Collection of typographic errors:

Design of Machine Elements by Spotts, Shoup and Hornberger,
$8^{\text {th }}$ edition, Prentice Hall
p. 25 Eq. 5: the last term in the equation should be $\int y d A$ not $\int y d a$.

Figure 1-4. sub figure (b): all y_{1}, y_{2}, y_{3} should be $\bar{y}_{1}, \bar{y}_{2}, \bar{y}_{3}$, to conform with Eq.(6).
p. 27 Fig.1.5: the length CD should be $v d \phi$ not just v.
p. 50 Figure 1-20, subfigure (b), there is letter "T" under dx. It should be a Greek letter τ
p. 59 Above Eq. (33) $A=$ Area of cross section. A is missing.
p. 63: Above Eq. (39), It should be $\sin ^{2} \varphi$, not $\sin ^{2 \varphi}$, in the first formula.
p. 65 Line 2 from top, σ_{x} should be replaced by σ_{y}

Both Eq. (41) \& (42): Inside the square root the σ_{2} should be $\sigma_{x . \text {. (Two places) }}$
p. 66 Eq. (44), the first term under the square root is $\left(\sigma_{x}-\sigma_{y} / 2\right)$, the x was a mistake.
p. 67 Figure 1-32 sub figure (a) The $\tau_{\mathrm{xy}}=-5000 \mathrm{psi}$ should be $\tau_{\mathrm{xy}}=5000 \mathrm{psi}$ the minus sign is wrong.

Figure 1-32: Three lines from the bottom line, (e) The maximum shear stress $\tau_{\max }$ and the corresponding.... The $\mathrm{Z}_{\max }$ was a mistake.
p. 73: The CD ROM Module 1-5 output should read as:
$\mathrm{S}_{1}=33.7 \mathrm{M} \mathrm{Pa}$
$\underline{\mathrm{S}_{2}}=19.1 \mathrm{M} \mathrm{Pa}$
$\mathrm{S}_{3}=7.1 \mathrm{MPa}$.
Principal stresses are defined as " S " on p .66 and $67 . \mathrm{S}_{1}$ is always the largest algebraic number. $\mathrm{S}_{1}>\mathrm{S}_{2}>\mathrm{S}_{3}$
p. 92: Problem 40. Answers are $\tau=2.36,4.05,5.06$, and 5.4 MPa , NOT $\tau=2.1,3.6,4.5$, and 4.8 MPa
p. 104: Problem 1.87, ID = 4.03 in., not 4.3 in.
p. 104: Problem1-88: Answers: Max. $=-14 \mathrm{MPa}, \mathrm{Min} .=-84 \mathrm{MPa}, \mathrm{Max}$. Shear $=35 \mathrm{MPa}$
p. 105: Problem 92, $\sigma y=-14 \mathrm{MPa}$. The minus sign is missing.
p 109: Problem 106: 12 in . length should be read as 300 mm , and length becomes 300.15 mm not 200.15 mm
p.135: $\mathrm{S}_{1}=145.21, \mathrm{~S}_{2}=53.37, \mathrm{~S}_{3}=41.42$
p. 170: Problem 2-1: Material is 1035 hot rolled steel, with 1 inch width.
p. 170: Problem 2-3: Answers: (a) Fs = 1.39, (b) Fs = 1.46
p. 171: Problem 2.6: The answers should be $\sigma_{\mathrm{x}}=130.16 \mathrm{MPa}, \sigma_{\mathrm{y}}=-69.84 \mathrm{MPa}$
p. 171: Problem 2.10. Figure 2-36, $D=100 \mathrm{~mm}$ is missing.
p. 173: Problem 2.15: use Goodman equation.
p. 174: Problem 2.18: use Goodman equation. Answer: $\mathrm{Fs}=1.75$

Bending moment varies from $1,000,00$ to $5,000,000 \mathrm{Nmm}$, not $1,040,000$.
p. 175: Problem 2.23. Figure 2-49, the fillet radius $r=0.5$ and the width of the smaller side $=2$ inch.
p. 177: Problem 2.27. Ans. (a) $F_{s}=3.46$; (b) $F_{s}=3.81$
p. 177: Problem 2.30. Ans. (a) $F_{s}=4.02$
p.192: Example 3.3, By Eqs.(2) and (5) $\mathrm{T}=\tau \mathrm{J} / \mathrm{r}=\ldots \ldots$. , the letter 1 is an error.
p. 207: Example 3-8, $\mathrm{d}_{\text {shaft }}=3-7 / 16$, not 3-7/6.
p. 209: Figure 3-11, the left side figure is Sled-Runner Keyway, the right figure is Profile Keyway.
p. 210: Figure 3-12, Remove "Sled-Runner Keyway", "Profile Keyway" from the figure.
p. 212: First calculation: $\tau=7,000 / 1 . / 841$, not 1,841 . The comma is wrong.
p. 221: Example 3-15, In Eq. (16) calculation under $f=\ldots .=11.80$ cycles/sec Under the radical the "W $80 x 0.7922^{2 "}$, W should be deleted
p.222: Example 3.16: Find the defllection for point A. This is a miss spelling for deflection.
p. 227: EQ. (21) The numerator should be a letter τ, not t .
p. 229: Module 3-2, last line: it should be b/c and not d/c
p.. 233 : third line below EQ. (28), is designated by a not α.
p. 234: Example 3-19 Solution (a):

By EQ. (29): we have $\quad \theta_{1}=\ldots \ldots .=0.000729$ Rad./length $=0.0418^{\circ} /$ length.
in the above equation the value of 6.565^{2} should be 6.562^{2}.
p. 259: Problem 3.84: In Figure 3-83 the distance of the 300 lb load is 20 inches not 25 inches. The force for the bearing R_{3} should be R_{3} not R_{2}.

