ex: T 400 (begin trace at $400)
Ex: T 400,5 (trace 5 inst. starting at $400)
Ex: T ,5 (trace next 5 inst. at current pc)
Unassemble U [address] , [lines]
Ex: Same syntax as Trace command
)
Hello!
Program exit at address 00008008
-q

c:\ECE252\ASMfiles>

12



Deciphering of Motorola HEX S-files

Another file that is produced during the assembly of the source file is the HEX
file. It contains address information, data and executable code for the assembled
source file. It is the file that is used for the emulation of the program and it
may also be downloaded for execution on the single board computer (SBC)
that students use in the microprocessor laboratory. In the case of the HELLO
program this file takes the form:

S5008000068656C6C6FE3
S5116200047F90000200A4E434E4948656C6C6F210D0A000B
59032000DC

The EASy68K assembler creates files with the extension .S68. Antonakos’s
assembler creates files with the extension .HEX. Both types are Motorola HEX
S-files.

A Motorola HEX S-file consists of pure ASCII characters. It means that it
can be printed on a computer screen, as well as on a printer, without producing
any smileys or aces of spades. Although the explanation below deals with the
file HELLO.HEX shown above, it applies equally to all HEX S-files.

The SO in the first line indicates this is a header line. For convenience it is
repeated below along with the explanation.

S008000068656C6CE6FE3

08 means there are 8 bytes that follow.

0000 is an address, which is meaningless in the header.

68 65 6C 6C 6F are ASCII byte codes for the filename HELLO.

E3 is the check byte used to obtain the hex check sum as below:
hex check sum = 08 + 00 + 00 + 68 + 656 + 6C + 6C + 6F + E3 = FF

The hex check sum value of $FF attests to the integrity of this line of data.

It is noteworthy that the .S68 HEX-files created by the EASy68K assembler
are always given the name 68KPROG  11CREATED BY EASY68K irrespective of
the name of the source file.

The HEX file can have any number of lines beginning with S1. These lines
contain code, data, and a 16-bit load address. In this particular example we
have:

5116200047F90000200A4E434E4948656C6C6F210D0A000B

This line contains code and data. The 16, following the S1, says
there are $16, or 22D, bytes that follow.

2000 means the bytes start loading at this 16-bit HEX address.
The rest, with the exception of OB, are the bytes to load.

OB is the hex check byte as explained previously.

Some assemblers produce lines beginning with S2. These lines contain code,
data, and a 24-bit load address. As an example we have:

13



S208AF800032004281D3

08 says there are $8 bytes in this line.

AF8000 means the bytes load at this 24-bit HEX address.
The rest, with the exception of D3, are the bytes to load.
D3 is the hex check byte as always.

The line beginning with S9 indicates that this is a file-terminating footer-line
with a 16-bit program entry-address. In our example it we have:

The line S9032000DC means this line contains a 16-bit
program entry-address, in this case 2000. The byte
count is 03 and DC is the hex check byte.

Some assemblers produce a footer line beginning with $8. This line is in
all respects identical to the previously discussed footer line but it has a 24-bit
program entry-address.

The line S804AF8000CC means this line contains a
24-bit program entry-address, in this case AF8000. The
byte count is 04 and CC is the hex check byte.
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Some Possible Short
Practice Programs

In the beginning of his book Antonakos’s book he discusses the Hello program.
This is as simple an example of assembly language programming as you’ll ever
find and it can be used to become familiar with the assembler and the emulator
which are used with this course.

Create the source file HELLO.ASM using a non-document type of editor.
Assemble the resultant HELLO.ASM program by typing ASM68K HELLO.
If errors are signaled read the file HELLO.LST to see where the errors are
and correct them. Reassemble the program and have a look at the resultant
HELLO.LST and HELLO.HEX files.

Emulate the program using EMU68K HELLO. Become familiar with the
HELP menu of the emulator by typing ?. Contrary to what most students
think, there is more to this emulator than just the tracing option.

Make the change necessary to make sure that instead of getting the terrible
looking final result:

Hello!Program exit at address 00002106

you get the rather more attractive result:

Hello!

Program exit at address 00002106

The above program can also be used with the EASy68K system. But the
TRAP #3 used in Antonakos’s sytem will have to be replaced with either task
13 or task 14.

Now that you have warmed up using the HELLO program you are ready for
something more interesting. Write and emulate the following short programs.

15



. ADD2.ASM

; Write and test a short program which will add a
; byte in DO to a byte in D1. Use the emulator to
; test the program for various values. Look at the
; various flags and see how they are affected by

; your choice of values. Repeat for subtraction.

org $2000
start -
trap #9
end start
. TESTIT.ASM

; Write a short program which will test a byte

; in DO to see if it is greater than $70 and

; less than $FA. If it is, then return with DO.B

; set to $FF. If not then DO.B is to be reset to

; zero. (NOTE: Be careful to distinguish between

; arithmetic and logic branches.) Use the emulator
; to test the program for enough values.

org $2000
start -
trap #9
end start
. FACTOR.ASM

; Calculate 5! The result is to appear in D1.L.
; Initialize a loop counter as well as the
; starting value in D1.L. Then do the looping.

org $2000

factor ---

again ; Some looping will be required.
trap #9
end factor
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4. FINDX.ASM

; Put the displacement of ’x’ from the
; start of MESG in D1.B. If none found
; then D1.B = $FF. This ASCII string is
;_not_ terminated with a NULL.
org $2000
findx
; Initialize the source, destination and loop counter
; registers. Get assembler to calculate the message
; length for the loop counter. Do the searching.
; The comparison can be made with #’x’.

succes trap #9

org $2020
mesg dc.b ’This is an easy exercise.’
mesge

end findx

5. STRCNT.ASM

; Write a routine to count the bytes in the ASCII
; string at STRING. The NULL is not counted.
org $2000
; Initialize the byte counter and pointer
strcnt
;then do the counting by looping.
loop

exit trap #9

org $2100

string dc.b ’All men are created equal. ’
dc.b ’They are etc.’,0
end strcnt

6. MOVENUL.ASM

; To move a message from memory location LOC1 to

; memory location LOC2. The NULL is also moved.
org $2000

; Initialize the pointers AO and Al.

movenul --

; Use a loop to do the moving and remember that the
; MOVE instruction sets the Z-flag properly.
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loop -

quit trap #9

org $2100

loc1l dc.b ’This is a fantastic course!’,0
org $2200

loc2 ds.b 50 ; 50 uninitialized bytes
end movenul

7. MOVEFF.ASM

; To move a message from memory location LOC1 to

; memory location LOC2, but first prefill 200 bytes
; of the target memory with FFs. The message below
; is terminated with a NULL.

org $2000
; First prefill the target space with FFs.
moveff
; Now do the move of the message.
trap #9
org $2100
loc1 dc.b ’This course is fantastic!’,0
org $2200
loc2 ds.b 200
end moveff
8. MOVIT.ASM

; To move a message from memory location MESG to memory

; location DEST.

; This message is absolutely not terminated with a NULL.
org $2000

; Initialize the source, destination and loop counter

; registers. Get assembler to calculate the message

; length for the loop counter. Do the moving.

movit -=
trap #9
org $2020
mesg dc.b ’This course is terrific!’
mesge
org $2040
dest ds.b 50 ;50 uninitialized bytes
end movit
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9. CONCAT.ASM

; Use of a subroutine is emphasized. Program to
; concatenate two parts of a string located

; at ST1 and ST2 and put the result at DEST.

; For the 1st part of the message initialize

; registers and call the subroutine MOVALL.

