
Parallel Programming

Parallel Programming



Parallel Computing Hardware

Shared memory:

multiple cpus are attached to the BUS

all processors share the same primary
memory

the same memory address on different CPU’s
refer to the same memory location

CPU-to-memory connection becomes a
bottleneck: shared memory computers
cannot scale very well

Parallel Programming



Parallel Computing Hardware

Distributed memory:

each processor has its own private memory

computational tasks can only operate on
local data

infinite available memory through adding
nodes

requires more difficult programming

Parallel Programming



OpenMP versus MPI

OpenMP (Open Multi-Processing):

easy to use; loop-level parallelism

non-loop-level parallelism is more difficult

limited to shared memory computers

cannot handle very large problems

MPI(Message Passing Interface):

require low-level programming; more difficult programming

scalable cost/size

can handle very large problems

Parallel Programming



MPI

Distributed memory:

Each processor can access only the instructions/data stored in
its own memory.

The machine has an interconnection network that supports
passing messages between processors.

A user specifies a number of concurrent processes when
program begins.

Every process executes the same program, though the flow of
execution may depend on the processors unique ID number
(e.g. “if (my id == 0) then · · · ”).
Each process performs computations on its local variables,
then communicates with other processes (repeat), to
eventually achieve the computed result.

In this model, processors pass messages both to send/receive
information, and to synchronize with one another.

Parallel Programming



Introduction to MPI

Communicators and Groups:

MPI uses objects called communicators and groups to define
which collection of processes may communicate with each
other.

Groups are objects that represent groups of processes.

Most MPI routines require you to specify a communicator as
an argument.

Communicators and groups will be covered in more detail
later. For now, simply use MPI COMM WORLD whenever a
communicator is required - it is the predefined communicator
that includes all of your MPI processes.

Parallel Programming



Introduction to MPI

Rank:

Within a communicator, every process has its own unique,
integer identifier assigned by the system when the process
initializes. A rank is sometimes also called a ”task ID”. Ranks
are contiguous and begin at zero

Used by the programmer to specify the source and destination
of messages. Often used conditionally by the application to
control program execution (if rank=0 do this / if rank=1 do
that).

Error Handling:

Most MPI routines include a return/error code parameter.

Parallel Programming


