
 

 

 ABSTRACT 

BIOMECHANICAL ANALYSIS OF  
ASYMMETRIC AND DYNAMIC LIFTING TASK  

by 
  Xiaopeng Jiang 

Lifting tasks is one of the leading causes of occupational lower back disorders (LBD).  

Aimed at deriving internal forces of human musculoskeletal system during lifting, 

biomechanical models are utilized to address this problem.  This thesis provides an in-

depth literature review of such modeling, and the results of experiments used to address 

LBD issues. 

An isometric pulling experiment was conducted to study the correlation between 

electromyography (EMG) and muscle forces predicted by AnyBody Modeling System™ 

with increasing hand loads, and infinite order polynomial (min/max) optimization 

criterion predicted percentage of maximum muscle forces 98% correlated with 

normalized EMG.  In a separate study, motion data during lifting of 13.6kg (30lb) weight 

at 0°, 30° and 60° asymmetry was collected by the OptiTrack™ six-camera motion 

capture system to drive the AnyBody™ model dynamically.  Erector spinae was the most 

activated muscle during lifting.  When the lifting origin became more asymmetric toward 

right, the right external oblique was more activated, and complementarily the right 

Internal oblique was less activated.  Because oblique muscles with larger moment arms 

can support an external moment more efficiently, and the subject squatted more as the 

lifting origin became more asymmetric, L5/S1 joint forces decreased. 

This study contributes to the design and evaluation of lifting tasks to minimize the 

cost of LBD.   
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Lower back disorder (LBD) related to occupational manual material handling (MMH) is 

still not fully understood.  According to the U.S. Centers for Disease Control and 

Prevention (CDC) [1], MMH may expose workers to physical conditions, e.g., force, 

awkward postures, and repetitive motions, that can lead to injuries to the back, shoulders, 

hands, wrists, or other parts of the body, wasted energy, and wasted time.  Injuries may 

include damage to muscles, tendons, ligaments, nerves, and blood vessels.  Injuries of 

this type are known as musculoskeletal disorders (MSDs).  According to the U.S.  Bureau 

of Labor Statistics [2], MSDs accounted for 28 percent of all injuries, and the back was 

injured in nearly half of the MSD cases and required median of 7 days to recuperate.  Out 

of all the MMH tasks, lifting has been the main contributors to the lower back injuries, 

accounting for 49-60 percent of lower back incidents [3]. 

Low back pain (LBP) is the most common clinical, social, economic, and public 

health problem affecting the population indiscriminately across the world among all 

chronic pain conditions.  It is estimated that 28% of the U.S. industrial population will 

experience disabling low back pain at some time and 8% of the entire working population 

will be disabled in any given year, contributing to 40% of all lost work days.  In fact, 

workers’ compensation programs in the 50 states and the District of Columbia and 

federal programs in the United States combined paid $56 billion in medical and cash 

benefits in 2004, an increase of 2.3% over 2003 payments.  In addition, occupational 
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diseases represented only 8% of the claims and 29% of the cost [4].  The employers lose 

useful manpower and may have to employ and pay replacement workers.   

It is generally accepted that occupational LBP is a manifestation of overloading 

back extensor muscles and spinal tissues during lifting tasks.  Although many basic 

properties of the human musculoskeletal system are measurable, internal forces in living 

tissues can rarely be measured directly during lifting task performance.  Biomechanical 

modeling has been utilized to investigate lifting task characteristics so that the task 

demands can be kept within a limit and the strength capacity of internal muscles and joints 

are not exceeded.  During lifting activity, considerable forces can be generated on the 

back extensor muscles and the vertebral discs, including compression and shear forces.  

This approach focuses on determining forces and moments acting on the body during 

lifting tasks and their effects on various body segments, muscles and joints.  To 

determine internal tissue forces and moments more accurately, progressively more 

detailed anatomical models of the lower back have been introduced in modeling.  Current 

anatomical models of the lower back cannot only consider all major muscle groups 

relevant in lifting activity, but also the muscle model can differentiate among the 

individual muscle fascicles of a muscle group [5, 6] with consideration of muscle 

wrapping against bony structures [5-8].  In biomechanics, the muscle and joint forces are 

determined from Newtonian mechanics.  However, due to the presence of redundant 

muscle groups that may be active during such activities, the statics problem essentially 

becomes a statically indeterminate problem.   The statically indeterminate problems are 

over defined, and as a result, Newtonian mechanics alone cannot predict the muscle 

forces.   Two types of kinetic models have been developed to solve such statically 



 

 

3 

indeterminate problems: (i) optimization criterion based and (ii) electromyography (EMG) 

assisted.  Optimization criterion based models assume that muscles are recruited in such a 

way that a criterion function is minimized to reduce a biological cost, such as joint 

compression force [9, 10] and muscle fatigue functions [11-13].  This type of 

optimization approach is based on the assumption that the human central nervous system 

(CNS) has the ability to recruit muscles in a way that will provide maximum protection 

against internal injury.  EMG assisted models utilize measured myoelectric activity to 

represent muscle recruitment patterns.   

Several EMG assisted biomechanical models have been developed with varying 

degree of sophistications [7, 14].  Essentially, these models partitioned the total extensor 

moment during lifting into different muscle groups based on EMG signals collected from 

surface electromyography.  In surface electromyography, electrodes are affixed on the 

skin surface over a muscle of interest and the electrical potential picked up by the 

electrode provides a measure of spatial and temporal summation of electrical activities of 

the underlying muscle fibers.  It has been well documented that the muscle tension 

correlates well with the electrode potential provided the muscle contraction is isometric, 

that is, muscle fiber lengths remain unchanged during force production.  However, during 

dynamic situation, when muscle fibers generate force as well as change their lengths, 

sliding action of muscle fibers underneath the fixed surface electrodes, also generates 

electrode potential [15].  Unless the dynamic part of the electrode potentials are separated 

from the gross electrode potential, the EMG would not accurately estimate force 

generation by the muscle fibers, and as a result partitioning of the extensor muscle 

tensions would not be accurate.  None of the EMG based models has described how the 
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dynamic part of the EMG was separated from the static EMG, and hence the model 

outcomes are questionable.   

Apart from the computational complexity due to redundant musculature, 

asymmetric effects during dynamic lifting tasks add significant complexity to such 

models.   Asymmetry occurs when an external load is handled in a non-sagittal plane.  

Three dimensional (3D) equilibriums of forces and moments are needed to be considered 

in such cases.  Dynamic lifting tasks involve the change in velocity (acceleration/ 

deceleration) during movement of body parts.  Inertial forces develop on all moving 

masses during such a motion, which affects the internal tissue loading.  To take into 

account the inertial forces, the change in velocity of each body part needs to be tracked 

by some form of motion capture system, which provides time varying 3D coordinate data 

of moving body segments.  A great variety of workstation layouts in workplaces are 

associated with asymmetric and dynamic lifting.  Thus, to obtain the most accurate 

estimation of internal tissue loading, the induction of asymmetric and dynamic 

characteristics is crucial to the investigation. 

Trunk kinematics characteristics, including range of motion, peak velocity, 

average velocity, and peak acceleration, increase with an increase in task asymmetry [16-

19], which increases  the resultant trunk moments.  During asymmetric lifts, the support 

of the external load is shifted from the central erector spinae muscles to smaller, less 

capable oblique muscles [20].  Marras and Davis [18] found that the right latissimus 

dorsi, right erector spinae, right internal oblique, and right external oblique muscles all 

exhibited increased activity when lifting from origins located to the left of the sagittal 

plane.  For spine joint forces, they reported that compression and lateral shear forces 
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increased as the lift origin became more asymmetric, whereas anterior-posterior shear 

forces decreased [18].   

The AnyBody Modeling System™ [21] developed at Aalborg University is a general-

purpose musculoskeletal modeling and simulation program.  AnyBody™ can provide 

detailed results such as individual muscle forces, joint forces and moments, metabolism, 

elastic energy in tendons, and antagonistic muscle actions.  AnyBody™ is also scalable in 

terms of segment mass, length and muscle strength to fit to any population or individual 

from anthropometric data [22].  The essential features of this computer program can be 

summarized as follows: 

1. AnyBody™ models are open and editable, i.e. maximum muscle force, 
segment mass, posture, etc data are editable. 

2. Complex geometries of muscles, bones, ligaments, tendons, etc. and their 
spatial arrangement and interactions have been and can be readily modeled within 
AnyBody Modeling System™ [23].  Body models with unprecedented detail can be 
handled efficiently [22]. 

3. Data can be imported from motion capture (mocap) systems to drive 
AnyBody™ models dynamically [22].  Drivers can also be defined without captured 
data to drive the models [24]. 

4. To solve muscle redundancy problem, the AnyBody Modeling System™ 
offers a choice of several optimization-based muscle-recruitment criteria in inverse-
dynamics study [24].   

The AnyBody™ provides by far the most detailed human torso musculoskeletal 

model.  Unlike any other model, it simulates more closely individual muscles, in terms of 

their fascicle attachments.  Muscle models are more realistic, in the sense that it can take 

into account the muscle length and velocity of contraction to estimate the maximum force 

generation capacity.  Thus far, the torso model of AnyBody™ has been utilized 

effectively to validate internal muscle and joint forces [23, 25-27], but none of the studies 

investigated the effect of asymmetric and dynamic aspects of lifting.    
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Since the AnyBody Modeling System ™ is a general purpose modeling tool, it 

comes with a choice of mathematical optimization functions to solve the muscle 

redundancy problem.  It is expected that the user will select the appropriate function that 

produces most accurate results for the particular modeling being undertaken.    