; Repeat the above for 2nd part of message.

org $2000
concat --—-

trap #9
; Subroutine for doing the moving
movall --

rts

org $2040
stl dc.b ’George Washington °’
stle

org $2060
st2 dc.b ’slept here.’
st2e

org $2080
dest ds.b 50

end concat

10. CRYPT.ASM

; The oldest and simplest encryption method is the

; Caesar cipher. The encryption method consists of

; changing the letters of the Roman alphabet by a

; fixed offset. We wish to encrypt the message stored
; at SOURCE into the message stored at MESSAGE. In our
; case we wish to change ’a’ to ’h’, ’b’ to ’i’, and

; so on. This should make the message impossible to

; read by only the very stupidest of enemies. The NULL
; 1s not crypted.

org $2000
aich equ ’h’ ;Change as required
eh equ ’a’
; Initialize registers
crypt -
; Do the moving and adding
loop -
quit trap #9 ;exit gracefully
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org $2100

source dc.b ’Alert all centurions!’,0

org $2140

message ds.b $40

end crypt

11. ENCRYPT.ASM

’

In a naive cryptography scheme we take the string at
MESG and add 1 to the first letter, 2 to the second,
and so on. Put the encrypted message at CRYPTED. The
NULL is not to be encrypted.

org $2000
Initialize registers

encrypt --

’

; Do the crypting

loop -

exit trap #9

org $2100

mesg dc.b ’Tell all the spies to lay low ’
dc.b ’else they run the risk etc.’,0
org $2400

crypted ds.b 70

end encrypt

12. KBDIN.ASM

At KBDBUF we have some arbitrary string of 5 ASCII

digits, the most significant is first. Convert this

string of 5 ASCII digits to a binary number at BINNUM.

The ASCII digits are changed to BCD first. Then the

number is calculated using nesting, like this:

NUM = {[(num1*10 + num2)*10+num3]*10+num4}+*10+numb
org $2000

kbdin --

loop -

exit trap #9

org $2100
kbdbuf dc.b ’566394° ;What’s the biggest we can have?
org $2110
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binnum ds.1l 1

end kbdin

13. BINASC.ASM

’

Subroutine for taking a 16 bit binary number at
HEXNUM and converting to ASCII decimal digits.
For example, 23AFH in HEX is converted using
23AFH / 10D = 391H rem 5. The 5 is the least
significant digit of the original number. We OR
it with 30H to get the ASCII 35H. Continue with
391 / 10D = 5BH rem 3, etc. The result for the above
number should be ’9135° in ASCII. All registers
used are saved and restored.

org $2000

; Point A0 to charsto+6 and initialize other registers.

binasc -—-

’
’
’

’

HINT: DIVU produces a 16-bit quotient in the LSW of

; the destination. The remainder is in the MSW of the

destination. The destination must have the MSW = O
at the outset.

here -
trap #9
; Storage areas
org $2030
hexnum dc.w $23AF ;binary number here
org $2040
charsto dc.b 70’
ds.b 5
end binasc

14. PACK.ASM

Routine for packing 8 ASCII numbers
found at CHARSTO. The resulting numbers
are stored at PACKED. All registers used
are saved and restored.

org $2000

pack

’

; Save registers, fix up pointers and loop counter.

loop

’

; Do everything on a byte basis, pick up ASCII byte,
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; mask out 30H, and move into position.
trap #9

; Storage areas
org  $8030

charsto dc.b ’95465783° ;ASCII input
org  $8040

packed ds.b 4 ;Packed BCD output
end pack

15. ADDBCD.ASM

; To add 6 packed BCD bytes (12 decimal digits)
; stored at STRING1 and STRING2 and put the
; result at STRING3.
org  $2000
addbcd
; Make sure that pointers point to end of each string
; of numbers, because addition is done from right to
; left. Also clear the X-flag before you start.
; Fix up loop counter too.
loop
; Do the addition in a loop.
trap #9
; Storage areas
org  $8030
stringl dc.b $45,$32,$78,$97,$56,%64
org  $8040
string2 dc.b $51,$56,%71,$89,$57,$28
org  $8050
string3 ds.b 6
end addbcd
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Branch Insructions
Simplified

In figure 7?7 we have a line representing all HEX bytes.

7F | $80 FF
DI1.B T $4C $ $ DO0.B T $B3 s

Figure 1.6: The number line in HEX bytes.

Suppose D1.B = $4C and D0.B = $B3. In the logic sense the numbers are
treated in a continuous line. So D0.B > D1.B, because $B3 is to the right of
$4C. But that does not hold true in the arithmetic sense, because the numbers
from 0 to $7F are positive, whereas those from $80 to $FF are negative. In the
arithmetic sense D0.B < D1.B.

The Bcece, which are the branch on condition instructions, exist in both arith-
metic and logic versions. Let us assume that we just executed the instruction
CMP.B D1,D0. The arithmetic branches rely on a signed comparison and the
logic branches rely on an unsigned comparison. Assume that the CMP instruc-
tion is immediately followed by one of the branch instruction listed in the tables
below.

Warning: The CMP.B D1,D0 instruction sets flags on the basis of the com-
parison between DO and D1. If an instruction is inserted between the CMP and
the branch instruction, then the inserted instruction will most likely modify the
flags, and the expected branch will not take place as expected.

You can look at table 3.2 in Antonakos’s book to see how the flags affect
the different branch instructions. For example, for the BGT branch to take
place, the condition Z + (N @ V') = 0 must be satisfied. That requires too much
thinking. Instead of doing that, we consult tables 1.3 and 1.4.
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Table 1.3: Arithmetic Branches.

| Signed Comparison | Branch [ Condition

DO > D1
DO > D1
DO = D1
DO # D1
DO < D1
DO < D1

BGT
BGE
BEQ
BNE
BLE
BLT

Branch if Greater Than
Branch if Greater or Equal
Branch if Equal

Branch if Not Equal
Branch if Less or Equal
Branch if Less Than

Table 1.4: Logic Branches.

’ Unsigned Comparison \ Branch \ Condition

DO > D1
DO > D1
DO = D1
D0 # D1
D0 < D1
D0 < D1

BHI
BCC
BEQ
BNE
BLS
BCS

Branch if Higher

Branch if Carry Clear
Branch if Equal

Branch if Not Equal
Branch if Lower or Same
Branch if Carry Set

And finally there is the unconditional branch: BRA.
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Shift and Roll Instruction
Diagrams

The easiest way to understand the shift and roll instructions is to view them
in the diagrams in figure 1.7. A close examination will reveal that the logic
instructions do not try to preserve the sign bit. The arithmetic instructions, on
the other hand, do preserve the sign bit where possible.

If, for example, you execute ASL #2,D0.B, then the byte in DO will get
multiplied by 4, because 2 binary zeros will be added on the right side of the
number. Conversely, shifting to the right, by executing ASR #2,D0.B, will
divide the number by 4, and the sign will be preserved. This is because the
most significant bit gets recopied into the most significant position as shown in
the diagram.

Suppose D0.B contains 10010010B = $92. Because it has a binary 1 in the
most significant position we know that the number is negative. To find its value
we take the two’s complement of this number, by complementing all its bits
and adding 1, to determine that it is —$6E. To verify the last result we add
the two numbers to find that $92 + $6E = $100. Executing the instruction
ASR #2,D0.B, we get the result that D0.B = 11100100B = $E4. The twos
complement of this, found by the alternative method $100 —$E4, tells us that
it is —$1C.

To verify, we multiply —$1C by 4 to get —$70. This is not quite equal to
the orginal —$6E. We have an error of 2. This is because in right shifting we
discarded the 10B on the right side of the number. The discarding of the 1 in
the second bit position represents a round-off error of 2.

Examine the ROXL and the ROXR instructions. They roll the bits through
the X-flag. These are not trivial instructions. They become useful if for some
reason we decide to turn around the binary digits in a register, in a new cryp-
tography scheme. Think of a program to do this.
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xc lad | «——1 |a—0
ASL
1 » | 1| xc
— ASR
xc lad | «———1 |a—0
LsL
o—l I — » | | xc
LSR
c <l - <J
ROL
L» L L c
ROR
c <l <« |

ROXL

NP

!

m—

ROXR

Figure 1.7: The number line in HEX bytes.

