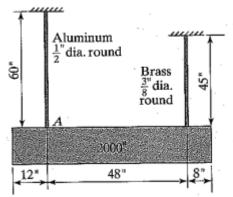
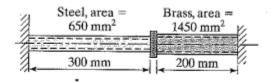
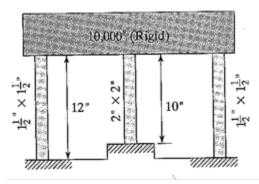

NOTE: Tables of material Properties such as modulus of elasticity (E) and coefficient of thermal expansion ( $\alpha$ ) of engineering materials are attached at the end.


1. Find the drip of the 500-lb weight. Ans. 0.0128 in




2. The bottom member is of uniform cross section and can be assumed to be rigid. The hinge is frictionless. Find the number of degrees of rotation of the lower member. Ans 0.137°.




3. In the lower member is of uniform cross section and can be assumed to be rigid. Find the change in elevation of the left end because of the stretch of the rods.



4. The members in the figure below have a neat fit at the time of assembly. Find the force caused by an increase in the temperature of  $50^{\circ}$ C. Supports are immovable.



5. In the figure below, the outer bars are symmetrically placed with respect to the center bar. The top member is rigid and located symmetrically on the supports. Fing the load carried by each of the supports. Modulus of elasticity for the bars is 2,000,000 psi. Ans. Center 5161 lb; Outer 2419 lb.



| Material             | Modulus of Elasticity   |                 |                                                | Coefficient of<br>Linear           |
|----------------------|-------------------------|-----------------|------------------------------------------------|------------------------------------|
|                      | Tension–Comp,<br>E, psi | Shear G,<br>psi | Weight per Unit<br>Volume, lb/in. <sup>3</sup> | Expansion, $\alpha$ in/(in. deg F) |
| Cast iron            | See Table 14-16         |                 | 0.256                                          | 0.000 0056                         |
| Steel                | 30,000,000              | 11,500,000      | 0.283                                          | 0.000 0065                         |
| Stainless steel 18-8 | 28,000,000              | 10,000,000      | 0.295                                          | 0.000 0096                         |
| Brass, bronze        | 15,000,000              | 5,300,000       | 0.30-0.32                                      | $0.000\ 0102$                      |
| Aluminum             | 10,000,000              | 3,850,000       | 0.100                                          | $0.000\ 0128$                      |
| Magnesium            | 6,500,000               | 2,400,000       | 0.065                                          | 0.000 0145                         |

## TABLE 2-3 AVERAGE VALUES FOR MECHANICAL PROPERTIES OF ENGINEERING MATERIALS.

**TABLE 2-3A**AVERAGE VALUES FOR MECHANICAL PROPERTIES OF ENGINEERINGMATERIALS IN SI UNITS.

| Material             | Modulus of Elasticity                           |                                                  |                                                 |                                                            |
|----------------------|-------------------------------------------------|--------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|
|                      | Tension–Comp,<br>E, N/mm <sup>2</sup><br>or MPa | Shear, <i>G</i> ,<br>N/mm <sup>2</sup><br>or MPa | Weight per Unit<br>Volume,<br>N/mm <sup>3</sup> | Coefficient of<br>Linear<br>Expansion, α,<br>mm/(mm deg C) |
| Cast iron            |                                                 |                                                  | 0.000 0695                                      | 0.000 0100                                                 |
| Steel                | 206,900                                         | 79,300                                           | 0.000 0768                                      | $0.000\ 0117$                                              |
| Stainless steel 18-8 | 193,100                                         | 69,000                                           | 0.000 0800                                      | 0.000 0173                                                 |
| Brass, bronze        | 103,400                                         | 36,600                                           | 0.000 0814-869                                  | 0.000 0184                                                 |
| Aluminum             | 69,000                                          | 26,600                                           | 0.000 0271                                      | 0.000 0230                                                 |
| Magnesium            | 44,800                                          | 16,600                                           | 0.000 0176                                      | 0.000 0261                                                 |