The mathematical implementation of the optimization function is of the following 

form: 

! 

min f i
Ni

" 

# 
$ 

% 

& 
' 

p

(  (1.0) 

Where,   fi = force generated in muscle i, 
  Ni = maximum force capacity of muscle i, and  
  p = polynomial power. 
 

The term (fi/Ni) is essentially the percent of capacity of a muscle being used and 

hence is related to muscle fatigue factor.  AnyBody™ provides a selection of the power 

of the polynomial p = 1 to 5 and infinite (min/max).  Previous researchers have indicated 

that infinite polynomial power is suitable for the torso muscle model [6]; however this 

has not been explicitly validated by an experimental study. 

1.2 Objectives 

Based on the above discussion, the objectives of this thesis are defined as following: 

• Conduct a literature review on biomechanical models of lifting tasks;  

• Conduct a laboratory experiment to investigate the relationship between normalized 
EMG with the predicted percentage of maximum muscle forces, and the effect of 
different optimization criterion functions in AnyBody™ on predicting lumbar joint 
forces;   
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• Utilize a motion capture system in an asymmetric dynamic lifting task, and use the 
AnyBody™ software with an appropriate optimization criterion to investigate internal 
tissue loading.    
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CHAPTER 2  

LITERATURE REVIEW 

This chapter presents a literature review of human torso biomechanical modeling, for the 

purpose of estimating internal muscle and lumbar joint forces during the performance of 

lifting tasks.  The first two sections describe the evolution in anatomical modeling,  

kinetic modeling, and the third section describes the AnyBody™ system of modeling that 

integrates many of the recent development in biomechanical modeling. 

2.1 Anatomical Modeling 

The first step toward the biomechanical modeling related to lifting tasks is to develop an 

anatomical model of the human musculoskeletal system.  One basic assumption in 

biomechanical modeling is that the body is made up of rigid body segments joined at 

known, simple articulations.  This is more valid for the arms and legs, than the trunk, 

which is a semi-flexible arrangement of vertebral bodies, intervertebral discs and 

cartilaginous endplates located between the vertebral bodies and discs [28].  The anatomy 

of the spine is described by dividing up the spine into three major sections: the cervical, 

the thoracic, and the lumbar spine.  Below the lumbar spine is a bony structure, called the 

sacrum (S1), which is attached to the pelvic bone.  Each section is made up of individual 

bony structure called vertebrae.  There are 7 cervical vertebrae (C1-C7), 12 thoracic 

vertebrae (T1-T12), and 5 lumbar vertebrae (L1-L5).  In many biomechanical models, the 

lower lumbar L4/L5 or lumbosacral L5/S1 disc is chosen for particular attention.  This 

was based on statistics, which showed that between 85% and 95% of all disc herniations 

occur with relatively equal frequencies at the L4/L5 and L5/S1 levels.  Since the L5/S1 

disc is the lower most vertebral disc, it carries the greatest amount of 
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compressive load.   It was also reported that these discs were most often shown in X-rays 

of the vertebral column to have the greatest amount of degeneration when compared to 

other discs [29].  A anatomical models of varied details have been developed to estimate 

joint loading in the lower lumbar joints.  The following sections describe these 

anatomical models of the human torso with increasing order of complexity. 

2.1.1 Single Muscle Equivalent Model 

This torso model assumes that the major back extensor muscle group erector spinae (ES) 

is responsible for developing the extensor moment during sagittal lifting.  Figure 2.1 

shows a schematic diagram of single muscle equivalent model.  The torso is represented 

by two segments, a pelvic-sacral segment and a lumbar-thoracic segment, connected at 

the lumbosacral joint L5/S1 [28].  The lumbar extensor musculature ES is modeled 5cm 

posterior to the disc center of L5/S1, which is considered the center of rotation for the 

purpose of computation of moment [28].  In the vertical erect posture of the torso, the 

L5/S1 joint was assumed to be at 19.5% of the distance between the hip and shoulder.  

The amount of forward pelvic rotation relative to lumbar rotation was determined by the 

amount of trunk flexion.   
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Figure 2.1  Schematic diagram of single muscle equivalent model [30]. 
 
The model parameters, such as the muscle moment arm, location of the center of L5/S1 

and the ratio of pelvis to lumbar rotation were derived from adult population 

anthropometry and computer tomography (CT) scan and X-ray images of the trunk.  The 

single muscle model is considered to be adequate for purely sagittal lifting, when the 

internal and external forces are coplanar representing a two dimensional (2D) lifting 

situation.  Due to the presence of only one unknown muscle force in such 2D analysis, 

the internal joint and muscle forces can be determined from the equilibrium of forces and 

moments, and hence, the model is statically determinate.  However, when the trunk 

moves away from the mid-sagittal plane, other major muscle groups become active.  

Since this model had no provision for the muscles that are responsible for the axial 

rotation of the torso, this model is not amenable for analyzing asymmetric lifting. 
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2.1.2 Ten-Muscle Model 

Schultz et al. [31] first considered additional muscles in a three dimensional (3D) analysis 

of forces.  The model divided the torso muscles at the lumbar region into five pairs (left 

and right): rectus abdominus (R), external oblique (E), internal oblique (I), erector spinae 

(S), and latissimus dorsi (L) (Figure 2.2).  This model includes ten unknown muscle 

forces, compression, lateral shear and anterior-posterior (A-P) shear forces of L5/S1 joint, 

and is thus statically indeterminate.  Muscle recruitment optimization algorithms are 

introduced based on the assumption that muscles are recruited to minimize certain 

functions of muscle force, which will be discussed later in more detail under the kinetic 

modeling section.  The 3D Static Strength Prediction Program™ (3DSSPP™) software 

[32] developed by University of Michigan is based on this anatomical model. 

 

Figure 2.2  Schematic diagram of the 10-muscle model [31]. 
 

Marras and Granata [14] developed a similar lumbar torso musculature model 

(Figure 2.3).  The muscles included in this model were the same as the model described 

above: rectus abdominus (RcA), external oblique (ExO), internal oblique (InO), erector 
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spinae (ErS), and latissimus dorsi (Lat).  Muscle origins were assigned a three-

dimensional location relative to the spinal axis, co-planar with the iliac crest.  Muscle 

insertions are located co-planar with the 12th rib.  This model not only accounted for 

postural variations in muscle length-tension predictions, but also included a velocity-

tension modifier to provide better estimates of dynamic muscle tensions from EMG 

estimates, which will be discussed further under the kinetic modeling section. 

 

Figure 2.3  Vector representation of the trunk used in the EMG-assisted model [14].   

2.1.3 Anatomically Detailed Model 

Aimed at creating a model as anatomically accurate as possible, the model built by 

McGill and Norman [7] incorporated 48 muscles, and 7 ligaments.  The 3D skeleton 

comprised of a pelvis, rib cage, and five lumbar vertebrae modeled from archived 

radiologic records and corresponding to a 50th-percentile adult man.  The flexion of the 

five vertebrae (Ri) was predicted according to the linear-decline relationship (αi) from the 

total lumbar flexion (Ft): Ri= αi(L1 and L2: 13.2%, L3: 21%, L4: 29%, L5: 23.6%)* Ft.  

Disc deformations were modeled as a third order polynomial estimated from the joint 

compression force, because disc behavior could not be modeled the same way as that of 

linear elastic bodies.  Ligaments were connected to the appropriate skeletal points and 
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exerted force.  The algorithm for the individual muscle geometric representation began 

by assuming a straight line between origin and insertion.  This length was then modified 

by an approximation of the individual muscles by circular arcs.  Hence, muscles with an 

S-shaped orientation, such as the laminas of sacrospinalis, were modeled as two circular 

arcs arranged with opposing convexity.  Muscle tendon length was subtracted from the 

total to gain an accurate measure of  the muscle-active component length. 

2.1.4 Geometric Torso Model 

With the advent of improved anatomical dissection and imaging techniques, it is 

becoming possible to understand the complicated effects of varied muscle and ligament 

geometries.  CT and ultrasound scans and other methods are producing accurate spatial 

representations necessary to define the precise lines of action of torso muscles and their 

associated skeletal components [29].  Nussbaum and Chaffin [8] developed a torso model 

(Figure 2.4) with the lines of action of major muscles depicted relative to a cutting plane 

at the L3/L4 discs, including erector spinae, rectus abdominis, internal oblique, external 

oblique, latissimus dorsi, transversus abdominis, psoas, and quadratus lumborum.  

Muscles are treated as point-wise connections from origin to insertion.  By combining 

this type of geometric model with muscle force representations that include both active 

and passive tension relationships, it has become possible to begin to understand how 

various torso postures and asymmetric loading combinations cause specific low back 

tissue stresses [29].   
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28 Clin. Biomech. Vol. 11, No. 1, 1996 

nodes’i6. While primary nodes corresponded to centres 
of bony elements, secondary nodes describe the 
origin, insertion, and one or more points along the 
musck length. Secondary nodes are treated as if rigidly 
attached to a primary node at the corresponding axial 
location. Thus, the insertion of the rectus abdominis, 
for example, which lies approximately at the pubic 
symphysis, moves along the pelvis as it rotates or dis- 
places. Secondary nodes for muscles with relatively 
strai$rt-line actions (ES, RA, LD, Ps, and QL) were 
obtained~ from centroid locations at several vertebral 
levels**. For the obliquely oriented muscles (EO, IO, 
and TA), secondary nodes were specified at the L3/L4 
level only using the CT data (to capture the ‘bulk’ of 
the muscle at this level), and origins and insertions 
determined from anatomical texts (Figure 3). 