26



Binary Coded Decimal
(BCD) Numbers

When typing numbers into a computer, they are entered in ASCII format. An
examination of the ASCII table reveals that the digits from 0 to 9 go in as $30
to $39. So, if the digits 9, 5, 7, 3, 6 are typed. they could appear in the buffer:

ASCSTOR DC.B $39,8$35,$37,$33,$36

The 3 has to be stripped away to convert the numbers to binary coded
decimal (BCD) numbers for use in arithmetic operations. This is easily done
by picking up the numbers into, e.g, the D1.B register and then using ANDI.B
#$F,D1. Then the numbers can be stored in the buffer:

BCDSTOR DC.B 9,5,7,3,6

If it is desired to get the decimal value of the BCD digits into a form that
can be used for calculation, we have to write a short routine to compute

number = {[(9-10 +5) - 10+ 7] - 10 + 3} - 10 + 6

This could appear in the D1.L as $175F8, and can be used for arithemetic
purposes.

Question: What is the biggest decimal number that can be stored in the D1.L
register?

If, for some reason, there is a shortage of memory space, BCD digits can
be packed into packed BCD. Observe that the decimal digits 0 to 9 require only
4 bits (or a nibble) for their representation. From the BCDSTOR table, we can
pick up the 6 in D0.B, then pick up the 3 in D1.B. We left shift D1.B by 4, and
then OR.B D1,D0. We can then store the packed BCD numbers in the buffer:

PAKSTOR DC.B $09,$57,$36

In this manner we can reduce the storage requirements by a factor of 2.
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Addition of Packed BCD Numbers

Adding packed BCD numbers, with a CPU that’s capable of adding only HEX
numbers, is not a trivial matter. Suppose we want to add the numbers $08 and
$04. After hex addition the result is $0C. This is not a packed decimal number.
The rule for correcting it is to add 6 if the result of the one digit addition is
greater than 9, or if a carry was generated. Here the result is greater than 9
and no carry was generated. Adding 6 to $C produces the correct BCD result
$12.

As another example, consider adding $98 to $59. 8 + 9 = $11. The 1 in the
left position is a half-carry (HC-flag) from the addition in the least significant
half of the byte. Since a carry occurred, we must add 6 to the $11, to get the
result $17. So the result in the least significant nibble is 7. Adding the HC-flag,
which is 1, to the 9 and the 5, we get $F. Since this exceeds 9 we add 6 to it to
get $15.The final result is $57 and the carry-flag as well as the X-flag are both
1. Indeed 98D + 59D = 157D.

The above manipulations are very tedious. Fortunately for us, Motorola
implemented the packed BCD addition instruction ABCD. It lets us add packed
BCD bytes between two D registers, or between two memory locations. It adds
the two bytes and the X-flag. The resultant carry is copied into the X-flag. It’s
important to null the X-flag at the start of the addition.

If you have downloaded the file “programs.zip Practice software” from my
website: http://web.njit.edu/ rosensta/, then you should have the pro-
gram file ADDBCD.ASM at your disposal. To understand how the ABCD
instruction works, you are encouraged to assemble and emulate this short pro-
gram.
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Exception Processing

Modes of Operation of the 6SEC000 CPU

The MC68000 CPUs have two modes of operation. They consist of the su-
pervisor and the user modes. The S bit of the status register (see figure 1.8)
determines the mode of operation. If it is 1 then the CPU is in supervisor mode,
if it is O then it is in user mode. We saw previously in figure 1.2 that the CPU
has two stack pointers (registers A7), the SSP for the supervisor mode, and the
USP for the user mode.

Certain instructions can be executed in (the privileged) supervisor mode and
not in (the less privileged) user mode. They are STOP, RESET, RTE, and any
instructions that deal with the full SR. As an example, in user mode you may
perform ANDI.B #$10,CCR. By contrast, the instruction ANDIL.W #810,SR
can only be executed in supervisor mode. If an attempt is made to execute
the priveleged instructions in user mode, then a PRIVILEGE VIOLATION
exception will take place.

Exception processing begins when the CPU detects a condition which does
not permit it to continue normal excution of a program. There are software
generated exceptions and there are hardware generated ones. As an example of
a software generated exception consider the program:

CLR.W D5
DIVU D5,D3 ;divides the longword in D3 by the word in D5
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Status l[¢— system byte —»le&—— user byte —»
s [TTST- TR T T [XIN[ZIC[Y
¢— CCR —»
Exception vector assignments
Address
Vector # | Dec | Hex Assignment
0 0 000 Reset: Initial SSP
4 004 Reset: Initial PC
2 8 008 Bus error
3 12 | 00C Address error
4 16 | 010 Illegal instruction
5 20 | 014 Zero divide
6 24 | 018 CHK instruction
7 28 | 01C TRAPYV instruction
8 32 | 020 Privilege violation
9 36 | 024 Trace
10 40 | 028 Line 1010 emulator
11 44 | 02C Line 1111 emulator
12 48 | 030 (Unassigned, reserved)
13 52 | 034 (Unassigned, reserved)
14 56 | 038 Format error
15 60 | 03C | Unitialized interrupt vector
16—23 64 | 040 Unassigned, reserved
95 | OSF —
24 96 | 060 Spurious interrupt
25 100 | 064 | Level 1 interrupt autovector
26 104 | 068 | Level 2 interrupt autovector
27 108 | 06C | Level 3 interrupt autovector
28 112 | 070 | Level 4 interrupt autovector
29 116 | 074 | Level 5 interrupt autovector
30 120 | 078 | Level 6 interrupt autovector
31 124 | 07C | Level 7 interrupt autovector
32-47 | 128 | 080 | TRAP instruction vectors
191 | OBF —
48-63 | 192 | 0CO Unassigned, reserved
255 | OFF —
64—255 | 256 | 100 User interrupt vectors
1023 | 3FF —

Figure 1.8: The 68000 exception vector table.
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Before performing the division, the CPU checks the divisor in register D5.W.
If it is zero then ZERO DIVIDE (vector 5) exception processing proceeds as
follows:

1.

The Program Counter (PC) is pointing to the instruction at NEXT when
the CPU is executing the DIVU instruction. The CPU PUSHes this long-
word PC address onto the supervisor stack.

The CPU then PUSHes the word length Status Register (SR) onto the
supervisor stack.

The CPU shifts to supervisor mode. It then multiplies the exception
vector by 4. So 5 x 4 = 2079 = $14.

The CPU reads a longword at address $14. This longword is the address
of the service routine for the ZERO DIVIDE exception. The CPU loads
this address into the PC, hence execution proceeds at this new address.

If the exception is fatal, as is the case here, then the function of the service
routine is to print a message saying what problem was encountered, and
to terminate execution of the program. No attempt is made to go back
to the offending program so the CPU is left in supervisor mode. In the
case of the Single Board Computer (SBC), used in the uP lab, it waits for
another command (e.g. register dump) to be typed.

If the exception is not fatal then the exception servicing routine ends in an
RTE instruction. Look up what this does and you’ll see why. Question:
Why is this different from an ordinary RT'S 7

There is a complete table of exceptions shown in figure 1.8. As another
example let us look at the Line 1111 exception. There are no Motorola instruc-
tions that begin with $F in the most significant nibble. This was reserved for
those who want to create their own instructions. Any instruction that begins
with $F will cause a Line 1111 exception.

The CPU will run through steps 1 and 2 outlined above. Since this is vector
11, then in step 3 the CPU multiplies 11 by 4 to obtain 44 decimal or 02C
HEX. It looks at this address to find the address of the Line 1111 exception
processing routine and then branches there to execute it. (The routine might
simply multiply the word in DO.W by 16.) When this routine terminates in an
RTE instruction, the CPU picks up where it left off.
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The 74148, 8 to 3 line Priority Encoder

It is worthwhile to become familiar with the 74148, 8 to 3 line priority en-
coder chip, before proceeding with the discussion. of interrupts. Figure 1.9 is
presented to help the students better understand the functioning of this chip.

