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1. RESOLVING A FORCE IN TWO ORTHOGONAL DIRECTIONS 
 
 
 
 
 
 
` 
 
 
 

 
2.  MOMENT OF A FORCE ABOUT A GIVEN POINT 

  
 

 
 
Sign convention: 
Clockwise (CW) = positive 
Counter clockwise (CCW) = negative 
 
 

3. STATIC EQUILIBRIUM IN TWO DIMENSIONS 
 

When several forces (and moments) are acting on a body, the body will maintain static 
equilibrium if the following three equalities are satisfied simultaneously: 

(i) Sum of all forces acting on the body in X direction = 0; i.e., ΣFx = 0 
(ii) Sum of all forces acting on the body in Y direction = 0; i.e., ΣFY = 0 
(iii)Sum of moments about any point on the body due to all forces acting on the body = 0; 

i.e., ΣM = 0  
 
These equations are frequently used to find unknown reaction forces and moments due to 
externally applied known forces and moments. 

θ 
x 

Y 

FX=F.cos(θ) 

F 

FY=F.sin(θ) 

If  we know the magnitude of the force F, 
and its angle (θ) with x-axis, then the 
component of the force in X and Y 
directions are: 
Fx= F.cosθ,  



     2 of 17 
 

4. AXIAL TENSION AND COMPRESSION: 
STRESS, STRAIN & HOOK’S LAW 

 
When a member is axially loaded with a force P, the 
force acting on any cross-section across the length 
of the component = P.  
 
The normal stress at any cross section can be 

obtained by 
A
P

=σ , where A = cross-sectional area. 

 
Sign conventions:  
Tensile stress is positive, compressive stress is 
negative. 
 
Statically indeterminate problems: 
Some times, for axially loaded members, the load shared by each member cannot be determined 
from static analysis of forces.  In those cases, additional deformation relationships can be used to 
find the load shared. 
 

Normal stress:
A
P

=σ , P = Axial load, A = cross sectional area and, 

Normal strain:
l
δ

ε = , δ = elon`gation, L = original length. 

Hooks law: Stress (σ) is proportional to strain (ε) 
 
σ =E.ε,  E = Elastic Modulus or Young’s Modulus 

 

Thus, 
L

E
A
P δ

= .  

Rearranging: 
AE
PL

=δ  

A
P

=σ  

A
P

=σ
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5. TRANSVERSE LOADING: 
INTERNAL SHEAR FORCE & BENDING MOMENT 

 
Transversely loaded members are often called beams.  Beams can be supported as a cantilever 
beam or as a simple supported beam, as shown below.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For these two types of supports, the unknown reaction force and reaction mome nt at the 
support can be readily determined by using the static equilibrium conditions.  
 

 
6. SHEAR FORCE & BENDING MOMENT DIAGRAMS 

 
Due to transverse loading, shear forces and bending moments are generated internally within 
beam.  
 
The internal shear force (V) at any section of the beam: 
V = sum of all external forces (including the reaction force at support) either to the left or right 

from the section. (Both will have same magnitude but opposite direction as the beam is in 
static equilibrium) 

Sign convention of V = positive, if the force is upward to the left of the section. 
To find the maximum V, often Vs along the length of the beam are determined and a diagram of 
variation of V is drawn, which is known as shear force diagram. 
 
The internal Bending Moment (M) at any section of the beam: 
M = sum of moments about that section of all external forces (including the reaction force at 

support) either to the left or to the right from the section. (Both will have same magnitude 
but opposite direction as the beam is in static equilibrium) 

Sign convention of M = positive, if the moment of a force causes compression in the upper 
layer of the beam.  

To find the maximum M, often Ms along the length of the beam are determined and a diagram of 
variation of M is drawn, which is known as bending moment diagram. 