Length-tension properties of the muscles and the 
passive behaviour of the spinal column were in- 
corporated using published results. An averaged 
length-tension (L-T) curve was computed, assuming a 
similar form for all torso muscles. Existing dataz3, in 
which active and passive tension properties were 
determined from mammalian diaphragm muscle, were 
fitted with fourth-order polynomial and exponential 
curves respectively (Figure 4). Muscle lengths were 
computed as the sum of the distances between the 
secondary nodes describing each muscle, with resting 
lengths assumed to be those in the upright posture, and 
determined after the model had been scaled and 

deformed. The L-T curves describe forces in pro- 
portion to F,,,, the maximal active muscle force, using 
the following equations: 

F A -=5.144-~9.14(~)+55.9~(~~-40.8,(LJ 
F mar. 

L4 
+9.868 - 

0 LO 
(1) 

FP -5.931E-11 x 1()(7.817XULO) 

F 
(2) 

max 

where, 

FA __ = maximum potential active force as a proportion 
F max of the maximum active force at resting length (Lo). 

FP ~ = passive muscle force as a proportion of the 
F max maximum active force at resting length (La). 

L 
- =muscle length as a proportion of resting length 
L9 (Lo). 

As the above equations generate normalized passive 
forces, the specific magnitudes of individual muscle 
passive forces required estimation of F,,,. These were 
computed using the product of physiological cross- 
sectional areas (PCSA), obtained from recent litera- 
ture24,25, and an upper bound on muscle contraction 

Ii ,;n 

“i‘s: : f? (J? Wt\“i 

Figure 3. Muscle geometry illustrated for a 50th percentile male. Muscles are treated as pointwise connections from origin to insertion (see text). An 
imaginary cutting plane which bisects the L3/L4 motion segment is also shown. 

 

Figure 2.4  Muscle geometry illustrated for a 50th-percentile male.  An imaginary 
cutting plane that bisects the L3/L4 motion segment is also shown [8].   
 

Recently, Arjmand et al. [5, 11, 33-37] used a similar anatomical model (Figure 

2.5), which included iliocostalis lumborum pars lumborum (ICpl), iliocostalis lumborum 

pars thoracic (ICpt), iliopsoas (IP), longissimus thoracis pars lumborum (LGpl), 

longissimus thoracis pars thoracic (LGpt), multifidus (MF), quadratus lumborum (QL), 

internal oblique (IO), external oblique (EO), and rectus abdominus (RA), combining with 

finite element (FE) analysis and optimization algorithms to evaluate muscle recruitment, 

internal loads and stability margin.  Their study also mentioned how vertebral disks were 

modeled so that every disc was flexible.  They used a sagittally symmetric T1–S1 beam-

rigid body model comprising six deformable beams to represent T12–S1 discs and seven 

rigid elements to represent T1–T12 as a single body and lumbosacral vertebrae (L1–S1).  
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The beams modeled the overall nonlinear stiffness of T12–S1 motion segments, i.e., 

vertebrae, disc, facets and ligaments, at different directions and levels.  The nonlinear 

load–displacement response under single and combined axial/shear forces and 

sagittal/lateral/axial moments along with the flexion versus extension differences were 

represented in this model based on numerical and measured results of previous single- 

and multi-motion segment studies.   

2002; Yamamoto et al., 1989). Based on our recent
studies (Shirazi-Adl, 2004), the stiffness of motion
segments in sagittal rotation was further modified to
account for the stiffening effect observed in presence of
moderate to large compression loads (Patwardhan et al.,
2003; Stokes and Gardner-Morse, 2003). The insertion
points of beams to rigid vertebrae were shifted poster-
iorly from the end-plate centers by 4mm to account for
the posterior movement in the disc axis of rotation
observed under loads in different directions (Shirazi-Adl
et al., 1986a, b). In all cases, gravity load of 387N was
distributed at different levels (Pearsall, 1994; Takashima
et al., 1979) (Fig. 1). To simulate load in hands, 180N
was also considered in some cases.

2.3. Prescribed postures

Mean measured trunk and pelvic rotations were
prescribed on the T12 and S1 levels, respectively. As
for the individual lumbar vertebrae, the total lumbar
rotation was divided in accordance with proportions
reported in earlier investigations (Dvorak et al., 1991;
Pearcy et al., 1984; Plamondon et al., 1988; Potvin et al.,
1991; Shirazi-Adl and Parnianpour, 1999; Yamamoto
et al., 1989) and prescribed at individual segments
(Table 1).

2.4. Muscle model and muscle force calculation

A sagittally symmetric muscle architecture with 46
local (attached to lumbar vertebrae) and 10 global
(attached to thoracic cage) muscles was used (Bogduk et
al., 1992; Daggfeldt and Thorstensson, 2003; Stokes and
Gardner-Morse, 1998) (Fig. 2 and Table 2). For the
global muscles, since the entire T1–T12 was taken as a
rigid body, each muscle was represented by a single
fascicle inserted into the center of its attachment area.
To evaluate muscle forces a novel kinematics-based
algorithm (Fig. 3) was employed to solve for the
redundant active–passive system under prescribed mea-
sured kinematics and external loads (El-Rich et al.,
2004; Shirazi-Adl et al., 2002, 2004). In this manner,
calculated muscle forces at each instance of loading were
compatible with the prescribed kinematics (i.e., posture)
and external loading while accounting for the nonlinear
realistic stiffness of the passive system. This approach
exploits kinematics data to generate additional equa-
tions at each level in order to alleviate the kinetic
redundancy of the problem. If insufficient number of
prescribed displacements is available at a level, which is
the case in this study, then an optimization approach
should also be employed. In the current study, the cost
function of minimum sum of cubed muscle stresses was
considered in the optimization with inequality equations
of muscle stresses remaining positive but smaller than
0.6MPa (Gagnon et al., 2001). The finite element

program ABAQUS (Hibbit, Karlsson & Sorensen,
Inc., Pawtucker, RI, version 6.3) was used to carry out
nonlinear structural analyses while the optimization
procedure was analytically solved using an in-house
program based on Lagrange Multipliers Method
(Raikova and Prilutsky, 2002). The total computed
muscle force in each muscle was partitioned into active
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Fig. 2. Representation of global and local musculatures in the sagittal
and frontal planes used in the FE model. Only fascicles at one side
have been shown. ICpl: Iliocostalis Lumborum pars lumborum, ICpt:
Iliocostalis Lumborum pars thoracic, IP: Iliopsoas, LGpl: Longissimus
Thoracis pars lumborum, LGpt: Longissimus Thoracis pars thoracic,
MF: Multifidus, QL: Quadratus Lumborum, IO: Internal Oblique,
EO: External Oblique, and RA: Rectus Abdominus.

Table 2
Physiological cross-sectional areas (PCSA, mm2) and initial length (in
brackets, mm) for muscles on each side of the spine at different
insertion levels

Local muscles ICpl IP LGpl MF QL

L1 108 (170) 252 (276) 79 (172) 96 (158) 88 (137)
L2 154 (118) 295 (241) 91 (132) 138 (135) 80 (104)
L3 182 (84) 334 (206) 103 (88) 211 (106) 75 (74)
L4 189 (50) 311 (169) 110 (52) 186 (82) 70 (46)
L5 — 182 (132) 116 (25) 134 (51) —

Global muscles RA EO IO ICpt LGpt

T1–T12 567 (353) 1576 (239) 1345 (135) 600 (250) 1100 (297)

ICpl: Iliocostalis Lumborum pars lumborum, ICpt: Iliocostalis
Lumborum pars thoracic, IP: Iliopsoas, LGpl: Longissimus Thoracis
pars lumborum, LGpt: Longissimus Thoracis pars thoracic, MF:
Multifidus, QL: Quadratus Lumborum, IO: Internal Oblique, EO:
External Oblique, and RA: Rectus Abdominus.
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Figure 2.5  Representation of global and local musculatures in the sagittal (X) and 
frontal (Y) planes used in the FE model.  Only fascicles at one side have been shown  in 
frontal plane [5].  

2.1.5 Discussion 

The characteristics of the anatomical models mentioned above are summarized in Table 

2.1.  Anatomical modeling should be as realistic and detailed as possible, which is also 

the trend in the development process.  From a single muscle anatomical model [28], more 

recent models included 10 muscle groups [5, 8] to represent torso musculature. 
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Table 2.1 Summary of Characteristics of the Models 

Anatomical models 

Number 
of trunk 
muscles 
groups 

Flexible 
trunk 
plane 

Trunk muscle 
force vector 

representation 

Erector 
spinae 

divided into 
divisions? 

Muscles 
divided into 
fascicles? 