74148 8-Line to 3-Line Priority Encoder

Inputs
B Tg &4 T I3 15 Is g I _
Logic Symbol
GS A, A, A, EO
Outputs
Inputs Outputs

Line| BT, 4 T, 13 1, 15 1g 1,|GS|A, A, Aq|EOC
1 H X X X X X X X X H H H H H
2 LIH H H H H H H H|H|H H H|L
3 L X X X X X X X L L L L L H
4 Lfx x x x x x L H|L|L L HIH Truth Table
5 L X X X X X L H H L L H L H
6 L X X X X L H H H L L H H H
7 L X X X L H H H H L H L L H
8 L X X L H H H H H L H L H H
9 L X L H H H H H H L H H L H
0| L]L HH H H H H H|L|H H H|H

Figure 1.9: Logic symbol and truth table for the 74148, 8 to 3 priority encoder.
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Autovectored Interrupts

Autovectoring is very simple to implement, but is limited to only 7 levels of
interrupts. The level 0 autovector indicates that no interrupt is requested.
Interrupts can be disabled (masked out) by setting the bits (Iz,I1,Ip) in the
system byte of the status register (see figure 1.8). If, for example, the mask is
set at level 4 then interrupts of level 4 or lower are masked out.

In the diagram of figure 1.10 it is assumed that all input pins of the 74148
have pullup resistors. Assume that the I pin is pulled down. The 74148 chip
outputs are then as shown. The CPU recognizes that a level 4 interrupt is
requested, it finishes executing the current instruction, and checks the interrupt
mask. If the mask is set at level 3 or lower then it proceeds to service the
interrupt.

The CPU acknowledges that it is servicing the interrupt by outputting (1,1,1)
on the (FC2,FC1,FC0) pins. This, in conjunction with the AS pin can be used
to generate an INTACK signal. It also lets us know that it is servicing a level
4 interrupt by putting out a (1,0,0) on the (A3,A2,A1) address pins. It then
checks to see if the AVEC pin or the DTACK pin is pulled down. If the AVEC
pin is pulled down then the CPU understands that it is dealing with autovec-
toring. If, on the other hand, the DTACK pin is pulled down then the CPU
proceeds with user vectoring.

NOTE: The AVEC pin on the 68EC000 CPU corresponds to the VPA pin on
the now defunct 68000 CPU.

+5V |NT7

|
G)|E
()]
ololol-
7
N W

al ol

al =l
7415148
Zl

=N
T
68EC000

INTACK

||Pm6|I

Aol o

Figure 1.10: Example of autovectored interrupts.
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User Vectored Interrupts

User vectoring is somewhat more complicated, but it makes it possible to im-
plement 192 levels of interrupts. In this case the DTACK pin is pulled down
and the CPU proceeds with user vectoring. This means that as a final step it
reads the lowest 8 pins of the data bus to determine the user vector number,
which can range from $40 to $FF.

_l__| +5V INTACK

e _l

soy NIis fr7 B g Olb7 OF qr7l—»
_ — 1
i6 o D6 Qs—»| .
—_ —_— ]
5 Q ) %Uos ¥ as—»| 2
- I 0 ™ s
ﬁ 9 m 1 0 1D4 9 Q4—» g
? I | o 1 D3 F Q| >

f 2 N~ D2 ™~ q}—»| O

—  INTg |~ 0 e
M o D1 Qll—»

INTs |5 = GS |— o]0 N —

|
|||
|

INT; 17 EI \_
NTs | —

o 3 0 %
NTs {5 9 PI0 S
INT2 |z > olrs S
INTs |= 3 1 O

B3 FCO I
INT2 | = 1

2|z ~ rFe! 9
—12 FC2
s Il DTACK
INTo | = _

o170 INTACK |0

pins DO — D7

Figure 1.11: Example of user vectored interrupts.
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Base Conversion and the
IEEE Floating-Point

Number Standard

The Positional Number Notation

The decimal number system uses the digits from 0 to 9 to represent numbers of
any desired magnitude. The position of the digits from right to left determines
their contribution to the overall number. It should come as no great surprise
that the interpretation of the decimal number 982.34 is

1 1
2.34 = 1 1 2x1 — +4dx — 1.1
982.3 9x100+8x 10+ 2 x +3><10+ xlOO (1.1)

Using powers of 10 we get the more useful interpretation
982.34 =9 x 10° +8 x 10" +2x 10° +3 x 107! +4 x 1072 (1.2)

Converting from any base to decimal is quite an easy task. It is obvious
from (1.2) that the base r number (abed. fg), has the decimal value

(abed.fg)r = (axr®* +bxr?+exrt +dxr®+ fxr 4 gxr ), (1.3)

The Hexadecimal Number System

We know full well the binary number system is used in digital computers. We
are also aware of the fact that the notation for binary numbers is awkward in
that even small numbers are represented by long strings of zeros and ones. The
hexadecimal number system has been adopted to shorten the representation of
binary numbers and make their display more manageable. In the last equation
we saw how to convert from any base to the decimal system. Now we have to
learn to convert from the decimal number system to the hexadecimal number
system. The methods are so general that these conversions can be used to
convert from decimal to any other base.
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Conversion of Decimal Integers to Hexadecimal

In spite of the fact that nowadays we have calculators to do the job, it is still
worthwhile to learn how to convert numbers from one base to another. Because
we are accustomed to doing arithmetic in the decimal number system, it will be
observed that the conversion process in going from any base to decimal is not
at all the same as going in the other direction.

If we want to see the individual digits comprising an integer decimal number,
we need only divide that number successively by 10 and look at the remainders.
For example, to see the digits comprising the integer decimal number 982, we
do the following:

982 +-10 = 98 rem 2
98 +-10 = 9 rem 8
9+10 = 0 rem 9 (1.4)

The remainders on the right are the digits contained in the decimal number
982, with the most significant digit on the bottom and the least significant on
top. The algorithm is finished when the quotient is zero, as on the last line
above.

The above method is applicable to any base system. For illustration pur-
poses, the decimal number 102973 will be converted to hexadecimal form by the
same method.

102973 +-16 = 6435 rem 13
6435 +16 = 402 rem 3
402 +16 = 25 rem 2
25+16 = 1 rem 9
1+-16 = 0 rem 1 (1.5)

The remainders on the right, read from bottom to top in hexadecimal form,
are the desired result. We conclude that

10297319 = $1923D (1.6)

Exercises - Convert the decimal numbers below to the base indicated by using
the procedure illustrated above.

1. Convert 548 to HEX and verify by converting back.
2. Convert 65933 to HEX and verify.
3. Convert 4702 to base 5 (quinary) and verify.

4. Convert 97255 to base 12 (duodecimal) and verify.
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Conversion of Decimal Fractions to Hexadecimal

If we want to see the individual digits comprising a decimal fraction, we need
only multiply that number successively by 10 and look at the digit before the
decimal point. For example, to see the digits comprising the decimal fraction
0.598, we do the following:

0598 x10 = 5+0.98
098x10 = 9+0.8
08x10 = 8+0 (1.7)

The integers on the right are the digits contained in the decimal fraction
0.598, with the most significant digit on top and the least significant on the
bottom. The algorithm is finished when the fraction is zero, or the specified
number of digits behind the decimal point have been obtained.

The above method is applicable to any base system. For illustration pur-
poses, the decimal fraction 0.857 will be converted to hexadecimal form, with 4
digits behind the radix point by the same method.

0.857 x 16 = 1340.712
0.712x 16 = 114 0.392
0.392x 16 = 640.272
0272x 16 = 440.352 (1.8)

The integers on the right, read from top to bottom in hexadecimal form, are
the desired result. We conclude that

0.85710 = $0.DB64 (1.9)

Exercises - Convert the decimal numbers below to the base indicated, to 4
places behind the radix point, with proper roundoff, by using the procedure
illustrated above. Proper roundoff means that you have to calculate a additional
digit to see which way to round.

1. Convert 0.548 to HEX and verify by converting back.
2. Convert 0.659 to HEX and verify.
3. Convert 0.548 to base 5 (quinary) and verify.

4. Convert 0.548 to base 12 (duodecimal) and verify.
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The IEEE Format of Floating-Point Numbers

In the late 1970s, the IEEE set up a committee to come up with a standard for
the representation and of floating-point numbers. This would determine how
they would be stored in a computer and make it possible to exchange this data
between computers of different brands. This ultimately resulted in IEEE Stan-
dard 754, to which conform the coprocessors of most computer manufacturers.
The system is designed to get the most out of the memory space which is used
for the storage of the numbers.