P P 

M M 

w w MR 

R Cantilever 
beam support 

Free-body 
diagram 

P P 

M M 

w w 

RA RB Simple beam 
support 

Free-body 
diagram 

Cantilever type support generates 
a vertical reaction force R, and a 
reaction moment MR to support the 
beam. Simply support generates 
only vertical reaction forces, RA & 
RB 

 
The magnitudes and locations of 
applied loads and moments are 
known.  
 
Types of loads: 
P = Concentrated applied load 
w= Distributed applied load 
M = Applied moment 
 

RB 
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7. BENDING STRESS (σ) 
 
 
 

 
 
Bending stress due to bending moment M will be zero at the neutral axis (NA). Bending 
stress is tensile in one side of the NA, and compressive on the other side of NA. 
 
At any point in the loaded beam, bending stress (σ) can be calculated from the following 
formula: 
 
 
 

v
I

M
=σ  

 
 

Max bending stress will occur at the outermost layer of the beam (v=maximum), furthest away 
from the NA. 

Z
M

Also

c
I

M

=

=

max

max

, σ

σ

 

 
If the radius of curvature of the beam r, due to bending is known, bending stress (σ) can be found 
from the following alternative formula: 

 

v
r
E

=σ  

 
 
 

Where, 
M = Internal bending moment at the point stress is being 

calculated,  
I = Moment of Inertia of the beam cross section about the neutral 

axis (NA), 
v = distance of the point from NA where the stress is determined. 

Where,  
c = distance of the furthest outer layer of the beam from the 

neutral axis (NA) 
 Z = I/c = known as section modulus 

Where, 
E = Elastic Modulus 
r = Radius of curvature due to bending at that section 
v = distance of the point from the neutral axis (NA) where the 

stress is determined 
 

σ 

σ 
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8. NEUTRAL AXIS (NA) 
 
NA passes through the Center of gravity (CG) of the beam cross section. For rectangular or 
circular cross-section of the beam, CG is at the geometric center 
of the section.  
 
For a composite section, the location of the CG can be 
determined by the following formula, 
 
 

...
...

321

332211

+++
+++

=
AAA

yAyAyA
y   

 
 

9. MOMENT OF INERTIA (I) 
I, for rectangular and circular sections about their NA can be found using following formulae: 

 
I for I-sections, Box sections and channel sections can be found using following formulae: 

 
Transfer of axis for Moment of Inertia 
This formula is used to find MI of a T or other sections, whose NA or CG 
is not located at the geometric symmetrically.  

2
01 yAII +=  
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10. TRANSVERSE SHEAR STRESS (τ) IN BEAMS 
 

(i) The transverse shear stress τ at a section BB’ is given by the following formula: 

Ib
VQ

Av
Ib
V

a ==τ  

Where, 
V= Internal shear force, 
I = MI about NA of the beam section 
b= Width of the section 

=v Distance of CG of the section BB’CC’  
  from NA 
Aa= Area of the section BB’CC’ 
Q  = aAv = Area moment of the section  

  BB’CC’  
(ii) Max. transverse shear stress, τmax always occurs at NA (because Q is max at NA) 
(iii) When finding transverse shear stress (τ) for a composite section, the following formula can 

be used:  ( )...2211 aaa AvAv
Ib
V

Av
Ib
V

+== ∑τ  

 
(iv) Max Transverse shear stresses (τmax): 

Solid rectangular 
cross-section A

V
2
3

max =τ  A = area of the cross-section = b.d 

Solid circular 
cross-section A

V
3
4

max =τ  A = area of the cross-section = 2

4
d

π
 

Circular cross 
section with thin 
wall* A

V2max =τ  

A = area of the cross-section  

= ( )22

4 io dd −
π

 

 I cross-section 
A
V

=maxτ  

A = t.d 
t= thickness of the web, and 
d= total depth of the I-beam 

 
* A more exact analysis gives the values of 1.38 V/A and 1.23 V/A for the transverse shear stress 

at the center and ends, respectively, of the neutral axis. 
 