Number 
of 

ligaments 

Single muscle 
equivalent model 

[28] 
1 L5/S1 

Straight and 
parallel to 

torso 
No No 0 

Ten-muscle model 
[31] 2*5 L4/L5 

Straight and 
parallel to 

torso 
No No 0 

Ten-muscle model 
[14] 2*5 12th rib, 

L5/S1 

Straight but 
individually 

aligned 
No No 0 

Anatomically 
detailed model [7] 2*10 L1-L5 

Individually 
aligned and 
contain arcs 
or S-shaped 

Yes No 7 

Geometric torso 
model [8] 2*8 T1-L5 

Individually 
aligned and 
passes over 
attachment 

points 

No No 0 

Geometric torso 
model [5] 2*10 T1-L5 

Individually 
aligned and 
passes over 
attachment 

points 

Yes Yes 0 

 

To accomplish a realistic muscle force vector representation, the spine cannot just 

be considered flexible at a single level, because the curvature of the spine influences the 

position of vertebral disks, which in turn influences muscle force direction if a realistic 

muscle attachment is used.  It has also been demonstrated that consideration of 

equilibrium at a single spine level yields results in violation of equilibrium at the 

remaining levels, especially so in more demanding tasks [34].  Marras and Davis [14] 

first considered two flexible spinal planes at the 12th rib, L5/S1 to determine the muscle 

force vectors.  Subsequent models introduced more flexible spine segments, including 

joints between T1 to L5.   
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Trunk muscles included in the biomechanical models should realistically 

represent the torso musculature.  Traditionally, muscles have been modeled as exerting 

force along straight lines.  The first two models in Table 2.1 considered muscle force 

vectors acting along straight lines parallel to the trunk axis.  However, many muscles 

within the trunk act around pulley systems of bone, other muscle bulk, and pressurized 

viscera, which alter both length and force vector properties [7].  According to Arjmand et 

al. [33], muscle forces and spinal compression at all levels decrease as trunk extensor 

muscles took curved paths.  In contrast, the shear force at lower levels increased.  Despite 

smaller muscle forces, wrapping of muscles improved the spinal stability.  Arjmand et al.  

[33] also studied the moment arm importance on extensor moments of individual 

muscle groups.  Allowing for a 10% reduction in these lever arms during flexion 

increased muscle forces and compression forces at all levels.  Their results indicated that 

consideration of muscles with curved paths and realistic lever arms are important in 

biomechanical analysis of lifting tasks.  Muscle modeling to implement curved paths was 

introduced by McGill and Norman [7] and subsequently Nussbaum and Chaffin [8], 

Arjmand et al. [5, 11, 33-37] incorporated this aspect by means of intermediate 

attachment points within individual muscle groups.   

The muscles considered should not be simplified and grouped as synergic sets.  

According to Bogduk [38], the analysis must consider large muscle groups such as 

erector spinae as a continuum of independent fibers because a single equivalent force 

cannot represent their action.  It should be even better when each muscle fascicle is 

modeled. McGill and Norman [7] first modeled erector spinae into divisions, and 

Arjmand et al. [5, 11, 33-37] further incorporated fascicles of each muscle group.    
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Spinal ligaments are elastic bodies that attach two vertebral bodies in a spinal 

joint, and their passive elasticity might provide some extensor moments during spinal 

motion.  McGill and Norman [7] incorporated seven different ligaments in the torso 

model but contribution to tissue loading was found to be insignificant compared to that 

from extensor muscles.  Other models presume no significant contribution to extensor 

moment production from ligaments.   

2.2 Kinetic Modeling 

After building the anatomical model, Newton’s equilibrium of forces and moments can 

be established.  The external forces and moments generated by gravity are equated to the 

internal force and moments, to determine the unknown muscle and joint forces.  As has 

been discussed in the previous section, for models that incorporate more than one muscle 

group to model an asymmetric lifting condition, redundancy of muscles prevents direct 

solution from Newtonian mechanics and the solution of internal forces becomes statically 

indeterminate.  The following sections describe different approaches in kinetic modeling 

to solve such statically indeterminate problems. 

Furthermore, when a body is in motion, acceleration-deceleration of masses may 

introduce inertial forces.  As a human motion is executed, complex inertial forces are 

created by changes in the velocity and direction of the motion of the body segments.  

Inertial forces are modeled at the segment centroids according to Newton’s second law of 

motion.    
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2.2.1 Statically Determinate Model 

Historically, single muscle equivalent models have been criticized on the fact that during 

demanding lifts they predict disc compression force and erector spinae muscle force 

greater than the tolerance, while the subject is apparently not injured [39].  Intra-

abdominal pressure (IAP) has been hypothesized to exert a force over the inferior surface 

of the diaphragm creating an extensor moment on the lumbar spine. Freivalds et al. [28] 

considered IAP to offset the excessive extensor moment produced only by the muscles.   

The CG of the combined head and trunk is assumed to be located on a straight line 

between the shoulder and hip joint during trunk flexion.  Erector spinae muscles as a 

group with a moment arm fixed at 5 cm provided the extension moment along with the 

extensor moment produced by IAP (Figure 2.1).  In their force and moment equilibria, 

the only two unknowns to be solved are the erector spinae muscle force and spine 

compressive force at the L5/S1 level.  The abdominal force and moment were derived 

from a regression equation.  The L5/S1 compression force then can be further split into 

compression and shear forces.  As has been discussed before, this model is only 

applicable for a 2D sagittal lifting situation. 

2.2.2 Optimization Criterion Based Model 

As stated earlier, many more muscles are activated and responsible for the joint force 

during lifting, especially for asymmetric lifting.  Redundancy of muscles during such 

lifting conditions makes the number of unknown forces exceed the number of equilibrium 

equations of force and moment and the problem becomes statically indeterminate.  

Muscle recruitment optimization algorithms are introduced based on the assumptions that 

muscles are recruited to minimize certain physiological functions. 
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The spine compression force is a factor that has strong correlation with 

occupational LBP. In a linear programming (LP)-based model [9], the minimization of 

the spine compressive forces was used as an objective function.  Constraint functions 

were developed from the equilibrium of three-dimensional forces and moments on the 

activity of ten trunk muscles along with the IAP force equated to the external forces and 

moments acting on the upper body.  However, the muscle contraction intensities should 

also not exceed a reasonable level.  Based on the joint requirement of minimizing both 

joint compressive force as well as muscle contraction intensities, Bean et al. [10] 

suggested a double LP optimization procedure.  First, an upper bound on muscle intensity 

is found by minimizing the maximum muscle intensity such that the moment equilibrium 

conditions are satisfied; and second, the muscle forces satisfying the moment conditions 

and muscle intensity bounds, which minimize the muscular contribution to spinal 

compression force, are determined.  Chaffin et al. [29] developed 3DSSPP™ based on a 

double LP, which can calculate L4/L5 compression force and shear force, muscle force of 

left and right erector spinae, rectus abdominis, left and right obliquus internus and 

externus, left and right latissimus dorsi.  The muscles mentioned above were grouped as 

synergic sets acting parallel to the trunk axis without consideration of a complex lumbar 

anatomy (no trunk muscle wrapping) [37].  The 3D back compression optimization is 

computed at the L4/L5 lumbar from ten torso muscles at the L4/L5 level by double LP 

[40]. 

Rasmussen [12] compared two known optimization criterion types: the 

polynomial criterion and the soft saturation criterion.  The comparison is performed on a 

planar three-muscle elbow model performing a dumbbell curl.  It is concluded that the 



 

 

21 

min/max criterion (infinite power polynomial criterion) possesses a number of attractive 

physiological as well as algorithmic advantages.  Their algorithm aimed at minimizing 

G(f(M)), which were represented by the following equation for the polynomial and soft 

saturation criterion respectively (equation 2.1).  The polynomial criterion is actually a 

family of muscle recruitment optimization algorithms by defining p and Ni differently. 
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2.2.3 EMG-assisted Model 

EMG is electrical signals generated by the action potentials, which can be sensed using 

skin or needle electrodes placed near the muscle.  Normalized EMG is associated with 

muscle force.  However, the relationship is most consistent and linear when muscle 

action is isometric, muscle length is consistent between trials, and muscles increase force 

by increasing their motor neuron firing rate, not by recruiting additional motor units.  

Instead of optimization algorithms, EMG can also be collected to represent muscle 

activation, which can be used as the criterion of muscle recruitment.  This kind of model 

is able to explain how the trunk muscles work collectively (co-contraction) to support the 

external load, and account for the variability in muscle recruitment.   

In the model of McGill and Norman [7], the crude estimation of joint moments 

was first derived from film coordinate data, body mass and forces in the hands.  In order 
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to partition the resultant moment into restorative components provided by the disc, 

ligaments, and musculature, the disc and ligamentous moments were determined first 

because their strain is flexion dependent, and the remaining moment was allocated to the 

musculature.  The musculature was driven from surface EMG collected from six sites, 

which were normalized to a statically determined maximum voluntary contraction 

(MVC).  Each muscle was described mathematically in terms of ability to generate force 

with consideration of muscle length, cross-sectional area, velocity, passive elasticity, and 

a common gain factor.  A common gain to all muscles was calculated, using a least mean 

square (LMS) regression over the duration of each ramp trial, to obtain the best fit 

between the EMG predicted and measured moments in all three axes.  This gain was 

implemented to compensate for systematic errors in the initial assessment of muscle force 

producing potential and their cross-sectional areas.  The modulated muscle forces were 

finally applied to the skeleton to calculate joint force.  They found that estimations of the 

L4/L5 disc compression and shear were 16.2% and 42.5% lower than those calculated 

from a simple 5cm erector tissue moment arm length.  They concluded that there was no 

need to invoke IAP or other contentious compression-reducing mechanisms.  Actually, 

IAP is depicted as a by-product of antagonistic co-contraction of the torsos muscles 

during the act of slow lifting, and is ignored in the more recent reduced models [29].   