There are three IEEE standards for floating-point numbers. First, there is a
32-bit single precision or short-reals format. Secondly, there is a 64-bit double
precision or long-reals format. Finally there is an 80-bit extended precision
format. The latter is used inside floating-point math coprocessors to reduce
roundoff errors during calculations. The extended precision format will not be
discussed further.

Both the short-reals and long-reals numbers come in normalized, denormal-
ized and some other special versions. All of those will be discussed below.

Normalized Floating-Point Numbers in IEEE Format

It is easiest to explain the standard through a simple example. Consider the
decimal number

Tr = 9.2510 = $94 (110)
First write the HEX number in the binary form

z = 1001.01 (1.11)

Now move the radix point until there is only a single 1 preceding it, to obtain
the binary form
r = 1.00101 x 23 (1.12)

The above number has the mantissa (1.00101). Since every finite number
will be rewritten with a 1 preceding the radix point then we can safely discard
this one bit. This leaves us with the significand

significand = 00101000000... (1.13)
We also have the binary exponent
exp = +03 (1.14)

There two basic systems for storing the numbers in memory of interest to
us are the less accurate short-reals form and the more accurate long-reals form.
The two systems are shown in tables 1.5 and 1.6. Read the captions in the two
figures carefully as they discuss restrictions on the ezrads, which are the biased
exponents.
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Table 1.5: Short-reals 32-bit normalized number storage. Exrads of 0 or $FF
are not permitted for these normalized numbers.

bit 31 30 «—— 23 22— 0
sign 8 bit Significand.
0— + | exrad = | 23 bits with an
1 — — | exp + $7F | implied 24th bit

Table 1.6: Long-reals 64-bit normalized number storage. Exrads of 0 or $7FF
are not permitted for normalized normalized numbers.

bit 63 62 «—— 52 51 «—0
sign 11 bit Significand.
0— + exrad = 52 bits with an
1— — | exp + $3FF | implied 53rd bit

For the number in our example, the IEEE short real format is

+ $82 = 3+$7F 23 bit significand
~ =
0 1000001000101000000000000000000 (1.15)

which represents the bytes

$41 $14 $00 $00
01000001000101000000000000000000 (1.16)

In Intel based computers (which are little-endian) these bytes are stored in
memory with the least significant byte in the lower memory address. In Motorola
based computers (which are big-endian) they are stored with the most significant
byte in lower address memory, exactly as they appear in the last equation.

The reason an offset is used for the exponents is to make the range of expo-
nents go continuously from the smallest to the largest. This way numbers can
be compared without a need to examine the mantissa.

We can determine the largest and the smallest numbers that this system can
handle. We’ll do it only for the short-reals and leave the problem for the long
reals as an exercise.

Since normalized numbers may not have exrads of all zeros or all ones, the
range for exrads is

1 < exrad < $FE = 254, (1.17)

Since the bias is $7F = 12719, we readily determine the range of exponents
to be
—12619 < exp < +12719 (1.18)
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Table 1.7: Short-reals denormalized numbers.

bit 31 30 «—— 23 22— 0
sign 8 bit Significand.
0— + exrad = 0 23 bits but with no
1 — — | hence exp = —$7F | implied 24th bit

Table 1.8: Long-reals denormalized numbers.

bit 63 62 «—— 52 51 «—— 0
sign 11 bit Significand.
0—+ exrad = 0 52 bits but with no
1 — — | hence exp = —$3FF | implied 537d bit

For short-reals the mantissa can be as small as 1.0000... =1 or as large as
1.1111... = 2, we conclude that
1 x 27126 < normalized numbers < 2 x 2127 (1.19)

Expressing the above in decimal form we finally conclude that the range of
numbers that normalized short-reals format can handle is, in decimal form

1.175 x 1073 < normalized numbers < 3.403 x 1038 (1.20)

Denormalized IEEE Floating-Point Numbers

For short reals as well as for long-reals it was desired to have another range of
numbers between the smallest normalized number and zero. This gap was filled
by the denormalized numbers. This number system is shown in tables 1.7 and
1.8.

To implement this range the exrad is always zero hence the exponent of 2
is —$7F for short-reals and —$3FF for long reals. The significand can have
any value but zero, and it has no implied 1. So, for short-reals, the mantissa
corresponds to the significand and ranges in value from 2723 to 0.1111... ~ 1.

We conclude that

272 % 27127 < denormalized numbers < 1 x 27127 (1.21)
Which expressed in decimal form gives us the range

7.006 x 107%6 < normalized numbers < 5.877 x 107° (1.22)

IEEE Floating-Point Standard for Special Cases

In the IEEE scheme of floating point numbers, zero is represented by a signif-
icand which is zero along with an exrad which is zero. It can have either a
positive or a negative sign.
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Infinity is represented by a significand which is zero and an exrad which is
maximum, namely $FF for short-reals and $7FF for long-reals. The infinity can
be either positive or negative.

Finally there is the Not-a-Number, or NAN, which represents the result of
an operation that has no mathematical significance, such as dividing infinity by
infinity. These numbers have the same exrads as the infinities and the signifi-
cand must have any non-zero value. The NAN can be either positive or negative.

Exercises

1.

The bytes 3F 40 00 00 are stored in memory in a Motorola based computer.
What decimal number do those bytes represent 7

How will 9.25;¢ appear in memory as a long real in a Motorola based
computer ?

How will 2.51¢p appear in memory as a long real in a Motorola based
computer ?

In the short-reals format, how many different normalized mantissas are
there ?

In the short-reals format, how many different normalized exponents are
there ? ’s’or all ones is not part of normalized numbers.

On the basis of the last 2 questions, how many different numbers can be
represented in short-reals format ?

Determine the decimal range of numbers that the normalized long-reals
format can handle. A result similar to (1.20) is what is desired.

Determine the decimal range of numbers that the denormalized long-reals
format can handle. A result similar to (1.22) is what is desired.

The decimal precision of a number is defined by the quantity of permissible
decimal digits in the mantissa of the number. Determine the decimal
precision that is available in the short-reals as well as the long reals number
representation.
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Subroutines and Parameter
Handling

The orderly passing of parameters to subroutines is a fairly complicated subject.
One of the best explanations of the most sensible manner for accomplishing this
task is discussed in detail in 68000 Assembly Language, by Alan Clements, PWS
publishing Company, 1994. The material that follows is based largely on the
examples and explanations found in that book.

Subroutine Calls and Returns Using a Stack

Consider the short program below which demonstrates how the stack is used to
access subroutines.

main —-—-

bsr subl ;Address N is pushed onto the stack
N -— ;and execution proceeds at subl
subil -—=

bsr sub2 ;Address M is pushed onto the stack
M - ;and execution proceeds at sub2

rts ;Address N is popped from the stack

;and put into PC

sub2 —-—=

rts ;Address M is popped from the stack
;and put into PC

The above shows nested subroutines. The long-word return-addresses are
automatically pushed onto the stack by the BSR opcode and the same long-word
return-addresses are automatically popped from the stack by the RTS opcode.
The 68000 microprocessor series use address register A7 as the default stack
pointer for subroutine calls and returns.
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Task A | |  TaskB | | TaskA

A A
A 4 A 4

Save task A's | | Restore task Save task B's | | Restore task
registers "| B'sregisters registers "| A'sregisters

Figure 1.12: Task switching in a multitask environment.

Subroutine nesting is generally four or five deep. It can go much deeper
when recursion is used. In that case care should be taken that the stack not
run out of memory space.

For best programming readability, specific functions should be carried out by
subroutines. The comments above the subroutine should contain an explanation
of what the subroutine does and what registers are affected. The main program
simply calls subroutine after subroutine to get the job done.

Task Switching in a Multitasking Environment

In a personal computer the EPROM BIOS controls various hardware functions
of the computer. In the Windows environment we can have a number of tasks
taking place seemingly simultaneously. In fact the CPU allocates a segment of
time to each task and switches tasks according to some predetermined protocol.
These tasks make use of the hardware interface routines which reside in the
BIOS.