τ 

τ 
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11. TORSION OF CIRCULAR SECTION & SHEAR STRESS 
 

When a torque T is applied to a circular section, the 
elastic deformation produces an angular twist φ, and 
shear stress τ, within the member. At any radial 
distance r1, the shear stress τ, can be obtained from: 

1rJ
T

=τ   

Where, 
 J = polar moment of inertia of the circular section  
= 2I 
 
The shear stress τ = 0 at the axis, as r1=0, and the 
shear stress τ = τmax, at r1=r, the outermost layer. 

Thus, r
J
T

=maxτ  

For, solid circular section: 
232

44 rd
J

ππ
==  

For, hollow circular section: 

2
)(

32
)( 4444

ioio rrdd
J

−
=

−
=

ππ
 

Putting the values of J, in the above equation: 
 
For solid circular section:  

34max

16
2)32/( d

Td
d

T
r

J
T

ππ
τ ===  

For hollow circular section: 

 
diameteroutertoinnerofratio

d
d

where

d
T

d
dd

Td
dd

T
r

J
T

o

i

o
i

o

i

==

−
=

−
=

−
==

λ

λπππ
τ

,

)1(
16

)(
16

2)32/)(( 43
0

44
0

44
0

max

 

The shear stress τ and the angle of twist φ  is related by  

l
Gr1φ

τ = , where G = shear modulus of elasticity, l = length of the shaft and r1= radius. 

Relationship between power (kW/HP), torque (T) and rpm (n) 
 

mmN
n

kW
T

lbin
n

HP
T

−=

−=

000,550,9

025,63

 

τ 

τ 

τ 

τ 

τ 

τ 
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12. EFFECT OF COMBINED 
STRESS IN 2D: MOHR CIRCLE 

 
The two dimensional general state of 
stress at a point is shown, where, σx= 
normal stress in X direction, σy= normal 
stress in Y direction, and τxy= shear 
stress.  
 
The corresponding Mohr circle can be 
drawn by plotting the X(σx,τxy), and Y 
(σy,τxy) points in the σ−τ plane. The 
circle drawn, using the XY line as 
diameter, is the Mohr circle.  

The center of the circle 
2

yx
avg

σσ
σ

+
=  

Radius of the circle 

2

2

2 xy
yxR τ

σσ
+







 −
=  

The angle, 










−
= −

yx

xy

σσ

τ
θ

2
tan2 1 , and the angle, 2φ = 90−2θ 

 
All Mohr circle angles are double the actual angles 
 
Principal normal stresses will occur along the diameter σ1σ2 at an angle θ from the original X 
direction.  

σ1= σavg + R = 2

2

22 xy
yxyx τ

σσσσ
+







 −
+

+
 

σ2= σavg – R = 2

2

22 xy
yxyx τ

σσσσ
+







 −
−

+
 

Maximum shear stress will occur along the  
vertical diameter at an angle φ from the original X 
 direction.  

2

2

max 2 xy
yxR τ

σσ
τ +







 −
==  

 
Stresses in any arbitrary direction u-v which is at an angle φ with respect to the x-y axes 
system, can be readily found if σavg, R & θ are known: 
 

σu= σavg+Rcos[2(θ+φ)],  σv = σavg - Rcos[2(θ+φ)],  and τuv = Rsin[2(θ+φ)] 

σ1 σ1 

σ2 

σ1 
σ2 

X 
θ 

σavg 
τmax 

σavg 
σavg 

σavg 
τmin 

x 

Y 

φ 

τ 

X (σx,τxy) 

Y(σy,τxy) 

σx 
σ2 σ1 

σy 

σavg 

τmax 

2θ σ −σ 

−τ 

ο 
2φ 

τxy 

τxy 

X axis 

Y axis 

(σavg,τmax) 

(σavg,-τmax) 

Y 

X 
σx 

τxy  
σy  

σx 

σy  
τxy  
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Stress relationship for a rotation of axis system by 45o 
 
