TRANSVERSE SHEAR STRESS

The equilibrium equation for horizontal forces for $A B C D$ is then

$$
\begin{gathered}
\tau b d x+\int_{v_{1}}^{c_{1}} \frac{M v d A}{I}=\int_{v_{1}}^{c_{1}} \frac{(M+d M) v d A}{I} \\
\tau=\frac{1}{b} \int_{v_{1}}^{c_{1}} \frac{d M}{d x} \frac{v d A}{I}=\frac{V}{I b} \int_{v_{1}}^{c_{1}} v d A \\
\tau=\frac{V}{I b} \bar{v} A_{a}=\frac{V Q}{I b}
\end{gathered}
$$

When finding transverse shear stress (τ) for a composite section, the following formula can be used:

$$
\tau=\frac{V}{I b} \sum \bar{v} A_{a}=\frac{V}{I b}\left(\bar{v}_{1} A_{a 1}+\bar{v}_{2} A_{a 2} \ldots\right)
$$

Problem Statement: Find the transverse shear in the material 3 in . from the top surface for the beam of Fig. 1-21 (a).

Figure 1-21 Examples 1-3, 1-6, and 1-12

Referring to Fig. 1-21(c), it is seen for a location 3 in. from the top that $\bar{v}=2.5 \mathrm{in}$. and $A_{a}=3 \mathrm{in}{ }^{2}$. Substitution in Eq. (25) gives

$$
\tau=\frac{10,000}{33.33 \times 1} \times 2.5 \times 3=2250 \mathrm{psi}
$$

It is of course immaterial whether A_{a} is taken above or below the location at which the stress is desired. Equation (26) gives

$$
\tau=\frac{10,000}{33.33 \times 1}(1.5 \times 4+0.5 \times 3)=2250 \mathrm{psi}
$$

Max. Transverse shear stress, $\tau_{\max }$ always occurs at NA (because Q is max at NA)

Max Transverse shear stresses ($\tau_{\text {max }}$):

Solid rectangular cross-section	$\tau_{\max }=\frac{3}{2} \frac{V}{A}$	$\mathrm{~A}=$ area of the cross-section = b.d
Solid circular cross-section	$\tau_{\text {max }}=\frac{4}{3} \frac{V}{A}$	$\mathrm{~A}=$ area of the cross-section $=\frac{\pi}{4} d^{2}$
Circular cross section with thin $_{\text {wall }^{*}}$	$\tau_{\max }=2 \frac{V}{A}$	$\mathrm{A}=$ area of the cross-section $=\frac{\pi}{4}\left(d_{o}^{2}-d_{i}^{2}\right)$
I cross-section	$\tau_{\max }=\frac{V}{A}$	A $=$ t.d t $=$ thickness of the web, and d= total depth of the I-beam