Let us suppose that the CPU is executing two tasks and that task A is
executing a subroutine which task B needs to use as well. Before the switch
takes place the CPU saves the registers of task A, including the status register
but not the stack pointer. It then restores the registers of task B which it had
saved earlier and transfers control to task B. Before control is transferred back
to task A the registers of task B are saved and those of task A restored. This
procedure is shown in figure 1.12.

Reentrancy in a Multitasking Environment

A reentrant process is one whose execution can be suspended before its com-
pletion, and which can then be used by another task without any harm being
done to the suspended process. An example of such a process is the reading of
a book.

Let us suppose that you are reading a book and a friend asks to borrow it.
You mark the page where you left off and lend him the book. When the book
is returned you continue to read where you left off. This process is reentrant
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provided your friend does not rip pages out of the book.

For a subroutine to be reentrant it is essential that all parameters, (meaning
data), used by it be stored in such a way that they are not harmed when the
task switching takes place. This holds true no matter where in the subroutine’s
execution the task switching takes place. The next task which uses the sub-
routine must not in any way alter the parameters used by the first task. If a
subroutine stores parameters in absolute memory locations, then these variables
will be corrupted by the next task that uses the subroutine. Take as an example
the routine shown below.

main bsr getchar ;Get a KBD char
move.b charsto,dl ;put it in D1

getchar bsr instat ;Get status
beq getchar ;0 -> no char, so loop
move.b dreg,charsto ;Get char
rts

charsto ds.b 1 ;Store KBD character here

The above GETCHAR subroutine is distinctly not reentrant. If a second
task were to borrow this subroutine before the first task executes the RTS code
then it would store its own keyboard character at CHARSTO thus overwriting
the character stored there by the first task. Compare the above code with that
below.

main bsr getchar

getchar bsr instat
beq getchar
move.b dreg,dl ;Get KBD char into D1
rts

In this case the KBD character was kept in a register. All registers are
protected during task switching so the above routine is reentrant.

Subroutine Parameter Passing

Parameter Passing by Value

The simplest method of passing parameters to a subroutine is to put them into
registers before the subroutine is called. The program below demonstrates the
passing of one parameter to a subroutine.

main move.b #’G’,d0
bsr char_out
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The above method is called passing parameters by value. The number of
parameters passed is limited by the number of registers available. This kind of
parameter passing makes the subroutine reentrant.

Parameter Passing by Reference

If we have a field of data, then a subroutine can be given access to it by passing
the starting address of the field as well as the size of the field in registers. In the
example below, register A3 points to the start of an ASCII string and DO holds
the byte count of the string. The parameter in DO is passed by value whereas
the address pointer in A3 is passed by reference.

main lea mesg,a3 ;Point A3 to MESG
move.w #(mesge-mesg),d0 ;Put length into DO
bsr print_string

mesg dc.b ’A very longwinded message ...’

mesge

The above two methods allow for a limited number of parameters to be
passed since the number of CPU registers is limited. A more general way of
performing this task is to pass parameters on the stack.

Parameter Passing by Using the Stack

The following short program demonstrates parameter passing using the stack.

main pea strbeg ;Push start and end addresses
pea strend ;of string to be searched
pea wordst ;Push start and end addresses
pea wordend ;of the word to be found
bsr strsrch
lea 16(a7),a7 ;tidy up the stack
;more code

strsrch lea 4(a7) ,a0 ;Point A0 past return address

movem.l (a0)+,a3-a6 ;Pop parameters off the stack
;additonal code

rts
strbeg dc.b ’A very longwinded message ...’
strend
wordst dc.b ‘mess’
wordend
end main

The subroutine STRSRCH has to find if the word substring ‘mess’ exists in
the sentence ‘A very longwinded message ... and report this fact back to the
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A7-20— ret addr
AT-16—F wordend <—A0
AT-12— wordst
AT-8—¢ strend
AT-4—> strbeg
A7 at start “F some old data

Figure 1.13: Memory map of the stack for the substring matching program.

routine MAIN. The parameters for the start and end of the sentence, as well as
for the start and end of the substring, are pushed onto the stack as shown in
figure 1.13.

On entering the subroutine the register A0 is initialized to point 4 bytes
above the current stack pointer to the parameter WORDEND. The register A0
is used in the second line of code to pop the passed parameters into the work
registers A3 to A6 where they will be used to accomplish the substring search.

Creating a Stack Frame

If reentrancy is to be assured, then new memory should be assigned for subrou-
tine storage each time the subroutine is called. This is called dynamic memory
allocation. There is no better way of doing it than by utilizing the stack.

Suppose that in the previous example we wanted to pass parameters to the
subroutine as before and we also needed 18 bytes of memory for temporary
storage of the subroutine’s calculated values. Then an improved method of
subroutine storage is the creation of a stack frame. This is demonstrated in the
program below.

The register A6 is traditionally used as a frame pointer although any other
address register can do the job. It is well possible that STRSRCH was called
by another subroutine which itself was using A6 as a frame pointer. So the first
order of business when the subroutine STRSRCH is entered is to push the old
frame pointer register A6. The next step is to load the frame pointer A6 with
the stack pointer value in A7. It is essential not to modify A6 after this step
so that the old stack pointer A7 can be recovered later. At this point the stack
pointer is decremented by 18 bytes to create the required subroutine work space.
This is the last step in creating the stack frame and now the task of coding the
remainder of the subroutine can be undertaken.

The new stack pointer, still the address register A7, is now used to save the
registers to be used in the work of the subroutine. The frame pointer, register
A6, is used to retrieve the passed parameters and to store any variables in the
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18 byte workspace. All frame access should be done using displacements relative
to address register A6 so that the value in A6 is never modified. This is done
so that when the stack frame is collapsed at the end of the subroutine, the old
stack pointer can be reloaded with its old value without problems.

main pea strbeg ;Push start and end addresses
pea strend ;of string to be searched
pea wordst ;Push start and end addresses
pea wordend ;of the word to be found
bsr strsrch
lea 16(a7),a7 ;tidy up the stack

; additional lines of code go here

strsrch move.l a6,-(a7) ;protect the old frame pointer
movea.l a7,ab ;create a new frame pointer
lea -18(a7),a7 ;leave 18 bytes free
movem.l dO/al-a4,-(a7) ;protect work registers

1
movea.l 8(a6),ad ;wordend in A4
movea.l 12(a6),a3 ;wordst in A3
movea.l 16(a6),a2 ;strend in A2
movea.l 20(a6),al ;strbeg in Al
; Do the necessary work but never modify the frame pointer AG6.
; Before returning from the subroutine do the following:
movem.l (a7)+,d0/al-a4 ;restore work registers

movea.l a6,a7 ;collapse the stack frame
movea.l (a7)+,a6 ;restore old frame pointer
rts

strbeg dc.b ’A very longwinded message ...’

strend

wordst dc.b ‘mess’

wordend
end main

The memory map of the functioning of the frame can be easily followed by
consulting figure 1.14. Observe that A0 points to the stack address where the old
frame pointer is stored. To store a long word in register D0, at the first available
location in the work space, we would use the instruction MOVE.L DO0,-4(A6).
To subsequently store a word in D1 we would have to use MOVE.W D1,-6(AG6).
The value of A6 must remain intact for the entire subroutine operation.

At the subroutine’s end, the instruction MOVEA.L A6,A7 is used to restore
the old value of A7 thus collapsing the stack frame. It now remains to pop the
old value of A6 by using MOVEA.L (A7)+,A6 in order to restore the frame
pointer of the routine that called the subroutine STRSRCH.

The above example shows a relatively laborious way of establishing and col-
lapsing a frame. Fortunately the designers of the Motorola 68000 series chips
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new SP-20 =" ched DO/AL-A4

new SP —> 18 byte stack
frame
old frame pointer A6 [~ A6

A7-24 —>

AT-20 —> return address

AT-16 —> wordend

AT-12—> wordst
AT-8 > strend
AT-4—> strbeg

A7 at start —;

some old data

Figure 1.14: Memory map of the stack for the substring matching program.

considered the concept of frame usage of sufficient significance that they fur-
nished two instructions to automate the entire process.