(a) When the XY coordinate system is rotated by 45o counter-clockwise to X’Y’ system 

Then, 
2''

yx
yx

σσ
τ

−
= , xyavgx τσσ −=' and xyavgy τσσ +=' , where 

22
'' yxyx

avg

σσσσ
σ

+
=

+
=  

(b) When the X’Y’ coordinate system is rotated by 45o clockwise to XY system 

Then, 
2

'' xy
xy

σσ
τ

−
= , '' yxavgx τσσ += and '' yxavgy τσσ −= , where 

22
'' yxyx

avg

σσσσ
σ

+
=

+
=  

 
 

(σy'-σx')/2

Y'(σy',-τx'y' )

X(σx,τxy)

(σy'-σx')/2

(σx-σy)/2

Y(σy,-τxy)
(σx-σy)/2

X'(σx',τx'y')
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13. STRESS MANIPULATION IN 3-D 
 

 
 
For a general state of stress in 3D, shown in (a), normal and shear stresses may be present in 3 
orthogonal directions.  It can be shown that at a certain orientation, three principal normal 
stresses, orthogonal to each other, are equivalent to the stress condition at (a). S1, S2 and S3 are 
the three principal normal stresses, which are three roots of the following cubic equation: 
 

S3 – a.S2 + b.S – c = 0,   
where,  a = σx+ σy+ σz 

   b = σxσy+ σyσz+ σzσx–τxy
2–τyz

2–τzx
2 

   c =  σxσyσz + 2τxyτyzτzx– σx τyz
2– σy τzx

2– σz τxy
2 

 

The maximum shear stress  τmax = Max of 






 −−−

2
,

2
,

2
133221 SSSSSS
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14. STRAIN IN TWO DIMENSIONS 
 

If the σx & σy are normal stresses, then normal strains εx & εy  can be determined from: 
 
 

)(
1

),(
1

xyy

yxx

E

and
E

µσσε

µσσε

−=

−=
 

 
 
Where µ = Poisson’s ratio, which is a material property 

 
Solving the above two equations, we can find the normal stresses in two directions. 
 

)(
1

),(
1

2

2

xyy

yxx

E

and
E

µεε
µ

σ

µεε
µ

σ

+
−

=

+
−

=
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15. THEORIES OF FAILURE 
 
Uniaxial Tensile Stress Testing 
During uniaxial stress testing of ductile materials, the first mechanical failure occurs by 
yielding, at the material’s yield strength Syp.  The maximum stress that the material can 
withstand before breakage occurs at the ultimate tensile strength, Su, and Su > Syp.  
For ductile materials, Syp and Su values are same in tension and compression. 
 
During uniaxial stress testing of brittle materials, the first mechanical failure occurs by fracture, 
at the material’s ultimate tensile strength Su.  For brittle materials, Syp is greater than Su and thus 
Syp is non-existent. Also, for brittle materials, fracture strength in compression Suc is higher than 
fracture strength in tension Sut.   
 
General 3D state of stress 
For these types of stresses, predicting failure is not as straight forward as in case of uniaxial 
stresses. The following theories of failure are developed to predict failure in such general state of 
stress. To apply these theories, first the principal normal stresses S1, S2 and S3 are computed, 
and then the theories are applied, with a factor of safety Nfs. For 2D stresses, one of the principal 
normal stresses = 0. 
 
A positive value of principal normal stress means the principal stress is tensile, and a negative 
value means that the principal stress is compressive. 