Muscle activity, particularly that of the sacrospinalis, dominated the generation of the 

restorative moment.  Ligaments played a very minor role in the lifts study. 

Cholewicki et al. [41] incorporated the optimization method’s advantage of 

forcing equilibrium in the reaction moments into the EMG method to develop an EMG 

assisted optimization (EMGAO) approach.  This approach consisted of a correction to the 
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EMG assisted estimates of muscle forces by multiplying gains (gi) to satisfy all three-

moment equilibrium constraints simultaneously.  The objective function was to ensure 

the least possible gain adjustment to the individual muscle forces estimated from EMG, 

which are mathematically formulated as equation 2.2.  However, the differences between 

the joint compression results given by the EMG and EMGAO methods were minimal. 
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Marras et al. [14] followed McGill’s modeling concepts, but their model 

depended more on empirical results.  Geometrically, this model assumed that one could 

represent the trunk mechanically via a description of the transverse cutting plane passed 

through the lumbar spine.  It only included muscles that can be documented via direct 

EMG measurement so that muscle activity assumptions could be avoided.   

The tensile force generated by each muscle, j, was described by the product of 

normalized EMG, muscle cross-sectional area, a gain factor representing muscle force 

per unit area, and modulation factors describing EMG and force behavior as a function of 

the length f(Lengthj), and velocity, f(Velj) of muscle j (equation 2.3). 
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(2.3) 

Pre-assuming the functions of the length and velocity were 3rd and 2nd order 

polynomials respectively (equation 2.4), the coefficients were determined by minimizing 
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the average variation in predicted gain as a function of length/Velocity.  The 

length/velocity modulation factor employed the instantaneous length of muscle, j, 

determined from the anthropometry coefficients and kinematic input. 

 

f(Lengthj) = -3.2+10.2 Lengthj-10.4 Lengthj
2+4.6 Lengthj

3 

f(Velj) = 1.2-0.9 Velj+0.72 Velj
2 

 

(2.4) 

Voluntarily applied external kinetics, including gravitational moments and 

acceleration effects on trunk mass were dynamically measured by a force plate and pelvic 

stabilization system.  Translation of force plate mechanics was performed to compute 3D 

moments about the lumbosacral spine.  The pelvic stabilization system permits free 

dynamic motion above the pelvis or of the whole body.  This was accomplished by 

mathematically correcting for the position of the pelvis relative to the force plate.  Gain 

was computed by comparing muscle-generated trunk moments with measured applied 

moments.  Spinal loadings (compression, right-lateral shear, and anterior shear forces) 

were calculated from the vector sum of validated muscle forces.  Muscle generated 

moments about the spinal axis were predicted from the sum vector products combining 

dynamic tensile forces of each muscle, j, and respective moment arms. 

Input data required by the model include time-domain EMG of erector spinae, 

latissimus dorsi, internal oblique, external oblique and rectus abdominus, exertion 

kinetics, and kinematics.  Maximum exertion EMG levels and subject anthropometry 

were also employed to calibrate and format the dynamic data suitable for use in the 

model mechanics.  The cross-sectional area of each muscle was computed from 
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regression equations based on the subject’s trunk depth and breadth.  The equipment 

include a force plate, a lumbar motion goniometer, and an EMG measuring system.   

2.2.4 Regression Model 

To simplify the calculation process and to avoid the need of complex data collection, 

several regression models were built from the results predicted by the existing complex 

models.   

Based on results predicted from a detailed 90 muscle model over a variety of 3-D 

tasks by EMGAO, the three low-back moments and corresponding spine compression 

load from the time histories of all subject-trials were used as variables to obtain 

polynomial equations [42].  While second, third, fourth, and fifth order polynomials were 

attempted, the third order was chosen as the best compromise between obtaining a 

realistic fit of the data and minimizing local non-symmetric inflections that are 

biologically inexplicable, and occur with higher order polynomials.  The value of R2 was 

0.936, which indicated that the regression results were very close to the original model.   

Similarly, Arjmand [37] established predictive equations that relate responses of a 

complex detailed trunk finite element biomechanical model to its input variables during 

sagittal symmetric static lifting activities.  Four input variables (thorax flexion angle, 

lumbar/pelvis ratio, load magnitude, and load position) and four model responses (L4–L5 

and L5–S1 disc compression and anterior–posterior shear forces) were considered.  

Quadratic predictive equations for the spinal loads at the L4–S1 disc mid-heights were 

obtained by regression analysis with adequate goodness-of-fit (R2>98%).  Results 

indicated that intra-discal pressure values at the L4/L5 disc estimated based on the 
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predictive equations are in close agreement with available in vivo data [43] measured 

under similar loadings and postures. 

2.2.5 Comparison Study 

A series of data sets for validation of models were presented by Wilke et al. [43], 

including directly measured intradiscal pressure (IDP) and anthropometric data.  Most of 

the models available compared their results with this in-vivo measured data, although the 

in-vivo data was only measured for some standard static postures.  Many comparison 

studies were also conducted to check the model performance. 

Chung et al. [13] evaluated three optimization models (minimize maximum 

muscle intensity: MIN_IMAX, minimize sum of magnitudes of the muscle forces raised to 

power 3: MIN_F3, and minimize sum of the muscle intensities raised to power 3: 

MIN_I3) under various asymmetric lifting conditions. Muscle intensity is defined as the 

muscle force divided by the cross-sectional area of the muscle.  MIN_IMAX exhibits the 

best prediction capability when comparing it with EMG signals of left erector spinae, left 

latissimus dorsi and left external oblique muscles among the three optimization models.    

Kee and Chung [44] compared three representative methods of predicting the 

compressive forces on the lumbosacral disc: LP-based model, double LP-based model, 

and EMG-assisted model.  The EMG-assisted model was shown to reflect well all three 

factors (vertical and lateral distances, and weight of load) considered here, whereas the 

compressive forces from the two LP-based models were only significantly affected by 

weight of load. 

Fischer et al. [45] examined the impact of different joint models (single muscle 

equivalent), an electromyography-based third order polynomial, a modified version of the 
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polynomial and a hybrid approach) to determine cumulative spine compression.  Findings 

demonstrated considerable differences between modeling approaches, which suggested 

that caution should be taken when selecting a muscle model to determine cumulative 

spine compressive loading. 

Arjmand et al. [11, 35, 36] did several comparison studies on different 

optimization criteria and different models.  First, they [11] investigated the effect of 

eight different optimization functions (∑stress3, ∑stress2, ∑force2, ∑stress, ∑force, 

∑axial compression, double-linear and muscle fatigue) on trunk muscle forces and spinal 

loads.  Four criteria (∑stress3, ∑stress2, fatigue and double-linear) predicted muscle 

activities that qualitatively matched measured EMG data, but the fatigue and double-

linear criteria were inadequate in predicting greater forces in larger muscles with no 

consideration for their moment arms.  Overall, one single optimization function of 

∑stress3 or ∑stress2 rather than a multi-criteria function was found sufficient and 

adequate in yielding plausible results comparable with measured EMG activities and disc 

pressure. 

Second, a comparison of forces and spinal loads estimated by a single-joint 

EMGAO model and a multi-joint optimization based (minimizing ∑stress3) finite element 

model of the spine under different static lifting activities in upright standing posture was 

completed [35].  They found that external moments, compression forces at the L4–S1 

joints and the sum of all trunk muscle forces were somewhat similar, but both models 

recruited muscles in a markedly different way, which in turn led to significantly different 

shear force estimates.   
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Third, they further investigated the performance of two models under symmetric 

(symmetric trunk flexion from neutral upright to maximum forward flexion) and 

asymmetric (holding a load at various heights in the right hand) activities [36].  They 

found that shear and compression forces were generally higher in the optimization-based 

model, which also predicted greater activities in extensor muscles as compared to the 

EMGAO model.   

2.2.6 Discussion 

Statically determinate models oversimplified lifting activity both anatomically and 

kinetically.  Some researchers also questioned the IAP mechanism of the models.  The 

compression cost of the abdominal wall muscular activity required to produce the intra-

abdominal pressure has been neglected in the calculation [7].  Even in heavy lifts, the 

EMG activity of the abdominal musculature required to generate IAP is relatively low, 

and the correlation of IAP, measured intra-rectally or intra-gastrically, with EMG in 

isometric holds is also low [39]. 

Optimization criterion based models can incorporate as many muscles in detail as 

needed to represent reality, while EMG-assisted models can only include a limited 

number of muscle sites that can be measured by surface EMG.  Another advantage of an 

optimization criterion based model approach is the precision and continuity of the results 

with the valid algorithms.  The Variability of measured EMG is comparatively large, and 

EMG measures also suffer from noise and artifacts.  As a result, the number of subjects 

and trials required in an optimization-based study is less than that needed by an EMG-

assisted model, making the former more desirable for industry. To get valid results from 

an optimization algorithm, muscles in the model can be defined in the maximum detail 
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possible.  However, in most of the current models, there are far fewer muscles included 

than those active during an actual lifting experience.  Another weakness of current 

optimization models is that they are poor at predicting patterns of co-contractions of 

antagonistic muscles [42].  Even with a sophisticated muscle recruitment optimization 

criterion, under dynamic conditions, muscle co-contraction, which greatly increases the 

predicted spinal compression forces over those produced when lifts are made in 

asymmetric sagittal-plane, is not well-explained [14].   