Use of LINK and UNLK Instructions for Stack Frames

To facilitate the frame creation process we use the LINK instruction. To facili-
tate its collapse we use the UNLK instruction. The last short program becomes
even shorter when these two instructions are used.

main pea strbeg ;Push start and end addresses
pea strend ;of string to be searched
pea wordst ;Push start and end addresses
pea wordend ;of the word to be found
bsr strsrch
lea 16(a7),a7 ;tidy up the stack

; additional lines of code go here

strsrch link a6,#-18

movem.l dO/al-a4,-(a7) ;protect work registers

movea.l 8(a6),ad ;wordend in A4

movea.l 12(a6),a3 ;wordst in A3

movea.l 16(a6),a2 ;strend in A2
movea.l 20(a6),al ;strbeg in Al

; Do the necessary work but never modify the frame pointer A6.

; Before returning from the subroutine do the following:
movem.l (a7)+,d0/al-a4 ;restore work registers
unlk a6 ;collapse the stack frame
rts
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strbeg dc.b ’A very longwinded message ...’
strend
wordst dc.b ’mess’
wordend
end main

Reading the above program we see that the LINK instruction
link a6,#-18

performs the work of the three instructions

move.l a6,-(a7) ;protect the old frame pointer
movea.l a7,a6 ;create a new frame pointer
lea -18(a7),a7 ;leave 18 bytes free

We also note that the UNLK instruction
unlk a6
performs the task of the two instructions

movea.l a6,a7 ;collapse the stack frame
movea.l (a7)+,a6 ;restore old frame pointer

The LINK and UNLK instructions would have undoubtedly been dispensed
with in a RISC (reduced instruction set computer) because they can be con-
structed from other available code. This makes the job of compiler writers, who
must use assembly language, very difficult. But the dearth of instructions makes
the RISC computer perform most tasks faster. The designers of CISC (complete
instruction set computer) machines want to make the CPU user friendly, so they
create a wealth of instructions to make the assembly language look almost like
a higher level language. Hence the luxury of finding complicated instructions

for use in stack-frame management.
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An Example of Stack Frame Management

We will now try to illustrate the parameter passing principles discussed thus far
in the example that follows.

ORG $8000
main move.w #19,d0
move.w #11,d1
move.w dO0,-(a7) ;Push P on stack
move.w di1,-(a7) ;Push Q on stack
pea R ;Push address of R
bsr calc ;Call subroutine
lea 8(aT7),a7 ;Tidy up
trap #9 ;Exit gracefully
calc link a0,#-14 ;Establish frame

movem.l d6/a6,-(a7) ;Don’t trash registers
move.w 14(a0),d6 ;Get P

mulu d6,d6 ;Find P2

move.l d6,-4(a0) ;Save P"2 on stack frame
move.w 12(a0),d6 ;Get Q

mulu d6,d6 ;Find Q72

move.l d6,-8(a0) ;Save Q"2 on stack frame

add.1 -4(a0),d6 ;Q°2+P"2
move.l d6,-12(a0) ;Store it
move.l -4(a0),d6 ;Get P72
sub.1l -8(a0),d6 ;Sub Q72
move.w d6,-14(a0) ;Store it
move.l -12(a0),d6 ;Get numerator

divu -14(a0),d6 ;Divide by denominator
movea.l 8(a0),ab ;Get R reference
move.w d6,(a6)+ ;Store ratio
swap dé
move.w d6,(a6) ;Store remainder
movem.l (a7)+,d6/a6 ;Restore registers
unlk a0 ;Collapse stack frame
rts
org $8100

r ds.w 2
end

In this short program we wish to find the ratio (P? + Q?)/(P? — Q?). The
parameters P and @ are passed by value. The resultant quotient and remain-
der are to be stored at the address designated by R. The latter is passed by
reference.
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new SP-8
new SP pushed D6/A6
after /|\ = Pr2-Q"2 (word) |- A0-14
LINKing 14 byte Pr2+Q"2 (long) |- A0-12
stack frame Q"2 (long) < AO-8
P2 (long) ~— AO-4
old frame pointer A0 [~ A0 (FP)

return address < AO+4
Old A7-8—>" pointer to R (long) < A0+8

Value of Q (word) |~ A0+12
Value of P (word) | A0+14
some old data

Old A7—

Figure 1.15: Memory map of the stack for ratio program.

To see how the parameters are handled we consult the memory map for this
program shown in figure 1.15. The first step performed in the subroutine is
the establishment of the frame through the LINK A0,#-14 instruction. Once
that is done it is possible to push registers, used for performing the work in the
subroutine, using the instruction MOVEM.L D6/A6,-(A7). In the next line of
code MOVE.W 14(A0),D6 is used to get the parameter P. The above data is
accessed using the addressing mode address register indirect with displacement.
This method is used to access both the stack for the passed parameters and for
storing of intermediate results. An example of the latter is the use of MOVE.L
D6,-4(A0) to save P? on the stack frame.

In order to determine the displacements necessary for getting and saving
parameters on the stack it is necessary to draw a diagram similar to the one
shown in figure 1.15.
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The RS-232 Serial Interface

A unidirectional 8-bit parallel interface requires at the very least 8 wires for data
and one wire for ground. By contrast a unidirectional serial interface requires
only 2 wires. One for the data and one for the ground. Such a cable is much
cheaper to run, particularly where substantial distances are involved.

The current-loop interface existed in the early days of computers and han-
dled data in serial form. It was designed specifically to interface with the now
largely defunct (and very noisy) electromechanical teletypes. The RS-232 serial
interface is a logical consequence of the current loop interface, and it has be-
come fairly standard on modern personal computers. It should be mentioned
that most RS-232 interfaces are bidirectional and, as a consequence, require at
least 3 wires for a minimal connection.

An RS-232 communication interface requires a universal asynchronous re-
ceiver transmitter (UART) to transform outgoing data from parallel to serial
form, and incoming data from serial to parallel form. Our single board com-
puter uses the fast Intel 8251A (programmable communication interface) PCI
as the UART. In the following material we will refer to figure 1.16a.

When the UART has no new data to transmit, it is in the IDLE state, and
it outputs a continuous +5V on its TxD pin. When a byte of data is loaded
into the UART in parallel form, the UART immediately gets busy sending it
out serially. It starts by sending a start bit at a zero volt level. This is then
followed by the data in the byte, with the least significant bit (Isb) first. The
data may consist of 7 or 8 bits, although the latter is the most accepted format
these days. The most significant bit (msb) is sent last.

The data may then be followed by a parity bit, if this option is specified. If
even parity is used, a bit is added so that the sum of the bits in the data and
parity, modulo 2, will be 0. If using odd parity, a bit is added so that the sum
of the bits in the data and parity, modulo 2, will be 1. In the example in figure
1.16a the number of 1’s in the data is even, so a unity bit must be added to
produce odd parity.

The parity bit is then followed by 1 or 2 stop bits, which are at a level of
+5V. The utilization of the 2 stop bits fell out of use when the 300 bit/second
communication speed became largely obsolete. If there is no other data that
needs to be transmitted, then the UART output remains at the idle level of
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IDLE state IDLE state
+5V T T T T
1 1 1 1 1 1
TTL-level signal
gnd 0 : 0 | 0 0 | Odd lor2 :
start bit  Isb @ msb  parity  stop start bit
bit bits
+10V
0 o "o o ' o
bipolar signal
1 | 1 1 1 | 1 1 |
-10v !

Figure 1.16: Serial form of the letter ‘s’ (ASCII value = 73H). TTL-level signal
(a) and bipolar signal (b).

+5V. Otherwise a new start bit is transmitted, followed by data.