Maximum Normal Stress theory  
Applicable for brittle materials 

fs

ut

fs

uc

fs

ut

fs

uc

fs

ut

fs

uc

N
S

S
N
S

N
S

S
N
S

N
S

S
N
S

≤≤

≤≤

≤≤

3

2

1

 

Maximum Shear Stress theory 
Applicable for ductile materials 
 

fs

yp

fs

yp

fs

yp

N

S
SS

N

S
SS

N

S
SS

≤−

≤−

≤−

13

32

21

 

Maximum Strain Energy: 
Applicable for ductile materials 

2

133221
2
3

2
2

2
1 )(2 










≤++−++

fs

yp

N

S
SSSSSSSSS µ  

Maximum Distortion Energy 
theory: Applicable for ductile 
materials  
(Also known as von Mises-Hencky 
theory) 

2

133221
2
3

2
2

2
1 










≤−−−++

fs

yp

N

S
SSSSSSSSS  
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16. STRESS CONCENTRATION  
 
If there is a sudden change in geometry at a point, then the actual stress at that point is K times 
the calculated stress, where K>1.  The value of K, the stress concentration factor, for 
combinations of geometry and loading type, can be obtained from the graphs given in pages 139-
145 in the text book.  
 
When the material is ductile, loads are not cyclic or are not applied suddenly or the application is 
not working in a low temperature condition, then the effect of stress concentration factors can be 
ignored, or K = 1, even if there is a sudden change in geometry. 
 
For brittle materials all types of applications, and for ductile materials when, loads are applied 
suddenly, or for low temperature applications, the actual stress = K times the theoretically 
calculated stress. 
 
For ductile materials, when the load is cyclic, a stress concentration factor Kf is used which is 
lesser than K.  

Kf can be determined from the formula 
1

1

−

−
=

K

K
q f .  

Here, q is the notch sensitivity factor or notch sensitivity index, which depends on the material 
and its surface condition.  The value of q can be obtained from handbooks and 0<q<1.  If the 
value of q is unknown, then conservatively, it is assumed q=1, which gives Kf = K. 
 
 

17. DESIGN FOR CYCLIC LOADING 
 
For pure cyclic stress (Sr), that varies cyclically from 0 to Sr to 0 to –Sr, 

  
fs

e
fr N

S
KS ≤ , where Se = endurance limit of the material, & Nfs = Factor of safety. 

If the stress changes cyclically between Smax and Smin, then the equivalent steady stress (Savg) and 

equivalent cyclic stress (Sr) can be given by  
2

minmax SS
Savg

+
=  and 

2
minmax SS

Sr

−
= . In such 

situations the design equations are as followings: 
 

Soderberg’s equation: 
fs

yp

e

yp
fravg N

S

S

S
KSS ≤








+  

Goodman’s equation: 
fs

u

e

u
fravg N

S
S
S

KSS ≤







+  

Modified Goodman’s equation: 
fs

u

e

u
fravg N

S
S
S

KSS ≤







+  & 

fs

yp
fravg N

S
KSS ≤+  
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18. DESIGN FOR FINITE LIFE 
 
(i) For a completely reversing cyclic stress Sr, the S-N curve is represented by, 
  B

r ANS = , where N = number of stress reversals. 
 
A & B are determined from: 

3
)9.0log()log( ue SS

B
−

= , where Se = endurance limit, and Su = ultimate tensile strength. 

)6(10 B
eS

A =  

 
Once, A & B are known, for a given completely reversing stress σr , the number of stress 

reversals before failure can be found by: 
B

r

A
S

N

1







=  

 
(ii) For a combined reversing (Sr) and steady (Savg) stress situation, the equivalent completely 

reversing stress 
avgult

ultrf
R SS

SSK
S

−
= .  For this type of loading, SR should substitute Sr of the equation 

shown in (i) 
 

(iii) Miner’s equation: 1....
3

3

2

2

1

1 =+++
N
n

N
n

N
n

, where n1, n2, n3, … are actual number of 

reversals with SR1, SR2, SR3,….. equivalent completely reversing stress levels, and N1, N2, N3, … 
are maximum number of reversals before failure with SR1, SR2, SR3,….. equivalent completely 
reversing stress levels.  