Aimed at addressing the muscle co-contraction problem, an EMG assisted model 

uses surface EMG to represent muscle recruitment.  Besides the disadvantage of larger 

variability, this kind of model also requires the use of a multi-channel EMG and direct 

measurement of spine kinematics, which precludes them from being used in the 

workplace.  According to Marras [46] himself, if muscle force is of interest, postural 

changes should be minimized since muscle length and velocity have a dramatic effect 

upon muscle force and EMG relationship.  However, the EMG-assisted model was used 

to investigate dynamic lifting, and the EMG was normalized by dividing RMS EMG 

during dynamic lifting by RMS EMG during static maximum exertion. This is 

problematic because the numerator EMG not only represented force generation but also 

incorporated muscle movement under the skin. 

Lifting tasks in the workplace are dynamic and vary greatly from trial to trial.  If 

the EMG assisted model is used, standard deviations of the values of interest will be high, 

which requires many more experimental trials to get valid results than the optimization 

criterion based models. Theoretically, the EMG should not be measured in dynamic 

movement to represent force generation, because of the unknown relationship between 
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EMG and muscle force generation.  Therefore, optimization criterion based models are 

preferred to investigate internal loading during lifting task performance.   

2.3 AnyBody Modeling System™ 

The AnyBody Modeling System™ is essentially an object-oriented programming 

platform.  With the AnyBody Managed Model Repository™ (AMMR), a collection of 

unique models ready for use has been provided, which can be used to model the human 

musculoskeletal system in detail readily.  The AMMR contains a collection of detailed 

scalable template body models performing a variety of different activities of daily living.  

In this model libarary, different parts of the body are structured, model scaling is 

determied, draw setting is  defined, and a tool box facilitating motion capture, kinematic 

analysis and kinetic analysis are programmed.  A graphical representation of the full body 

human musculoskeletal model in the AnyBody Modeling System™ is shown in Figure 

2.6 to illustrate the details of the model. 
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Figure 2.6  AnyBody™ full body human musculoskeletal model. 

 
For static studies, body parts, postures and loads can be defined in the scripts, and 

inverse dynamic studies can be run based a selected optimization criteria.  For dynamic 

studies, either pre-defined drivers as a funtion of time for certain body parts’ positions 

and angles, or a c3d motion capture file can be used to drive the models.  The dynamic 

effects, in terms of inertial forces, are incorporated in inverse dynamic studies to compute 

internal muscle and joint forces.   

2.3.1 Lumbar Spinal Model 

For lifting tasks, the most important anatomical modeling part is the lumbar spine.  

Hansen et al. [47] did a delicate review on a lumbar spinal model, and the AnyBody™ 

model has incorporated those details [6] based on previous research.  The spine model 
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comprises seven rigid segments: the pelvis, the five lumbar vertebrae and a lumped 

thoracic part.  The musculature provided in the AnyBody™ model represents the real 

human anatomy most closely comparing with other existing models.  The multifidus 

muscle is divided into nineteen fascicles on each side in three layers.  The four divisions 

of the erector spinae (longissimus thoracis pars lumborum, iliocostalis lumborum pars 

lumborum, longissimus thoracis pars thoracis and iliocostalis lumborum pars thoracis) 

are divided into a total of twenty-nine fascicles on each side.  The psoas major is divided 

into eleven fascicles.  The quadratus lumborum is represented by five fascicles.  Three 

abdominal muscles are included in the model: rectus abdominus, obliquus externus, and 

obliquus internus.  The rectus abdominus is modeled as one fascicle between the thorax 

and pelvis via points on the artificial rectus sheath.  The obliquus externus and internus 

are divided into six fascicles each.  Fascicles are modeled using straight-line elements for 

the short fascicles and line elements with via-points for the longer fascicles.  Ligaments, 

the force–length relationship and the force–velocity relationship of individual muscle 

fascicles are not included in the model, because of lack of reliable information.  The 

maximal force (strength) of each fascicle is predicted from a strength scaling factor, 

physiological cross sectional area (PCSA) and unit spine muscle tension.   

Two other important aspects of lumbar spinal modeling are spine curvature and 

IAP.  For spine curvature, it uses a pre-defined rhythm [48] which links motion between 

each vertebra together with pelvis/thorax motion.  IAP is modeled as constant volume. 

When squeezed from the side by the transversus muscles, it extends the spine by pushing 

on the rib thorax and the pelvic floor.  From the mathematical point of view, this lets the 

abdominal muscles function as spine extensors, and they become part of the whole 
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recruitment process [49].  Anatomically, the AnyBody™ model is more detailed and 

realistic than the models mentioned before, which makes it a promising tool to investigate 

LBD in lifting.   

2.3.2 Muscle Recruitment Optimization Criterion 

The AnyBody Modeling System™ provides users a family of polynomial criteria, with 

the order of polynomial being 1st to 5th and infinite.  As has been explain in the 

introduction section, the objective function is min∑(fi/Ni)p in which p is the order of the 

polynomial, fi is individual muscle force, and Ni is some choice of normalization factors.  

Actually, the strength of each muscle is used as Ni.  Because the strength of each fascicle 

around the lumbar spine is modeled from strength scaling factor times unit spine muscle 

tension, and times physiological cross sectional area (PCSA), the family of criterion for 

lumbar spine muscles is actually polynomials of muscle intensity (stress) divided by a 

common gain, which is identical with the criterion used by Chung et al. [13] and 

Arjmand et al. [11]. 

Mathematically, the trend of all these algorithms indicated by the objective 

function is that all terms in the polynomial become equal, based on the Cauchy–

Bunyakovsky–Schwarz inequality.  fis are becoming closer in value with increasing 

order, because fi/Nis are smaller than 1, and (fi/Ni)ps are becoming closer in value with 

increasing order.  Physiologically, increasing the power of the criteria makes the muscles 

to work together better and allow the organism to carry larger loads without overloading 

any individual muscle.  In other words, polynomial criteria of increasing order produce 

increased degrees of synergism between the muscles.  Maximum synergism would be the 

case where all muscles capable of a positive contribution to balancing the external load 
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work together in such a way that the maximum relative load of any muscle in the system 

is as small as possible.  This would physiologically be a minimum fatigue criterion 

because fatigue is likely to happen first in the muscle with the maximum relative load, 

and it makes physiological sense that the body might work that way.  It would mean that 

the body would minimize muscle fatigue, and precisely this criterion might determine 

survival of the fittest in an environment where organisms are competing with each other 

for limited resources [24].  When the polynomial power is increasing towards infinity, 

then the muscle recruitment criterion would approach a min/max formulation, that is to 

minimize the maximum intensity of all muscle.  This also makes this algorithm 

computationally feasible. 

For joint forces, the AnyBody™ research group checked the results of the infinite 

order optimization with the in-vivo intervertebral disc pressure measured by Wilke et al. 

[50].  By setting both to100% for standing, Figure 2.7 shows that the results of both were 

close, and lifting a box with a weight of 19.8kg generated joint compression forces two to 

five times as much as the standing posture.   
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Figure 2.7  Comparison of L4/L5 joint compression force predicted by AnyBody™ 
with Wilke et al.’s in-vivo intervertebral disc pressure measurement. 

 

From the above analysis, the infinite order polynomial optimization criterion was 

found to be suitable for static lift analysis.  Based on previous comparison studies, Chung 

et al. [13] found MIN_IMAX , that is, min/max muscle intensity criterion, was best in static 

lifting comparing with EMG pattern, while Arjmand et al. [11] suggested to use ∑stress3, 

essentially a 3rd order polynomial function,  in predicting  joint forces.   

However, thus far, the order of polynomial in the optimization criteria has not 

been investigated for predicted muscle force and normalized EMG relationship with 

increasing hand load.  In addition, the AnyBody™ software’s capability of processing 

motion capture files to include dynamic effect during asymmetric lift has also not been 

investigated.   
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CHAPTER 3  

MUSCLE ACTIVITY & PREDICTED MUSCLE FORCE 

This section describes the laboratory experiment that was carried out to investigate (i) the 

relationship between measured normalized EMG and the predicted percentage of 

maximum muscle forces, and (ii) the effect of different optimization criterion functions in 

the AnyBody Modeling System™ on predicting lumbar joint forces.  Since the surface 

EMG is affected by muscle fiber movement, static lifting tasks were simulated at 

different hand loads.  The simulated lifting tasks were performed in the sagittal plane.  In 

sagittal lifting, erector spinae muscle is the principal extensor [51].  In the AnyBody 

Modeling System™, this major muscle is modeled by four groups of fascicles, and 

longissimus and iliocostalis fascicle groups are situated at the lumbar region and are more 

posterior than the other two fascicles.  These two fascicles also have different extensor 

moment arms defined in the AnyBody Modeling System™.  Since these two fascicles 

can be measured separately by surface EMG, they were selected for EMG measurement 

in this study.  The experimental details and results follow. 

3.1 Methods and Materials 

One healthy male college student, with height of 178cm, and weight of 70.8kg, without 

any history of LBD during the past six months performed static sagittal pulling tasks.  

The tasks involved pulling with hand loads of 76N, 96N, 116N, 136N, and 156N in three 

selected postures as shown in Figure 3.1.  The three postures were straight trunk with arm 

flexed, flexed trunk with arm straight and flexed trunk with arm flexed respectively, 

which represented commonly adopted lifting postures.  A pulling bar was linked with an 

adjustable chain and steel rope through a fixed pulley, and was connected to a 
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horizontally placed load cell fixed by eyebolts (Figure 3.1b).  The pulling forces were 

measured by the load cell; muscle activities of longissimus and iliocostalis were 

measured by surface EMG electrodes; and pelvis/thorax and hip flexion angles were 

measured by electrogoniometers.  The longissimus and iliocostalis muscle groups are 

chosen, since the sagittal lifting task is expected to produce significant muscle activities 

from these two muscle groups. 

