Parallel Programming

Parallel Programming



lel Computing Hardware

Shared memory:

e multiple cpus are attached to the BUS Multiprocessor:
o all processors share the same primary [ cpu [ cPu J [ cru J crU
memory | \ [
A , Cache Cache Cache Cache
@ the same memory address on different CPU'’s “‘"l"""' '”'“""‘"" "'""l"““’ “’T“'
refer to the same memory location [ Bus

@ CPU-to-memory connection becomes a
Primary Lo
bottleneck: shared memory computers
cannot scale very well



‘ allel Computing Hardware

Distributed memory:

Interconnection Network

@ each processor has its own private memory Multicomputer
@ computational tasks can only operate on oy o e
local data =) Gecho Cache
mery| tﬂmry ueT
@ infinite available memory through adding (ot (i oo (1] ey |
nodes [

@ requires more difficult programming



MP versus MPI

OpenMP (Open Multi-Processing):

easy to use; loop-level parallelism
non-loop-level parallelism is more difficult

limited to shared memory computers

cannot handle very large problems
MPI(Message Passing Interface):

@ require low-level programming; more difficult programming
o scalable cost/size

@ can handle very large problems



Distributed memory:

@ Each processor can access only the instructions/data stored in
its own memory.

@ The machine has an interconnection network that supports
passing messages between processors.

@ A user specifies a number of concurrent processes when
program begins.

@ Every process executes the same program, though the flow of
execution may depend on the processors unique ID number
(e.g. "“if (my.id == 0) then ---").

@ Each process performs computations on its local variables,
then communicates with other processes (repeat), to
eventually achieve the computed result.

@ In this model, processors pass messages both to send/receive
information, and to synchronize with one another.



ction to MPI

Communicators and Groups:

o MPI uses objects called communicators and groups to define
which collection of processes may communicate with each
other.

o Groups are objects that represent groups of processes.

@ Most MPI routines require you to specify a communicator as
an argument.

@ Communicators and groups will be covered in more detail
later. For now, simply use MPI_COMM_WORLD whenever a
communicator is required - it is the predefined communicator
that includes all of your MPI processes.



uction to MPI

Rank:

@ Within a communicator, every process has its own unique,
integer identifier assigned by the system when the process
initializes. A rank is sometimes also called a "task ID". Ranks
are contiguous and begin at zero

@ Used by the programmer to specify the source and destination
of messages. Often used conditionally by the application to
control program execution (if rank=0 do this / if rank=1 do
that).

Error Handling:

@ Most MPI routines include a return/error code parameter.