     15 of 17 
 

19. SHEAR STRESS IN A SHAFT FOR COMBINED BENDING & TORSION 
For a shaft carrying bending moment (M) and torque (T), the maximum shear stress (τmax),:  

2
2

max 2
τ

σ
τ +






=  

For solid shaft: 22
3max33

161632
TM

d
thus

d
T

and
d
M

+===
π

τ
π

τ
π

σ  

For hollow shaft: 

o

i

ooo

d
d

where

TM
d

thus
d

T
and

d
M

=

+
−

=
−

=
−

=

λ

λπ
τ

λπ
τ

λπ
σ

,

)1(
16

)1(
16

)1(
32 22

43max4343

 

 
20. DESIGN OF SHAFT WITH CYCLIC LOAD 

 
Based on maximum distortion energy theory, the design equation is: 

222

3 









=


















++


















+

fs

yp

e

yp
ftrav

e

yp
fbrav N

S

S

S
K

S

S
K ττσσ  

Where,  

σav= Steady normal stress = 
2

minmax σσ +
 

σr = Cyclic normal stress = 
2

minmax σσ −
 

Kfb = Fatigue stress concentration factor in bending 

τav= Steady shear stress = 
2

minmax ττ +
 

τr = Cyclic shear stress = 
2

minmax ττ −
 

Kft  = Fatigue stress concentration factor in torsion 
Syp = Yield stress 
Se = Endurance limit 
Nfs = Factor of Safety 

 
 

21. SHAFT WITH BENDING LOADS IN TWO PLANES 
 

(i) Resolve each bending load in vertical and horizontal direction. 
(ii) Determine the bending moment diagram separately for horizontal and vertical loads 

(iii) The resultant bending moment at any point on the beam = 22
HvR MMM +=  
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22. DESIGN OF KEYS, KEYWAYS & COUPLINGS 
 
From the HP or kW rating and rpm n, torque T can be determined using the following formula: 

mmN
n

kW
Torlbin

n
HP

T −=−=
000,550,9

,
025,63

 

Then, the tangential force F = T/r, where r = radius at which the tangential force is required. 
 
(i) For designing keys and keyways, tangential force transmitted by the key is assumed to be 
acting at the outer diameter of the shaft, ie., r = do/2, and F = 2T/do 
 
If,   L = length of the key or the keyway 
 a = width of the key or the keyway, and  
 b = depth of the key 

Then, shear stress in the key = 
fs

yp

s NLa
F

A
F τ

τ ≤==
.

,  

It is assumed ,,
2

thusyp
yp

σ
τ =

fs

yp

NLa
F

2.

σ
≤  

Bearing stress in the key = 
fs

yp

fs

yp

b NbL
F

or
NbL

F

L
b
F

A
F

2
,

2

.
2

σσ
τ ≤≤=









==  

For square Key, a=b, and hence key designed from either shearing or bearing stress, will result in 
same dimension, and square keys are equally strong from shearing and bearing. 
 
(ii) In rigid couplings,  
(a) Bolts may fail due to shearing or bearing: 

 Tangential force carried by each bolt = 
pnd

T
F

2
= , where, n = number of bolts, & dp = 

pitch circle diameter of the bolts.  

Shear stress in bolts = 
fs

yp

bs Nd
F

A
F

2
4

2

σ

π
τ ≤==  

Bearing stress in bolts = 
fs

yp

bb Ntd
F

A
F σ

σ ≤== ,  

 where, db= diameter of the bolt, and t = flange thickness of the coupling 
 
(b) The coupling can shear from the hub/flange joint: 

 Tangential force 
hd
T

F
2

= , where dh = hub diameter 

 

Shear stress = 
fs

yp

hh Nd
F

A
F

2

σ

π
τ ≤==  
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23. DESIGN OF SLENDER COMPRESSION MEMBERS OR COLUMNS 
 

 
 
For columns with an initial crookedness, the design load P can be determined from the following 
quadratic equation: 

01
22

2 =+













 ++−

fs

cryp

fs
cryp N

AP

N
P

P
i
ac

AP
σ

σ  

Where,  P = the design load 
  σyp= yield strength 
  A = cross sectional area 
  a = initial crookedness 
  c = distance from the neutral axis to the edge of the cross section 
  i = AI / = radius of gyration 
  Pc r= Critical load for a centrally loaded column 
  Nfs = factor of safety. 
 