 

                    a                                b                                      c 

Figure 3.1  Static pulling task on a wooden platform: a. straight trunk with arm flexed, 
b. flexed trunk with arm straight and c. flexed trunk with arm flexed.   

 

Before the experiment, the participant was informed about the purpose and 

procedure of the experiment, and his height and weight was recorded.  Electrolytic gel 

was then applied and the electrodes were adhered to the skin with double-faced adhesive 

tape on cleaned skin surface of the right longissimus and iliocostalis muscle group.  For 

the longissimus muscle group, the electrodes were centered 3 cm lateral to the midline at 
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the first lumbar vertebra.  For the iliocostalis muscle group the electrode was centered at 

6 cm lateral to the midline at the third lumbar vertebra [35].   

Each foot was placed on the platform at a 30° angle from the sagittal plane. Two 

electrogoniometers were attached on the lumbar and hip (Figure 3.1b) to measure the 

pelvis/thorax and hip flexion angles respectively. The rest of the body segment angles 

were obtained from sagittally taken photos.   

EMG electrodes, electrogoniometers and a load cell were connected and 

synchronized through a DataLINK Base Unit (Biometrics Ltd.) to a desktop PC.  After 

connection, the participant was asked to relax, and all the readings were initialized to 

zero.  EMG data was recorded and analyzed by the DataLINK PC software Version 2.00 

(Biometrics Ltd.) with a sampling rate of 1000 data/second and sensitivity of 300mV, 

while angles and hand loads were recorded and analyzed by the same software with a 

sampling rate of 200 data/second.   

To allow normalization of EMG levels, maximum voluntary contractions (MVCs) 

of longissimus and iliocostalis were performed three times for 6 seconds for per trial 

through exertions with the participant lying prone with the lower body supported on a 

table and the upper body hanging [52].  During the experiment, the participant was asked 

to increase the hand load 20N per trial from 60N to 140N without changing his posture. 

The load cell output was visible to the participant on the computer screen, and he was 

asked to maintain each desired load level for about six seconds.  The participant was 

positioned on the platform such that the direction of the pull was vertically downward.  

After trials in one posture, the participant was encouraged to rest for 3 minutes.  The 
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weights of the handle bar and the chain, 0.879kg and 0.739kg, respectively, were added 

to the load cell reading to obtain the hand load. 

3.2 Results 

After the experiment, the RMS of EMG was computed for each exertion by the 

DataLINK software using the Triangle/Bartlett moving window of 10 mS for 4 seconds 

out of the 6 seconds sustaining time, corresponding to the averaged loads read from the 

load cell.  The normalized EMG was calculated as the RMS EMG of the pulling tasks 

divided by the RMS of the MVC tasks.   

To determine the muscle activities predicted by the AnyBody Modeling 

System™, the “StandingModel” in the AMMRV1.3.1 was modified so that hand forces 

in “LeftArmDrivers.any” and “RightArmDrivers.any” were defined to increase from 76N 

to 156N (load cell readings plus the weight of bar and chain) by a 20N increment.  Body 

segment angles from electrogoniometers and sagittal photos were inputted to 

“Mannequin.any”, and subsequently the inverse dynamic studies defined in 

“StandingModel.Main.any” were run using the infinite order polynomial optimization 

criterion.  This criterion was found to be more suitable for ergonomic investigations by 

the AnyBody™ research group [24].  The percentage of maximum muscle forces on the 

longissimus and iliocostalis were further calculated, and compared with the normalized 

EMG as shown in Figure 3.2 and Figure 3.3.  
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Figure 3.2  Percentage of maximum longissimus EMG RMS and predicted muscle 
force. 
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Figure 3.3  Percentage of maximum illiocostalis EMG RMS and predicted muscle 
force. 
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As expected, EMG and predicted forces of both muscles increased as hand loads 

increased in all three body postures.  The increasing trend of EMG was somewhat 

variable but the predicted muscle forces varied almost linearly with hand load.  The 

Pearson’s correlation coefficients between EMG and predicted muscle forces reached 

0.9800.   

The percentage of maximum between EMG RMS and predicted muscle forces 

was not the same.  In this study, the AnyBody Modeling System™ scaled the model 

linearly to fit 50 percentile European population according to the subject’s weight and 

height, so the maximum muscle force defined in the AnyBody Modeling System™ may 

not be the same as that of the individual subject.  To solve the problem, the AnyBody 

Modeling System™ provides a mechanism to scale the model more accurately according 

to some external force measurements, individual segment length and weight.  Another 

way to get more accurate predicted results in comparison with the EMG is to test more 

subjects so as to cover the population.  In that case, the scaling of the model based on 

mean and standard deviation of subjects’ height and weight will be much more accurate, 

and the percentage of maximum force predicted on that will be closer to normalized 

EMG.  In EMG assisted model [7, 14], they have also utilized certain gain factors to scale 

force based on normalized EMG for each muscle.  

 The joint compression and shear forces predicted by 3rd, 5th, and infinite order 

polynomial criteria in AnyBody™ with increasing hand loads were then determined and 

plotted in Figure 3.4 and Figure 3.5. For all three polynomial orders, as the hand load 

increased, the joint forces also increased.  However, the joint force predicted by 3rd and 
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5th order increased abruptly when the hand load reached to maximum hand load 176N, 

which is not an expected physiological phenomenon. Rather than computational anomaly 

or singularity is a suspect for such abrupt fluctuation of joint compression force.  To 

understand the reason behind this sudden fluctuation, the predicted individual muscle 

forces were further checked, and psoas major muscle was found to be suddenly activated 

when the hand load reached near 176N, and after that predicted joint forces and psoas 

major muscle force were somewhat converged.  Personal communication with the main 

developer of AnyBody™ confirmed that activation of psoas major generate a great 

amount of force to lumbar joint [53].  The reason behind this problem may be that muscle 

with short moment arm in lumbar region may be predicted to suddenly generate great 

amount of force against external moment because the muscle with long moment arm is 

already saturated while using lower order criteria in high hand loads.  This can be 

avoided when using infinite order criterion because muscles work more synergistically, 

and muscle with a short moment arm is activated all the time even the hand load is small.  

This problem is still under investigation, and it is possible that 3rd and 5th order criteria 

are not suitable for such a sophisticated whole body model investigation.  The previous 

research by Arjmand and Shirazi-Adl [11] using 3rd order criterion was based a much 

simpler model. 
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Figure 3.4  Predicted L4/L5 joint compression forces with gradually increasing hand 
load of the three criteria in flexed trunk straight arm posture. 

18016014012010080

400

350

300

250

200

hand load (N)

sh
e

a
r 

fo
rc

e
 (

N
)

3
5
infinite

order

 

Figure 3.5  Predicted L4/L5 joint shear forces with gradually increasing hand load of 
the three criteria in flexed trunk straight arm posture. 
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Figure 3.6  Predicted psoas major force with gradually increasing hand load of the three 
criteria in flexed trunk straight arm posture 
 

Therefore, for lifting tasks simulated in AnyBody Modeling System™, infinite 

order polynomial (min/max) can predict muscle forces correlated with EMG well despite 

the scaling problem, and is more physiologically attractive in ergonomic investigation. 
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CHAPTER 4  

ASYMMETRIC EFFECT IN DYNAMIC LIFTING TASK 

This section describes the experimental study to investigate asymmetric effect in dynamic 

lifting task.  Motion data in asymmetric lifting tasks was captured by a six-camera 

OptiTrack™ motion capture system, and then used to drive AnyBody™ model.  Right 

erector spinae (RES), left erector spinae (LES), right external oblique (REO), left 

external oblique (LEO), right internal oblique (RIO) and left internal oblique (LIO) 

muscle forces were selected and investigated because they are important muscles in 

asymmetric lifting.  L5/S1 joint forces were also selected to investigate LBD. The 

experimental details and results follow.  

4.1 Methods and Materials 

One healthy college student (1.73cm, 75kg) without any history of LBD during the past 

six months performed asymmetric lifting tasks of 0°, 30° and 60° with 30lb (13.6kg) 

dumbbell weights placed evenly in a plastic tray in OptiTrack™ Motion Capture 

Laboratory of Biomedical Engineering Department, New Jersey Institute of Technology.  

The lift origin was fixed at knuckle height (vertical height of 99.1 cm off the ground) and 

at a horizontal distance of approximately 53.3 cm from the center of the box to the spine. 

The experimental layout was dimensionally identical with Marras and Davis’s study [18], 

so that the results could be compared. Asymmetric angles were taped on a force plate for 

feet positioning, including a sagittal symmetric position (0°), 30° and 60° to the right of 

the mid-sagittal plane.  The force plate was used to collect ground reaction and moment 

data during the lifting.  The force plate data was not used in this study, but will be used in 

later research to compare joint moments predicted by AnyBody™ with those derived 
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from force plate.  By using a metal stand with a thin wooden board to place the plastic 

tray with dumbbell weights (Figure 4.1), marker blocking was minimized.  

 

Figure 4.1  Asymmetric lifting task configuration. 
 