The UART deals with data using TTL compatible voltages, that is 0 and
+5V. The RS-232 interface requires that the TTL signals be inverted and con-
verted to a bipolar form with voltages ranging from +3V to £15. Ordinarily
the very popular 1488 and 1489 chips are used for this purpose. Their disadvan-
tage is that they require the use of additional +12V and —12V power supplies.
The MAX233A TTL-RS232 interface chip does away with that need in that it
generates the +10 and —10 voltages internally. The signal that one actually
sees on the wire is shown in figure 1.16b.

Most UARTS use a clock signal that is 16 times (16x) the actual bit rate of
the RS-232 interface. The I8251A is no exception. So, for example, to get a bit
rate of 38400 bits/sec requires the use of a UART clock of 614.4kHz. A 16x
clock is used so that the UART will have an opportunity to properly synchronize
to the incoming signal. When the UART sees the falling edge of the start bit,
it counts 8 clock sycles (one half of 16) then it verifies again that the voltage is
still at 0. Then it samples the other incoming bits in the middle of their pulse,
so as to minimize the possibility of sampling at a signal transition. If a framing,
or a parity error, occur then the UART stores this in its status register. This
can then be consulted when the data is read from the UART.
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The Overflow Flag in Signed Number Arithmetic

The overflow flag has significance only for signed number arithmetic. In that
case V = 1 indicates that the result of an arithmetic operation could not be
stored correctly within the allocated space.

To facilitate the discussion, let us suppose a 4-bit CPU. The registers can
hold 4-bit signed numbers. The significance of the signed binary (2’s comple-
ment) representation is shown in the table below.

Table 1.9: The 4-bit signed numbers.

’ Binary Hex H Binary Hex ‘

0000 0 1000 -8
0001 1 1001 -7
0010 2 1010 -6
0011 3 1011 =5
0100 4 1100 -4
0101 5 1101 -3
0110 6 1110 -2
0111 7 1111 -1

In the above signed binary representation the leftmost (high-order) bit is the
sign bit. It is to be noted that in this system there are seven positive numbers
and eight negative ones. Below are some examples of binary addition.

(a) (b) (¢) (d)
0000 1111 0110 1000
0011=3  1101=-3  0011=3 1110 = -2
+.0100=4 +_1011=-5 +0110=6 +_1001=-7
0111=7  1000=-8  1001=-7  0lll=7

There is no possibility of overflow occurring when two numbers of opposite
sign are added since the magnitude of the result is always smaller than the
largest magnitude of the two original numbers. If the signs of the two numbers
added are the same then overflow can occur. It depends on the magnitudes of
the numbers. The magnitudes of the numbers in examples (a) and (b) are small
enough to produce no overflow. This is not the case in examples (c¢) and (d),
where the results appearing in the 4-bit storage locations are incorrect.

The overflow bit can be determined from the carry-in to the sign bit, Cjs,
and the carry-out of the sign bit, C,s. The overflow flag V' can be computed by
exclusive ORing the above two bits, namely using V = C;s & C,s. This is how
most CPUs do it. Applying this rule to the above example we get V' = 0 for
cases (a) and (b) and V =1 for cases (c) and (d).
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Memory Address Decoding
and Timing Diagrams

There are two types of CPUs available. Those referred to as big-endian and
those referred to as little-endian processors. Motorola CPUs are big-endian.
They store the MSB in the even memory address, and the LSB in the next
(higher, odd) memory address.

For example, in the EMUG68K memory dump below, we see that the word
stored at address $2020 is $5468. The MSB is $54, which sits at the even address
$2020, and the LSB is $68, and it sits at memory address $2021. The longword
stored there is $54686973. In a big-endian CPU memory dump, what you see is
what you get. The data can be interpreted effortlessly. Contrast this with the
situaton for little-endian CPUs.

Intel processors are little-endian. For the memory dump below, the word at
address $2020 is $6854. They store the LSB in the even memory address, and
the MSB in the next (higher, odd) memory address. The long word stored at
$2020 is $73696854. You have to go through some contortions to read memory
dumps, but you soon get used to it.

There is no consensus as to which system is better, but Motorola memory
dumps are easier to interpret.

-d 2020 2
002020 5468 6973 2069 7320 6120 6661 6E74 6173
002030 7469 6320 636F 7572 7365 2100 0000 0000

If you examine the pin-out of the MC68000 CPU, you will not find an Ag
pin. This function is served by the UDS and the LDS pins.

To reduce the pin count, most ROM memory chips have an 8-bit data bus.
Since the MC68000 CPU has a 16-bit data bus, you need two ROM chips side by
side to meet this requirement. In figure 1.17 we see just such an arrangement.
The left chip supplies data to the CPU’s Dy — D7 pins and the right chip delivers
the data to the Dg—Dj5 pins. If bytes are read, then the MSB is read by making
the UDS signal active, the LSB is read by making the LDS signal active. In
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A1-A13: A1-A13:
2764 2764 D.-D
8kByte ¢ 8kByte 0”7 ,
EPROM EPROM
Ds-Dis
CS OE CS OE

=D o
ROMSEL _D_
UDS

Figure 1.17: 8 kiloword EPROM memory.

reading a word, both UDS and LDS are active. To get longwords, two successive
word reads are required.

Note that in figure 1.17, only pins A; — A4 are utilized. Pins A5 — Aas
are unaccounted for. The memory shown is non-uniquely decoded, since the
unaccounted for pins are don’t-cares, so any 0 and 1 pattern of those can be
used to access this memory.

To elaborate on this topic further, let us examine figure 1.18. Here is a
case of complete or unique address decoding. All address lines A; — Asg are
accounted for, and the memory has only one address range. The lowest byte
can be read at address $480000, and the highest byte at address $48FFFF. This
contrasts with incomplete, or non-unique decoding found in figure 1.19.

In this case we have the two address lines, A9 and A;g unaccounted for in
the diagram. They are don’t-cares, and can be 00, 01, 10 or 11, without affecting
the reading of the memory. As a consequence we see 4 ranges for this memory
system. The byte in the lowest memory location can be read at $600000, or at
$640000. It will be the same byte that is found at $680000 and $6C0000. This
is because these chips are not uniquely decoded.

Finally let us look at the EPROM memory shown in figure 1.20. A 741.S139
2-4 decoder has been used to select 4 banks of EPROMS. The decoding diagram
explains how the chips are addressed.
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Aoz Aoy Aot AgolA1g Aig Arr Ate|A1s Alg Az Apg] A1 Ao Ag Ag| Ag Ag As Ayl Az Ay Ay Ay
0 1 0 O0f1 0 0 X|X X X X|IX X X X|X X X X|X X X X

X — variable addresses that take on values of 0 or 1 |:LDS

. . . . UDS
This ROM is uniquely decoded. It occupies addresses: $480000 — $49FFFF
Ai-is J » Dg- D5
D D——»D,-D,

A Ag-A, L Aj-A

Ai o o These 2 chips are

Ay CS OE CS OE 27512,

Ay Py T 64kB EPROMs

Ajg _ -

Ag UDS— LDS

A7

S

Figure 1.18: A uniquely decoded memory.

Ap3 Mgy At ApoAg Aig A7 AjgA s Alg Az A A A g Ag Agl Ay Ag As Ayl Az Ay Aj Ay
0 1 1 0J]Y Y 0 XX X X XX X X XX X X X[X X X X
X- varu’ible addresses that take on values of 0 or 1 500000 — 61FFFF THs
Y~ don’t-cares 640000 — 65FFFF
This ROM is non-uniquely decoded. It occupies the 4 address ranges: 680000 — 69FFFF
6C0000 — 6EFFFF

UDS

A= e » Dg-Di5
D J DF——»D,-D,
Ay-A, L A, -A

Ay 0TS 0TS These 2 chips are
Ay C_S (E C_S (i 27512,
Ay s : 64kB EPROMSs
Az _
Al UDS— LDS
AS

Figure 1.19: A non-uniquely decoded memory.
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Figure 1.20: 512kB of uniquely decoded memory.
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Figure 1.21: The timing diagrams appearing in Antonakos’s book were inac-
curate in previous editions. These are in agreement with those presented by
Motorola.
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