Roots of quadratic equation 
a

acbb
xcbxax

2
4

;0
2

2 −±−
==++   
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24. DEFLECTION & SLOPE BY DOUBLE INTEGRATION  
Express bending moment (M) as a function of the longitudinal distance, x of the shaft. i.e., M = 
f(x). If y represents downward deflection, then for a shaft with constant EI, 

 )(
2

2

xfM
dx

yd
EI −=−= ....................(1) 

Integrating both sides of (1): 

 1)( Cxf
dx
dy

EI +−= ∫  ......................(2) 

Here
dx
dy

 represents the slope of the shaft, and C1 is the constant of integration. If the 

value of the slope is known for any value of x, then using those values, C1 can be determined 
from the above equation. 
 
Integrating both sides of (2): 
 21)( CxCxfEIy ++−= ∫ ∫  ..............(3) 

Here y represents the downward deflection of the shaft, and C2 is another constant of 
integration. If the value of the deflection y, is known for any value of x, then using those values, 
C2 can be determined from the above equation. Usually y at the support = 0. 

Once C1 and C2 are known, equation (2) and (3) are the slope and deflection equations for 
any valid value of x.  

 
25. DEFLECTION & SLOPE BY STRAIN ENERGY METHOD 

This method can take into account when diameter of the shaft is not uniform 

Deflection ∫=
I

dxMM

E
y fp1

 

and, slope ∫=
I

dxMM

E
mp1

θ  

Where  Mp= Bending moment due to applied loads 
Mf = Bending moment due to a fictitious unit load applied at the point where deflection is 

needed. 
Mm = Bending moment due to a fictitious unit moment applied at the point where the 

slope is needed. 
The above integrations can be calculated graphically. The integration is the volume enclosed by 

the 
I

M p and Mf diagrams for deflection, or the volume 

enclosed by the 
I

M p and Mm diagrams for slope for the 

entire length of the shaft. 
For a prismoidal solid shown,  

Volume = ( )21 4
6

AAA
l

m ++   

For a pyramid Volume = A
l
3

 

l 

A 
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26. SHAFT ON THREE SUPPORTS R1, R2 & R3 
 
(i) Remove R2 and find the downward deflection, y of the shaft at R2, due to the downward 
applied loads. 
(ii) Now, remove the applied loads and write an equation relating the upward force (R2) and 
upward deflection (y1) at the support point in the form R2=K.y1 
(iii)Now three types of situations can arise: 

(a) If all three supports are in the same level, then the magnitude of the reaction force  
R2 = K.y 

(b) If R2 is offset by δ from R1 & R3, then R2 = K(y-δ)  
(c) If R2 is an elastic support with a spring constant K1 with no offset at no load, then: 

   (y-R2K1)K = R2 or, R2 = yK/(1+K.K1) 
(iv) When the reaction force R2 is known, then the problem becomes statically determinate, and 
the R1 & R3 can be found by the application of static equilibrium conditions. 
 

27. CRITICAL SPEED OF A ROTATING SHAFT 
 

...60

sec/
......

.)..........(
2
33

2
22

2
11

332211

mprfn

cycles
yWyWyW

yWyWyWg
f

=
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Where,  
W1, W2, W3 are the vertical loads on the shaft, and y1, y2, y3 are deflections at of the loads, W1, 
W2, W3 due to bending of the shaft.   
g = acceleration due to gravity,  

= 32*12 = 386 in/sec2,  
= 9806 mm/sec2 

 