Before the experiment, the participant was informed about the purpose and 

procedure of the experiment, and put on OptiTrack™ medium-size motion capture suit.  

With the help of laboratory assistant, thirty-four reflective markers were attached on the 

suit according to OptiTrack™ standard thirty-four-marker placement protocol [54]. After 

standard calibration and skeleton setting up procedure instructed by ARENA™ motion 

capture software [55], the motion data of lifting were collected through OptiTrack™ six-

camera tripod setup [55] with 100 frames/seconds. 

During the experiment, the participant performed three (asymmetric angles) 

lifting tasks, in a randomized order.  The lifting task was first standing straight with feet 
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positioned along the tape at pre-defined angle, and then lifting from the fixed origin to 

upright position (holding the tray) without moving his feet. 

4.2  Results 

Raw mocap data of each marker was assigned to proper body positions to drive the 

skeleton in ARENA™ software. At certain instances, gaps in data may be caused by 

marker blocking, and gaps less than twenty frames were automatically filled by the 

algorithm in ARENA™. The data then was further smoothed with cut-off frequency of 6 

Hz.  Frames exported to “c3d” file were further chosen manually by checking vertical 

positions of left hand: beginning with the tray being lifted and ending with holding the 

tray still.  After that, each marker positions were checked, and gaps more than twenty 

frames were filled manually by visual inspection. Figure 4.2 shows the initial frames of 

0°, 30° and 60° asymmetric lifting simulated in inverse dynamic study by AnyBody™ 

model respectively. 

 

Figure 4.2  First frames of 0°, 30° and 60° asymmetric lifting initialized in inverse 
dynamic study by AnyBody™ model.   
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GaitLowerExtremityProject model in AMMRV1.31 was modified to suit the 

experimental task.  Subsequently, each motion capture file was used to drive the 

AnyBody™ model.  Approximately between 160 to 220 frames were generated by 

ARENA™ for individual trials.  In biomechanical studies, customarily the mocap frame 

rate is reduced to save computational time.   The default frame rate reduction value set in 

AnyBody™ software was 1/6th, and was used for further analysis.  With the reduced set 

of frames, skeleton initial positioning, motion and parameter optimization, and inverse 

dynamic study routines were run within AnyBody™ software.  On a Sony VAIO® E 

series laptop computer with 2.2 GHz dual-core CPU and 3GB RAM, each trial took 

approximately 2 hours of computation.   

From the program output, maximum muscle forces of selected muscles are 

reported in Table 4.1. Only the muscle groups that developed more than 100 N force are 

reported.  Rest of the muscle groups data were ignored for this study, since they will not 

have any real effect on back loading.  The finding of muscle force are as following:  

Table 4.1 Maximum Muscle Forces in Newton during Each Task 

 
Asymmetric angle 

0 30 60 

Right erector spinae (RES) 1590 1360 1340 
Left erector spinae (LES) 1370 1290 1310 

Right external oblique (REO) 67 124 142 
Left external oblique (LEO) 49 49 30 
Right internal oblique (RIO) 234 179 150 
Left internal oblique (LIO) 119 183 154 

 
Followings are the main observations on muscle forces: 
1. ES generated 1290N to 1590N forces, which was far exceeded the other muscles.  
2. REO was 85.1% and 111.9% more active for 30o and 600 lifts compared to sagittal 

lift.    
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3. RIO exhibited complementary force activation, and was 23.5% and 35.9% less active 
for 30o and 600 lifts compared to sagittal lift. 

4. LEO was insignificantly activated, and generated force less than 50N in the three 
asymmetric angles. 

5. LIO was activated during the lifting tasks, but no significant difference noted between 
trials. 

Erector spinae is the main extensor of trunk. When the erector spinae fascicles of 

one side act together, they produce combined lateral flexion and rotation to the same side 

[51].  During asymmetric lifts, the support of the external load is shifted from the large 

erector spinae muscles to smaller, less capable oblique muscles [20].  When lifting origin 

became more asymmetric toward right, trunk rotated and laterally flexed more toward 

right.  Therefore, REO was more activated, and complementarily RIO was less activated.  

LEO played a minor role in right asymmetric lifting task, and the difference of activation 

for LIO may be due to variance of the motion.  These observations were appropriate and 

were expected from the muscle mechanics and physiological point of view. 

Maximum joint compressive and shear forces at L5/S1 joint are presented in 

Table 4.2.  L5/L1 maximum compression force reduced 14.1% and 15.4% for 30° and 

60° respectively comparing with 0°; A/P shear force reduced 16.3% and 22.5% for 30° 

and 60° respectively comparing with 0°; lateral shear force reduced 26.4% and increased 

10.5% for 30° and 60° respectively comparing with 0°.  In general, joint forces reduced 

as lifting origin became more asymmetric.   

Table 4.2 Maximum Joint Forces in Newton during Each Task 

 
Asymmetric angle 

0 30 60 

L5S1 compression  3690 3170 3120 
L5S1 A/P shear  675 565 523 

L5S1 lateral shear  28 20 31 
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Biomechanically, ES has smaller moment arm than oblique muscles referring to 

lumber joint, so ES is less efficient in supporting external moment generated by upper 

body weight and hand loads.  When the support of the external moment shifts from ES to 

oblique muscles, which also means shifting to more efficient muscles, the joint forces 

should be reduced.  However, oblique muscles are much weaker than ES, so they are less 

activated during symmetric lifting to minimize muscle fatigue.  Furthermore, from 

observation (Figure 4.2), the participant tended to squat more as lifting origin became 

more asymmetric, which may also be a strategy of our body to reduce joint forces. 

According to NIOSH [56], the tolerance level for compression loading of the 

spine is expected to be around 3400 N.  At this level of compression, micro fractures of 

the vertebral endplate begin to occur.  The threshold limits for spine lateral and A-P shear 

are not as well documented, but they are probably less than 900 N.  Reducing A-P shear 

and compressive forces should be considered a priority to prevent LBD [18].  In this 

study, joint forces did not exceed limitation except compression force during symmetric 

lifting.  However, if certain factors such as lifting speed, lifting height and lifting weight 

become more demanding, joint forces may exceed the tolerance level, and workers 

working for years under those circumstances may develop LBD.   

The average maximum L5/S1 compression force derived from ten subjects by 

Marras et al.’s EMG assisted model [18] was approximately 3600N, 3900N and 4050N 

for asymmetric lifting of 0°, 30° and 60° toward right.  The forces increased as the lifting 

origin became more asymmetric, but the compression force in sagittal lifting matched 

well with this study. A-P shear force was approximately 910N, 850N and 830N for 0°, 

30° and 60° asymmetry respectively. Comparing with this study, both A-P compression 
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force deceased as the lifting origin became more asymmetric, but the force predicted by 

Marras et al. was about 235N to 285N higher than this study. Lateral shear force 

predicted by them ranged from 210N to 350N, which was far higher than the values 

predicted by AnyBody™ in this study.  Generally, they found compression and lateral 

shear forces increased as the lift origin became more asymmetric, whereas A-P shear 

force decreased, and muscles on the opposite side of the body referring to lifting 

asymmetric direction were activated more than muscles on the same side.  However, as 

mentioned in sub-section 2.2.6, using EMG in dynamic lifting is problematic.  Their 

results were based on averages of ten subjects, but the standard deviations were quite 

high.  Therefore, although their model may consider muscle co-contraction better, which 

predicted joint forces higher than this study, their results may not be conclusive. 
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CHAPTER 5  

CONCLUSION AND FUTURE WORK 

This study provides up-to-date literature review on current biomechanical models for 

lifting tasks. All these models incorporate simplifying assumptions that should be taken 

into consideration when one applies these models to investigate lower back stress.  The 

AnyBody Modeling System™ provides most detailed anatomical model, but the 

optimization criteria to predict muscle recruitment for lifting tasks were not completely 

validated.   

An isometric pulling experiment was conducted to study the correlation between 

muscle activity measured by EMG and predicted muscle forces from AnyBody™ with 

increasing hand loads. With infinite order polynomial predicted percentage of maximum 

muscle forces achieved 98% correlation with normalized EMG RMS.  Considering 

predicted joint forces, infinite order polynomial criterion, performed better than 3rd and 

5th order polynomials. Motion data during lifting tasks of 0°, 30° and 60° asymmetry 

toward right with 30lb (13.6kg) weight was then collected by OptiTrack™ six-camera 

mocap system to drive AnyBody™ model, and asymmetric effect was investigated.  ES 

was the most activated muscle during both symmetric and asymmetric lifting tasks. When 

lifting origin became more asymmetric toward right, REO was more activated, and 

complementarily RIO was less activated.  LEO played a minor role in right asymmetric 

lifting task, and the difference of activation for LIO may be due to variance of the 

motion. Because oblique muscles with larger moment arms can support external moment 

more efficiently, and subject tended to squat more as lifting origin became more 

asymmetric, L5/S1 joint forces decreased during more asymmetric lifting.   
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Based on this thesis, further work is expected as following: 

1. The optimization criteria should be further investigated and modified with muscle co-
contraction being considered, so as to get more accurate results. 

2. When biomechanical modeling was utilized, care should be taken on the scaling issue 
of the model. Data captured through force plate can be utilized in future to investigate 
the necessary scaling of the outputs.  

3. Even in biomechanical modeling and simulating investigation, more subjects should 
be used to increase the repeatability. 

4. Others factors such as lifting height and lifting speed should be investigated by 
AnyBody™ model.   
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