
Introduction to MPI

We must communicate data. This is a cooperative process, and
can only occur when both the first process executes a send
operation, and the second process executes a receive operation.
Sender:

The data to communicate.

The amount of data to communicate.

The destination for the message.

A message tag so that the receiver can know which message is
arriving.

send(address, length, destination, tag)
MPI Send (&buf,count,datatype,dest,tag,comm)

Parallel Programming



Introduction to MPI

MPI Datatype is very similar to a C or Fortran datatype

int → MPI INT

double → MPI DOUBLE

char → MPI CHAR

More complex datatypes are also possible:

E.g., you can create a structure datatype that comprises of
other datatypes: a char, an int and a double.

Or, a vector datatype for the columns of a matrix

The “count” in MPI SEND and MPI RECV refers to how many
datatype elements should be communicated

Parallel Programming



Introduction to MPI

We must communicate data. This is a cooperative process, and
can only occur when both the first process executes a send
operation, and the second process executes a receive operation.
Receiver:

The starting memory address.

The amount of data to communicate.

The identity of the sender.

The message tag.

receive(address, length, source, tag, actual length)
In C, MPI Recv (&buf,count,datatype,source,tag,comm,&status)

Parallel Programming



Introduction to MPI

MPI Ini: In C, MPI Init (&argc,&argv)
This function must be called in every MPI program, must be
called before any other MPI functions and must be called only
once in an MPI program.

MPI Comm size: In C, MPI Comm size (comm,&size)
Returns the total number of MPI processes.

MPI Comm rank: In C, MPI Comm rank (comm,&rank)
Returns the rank (ID) of the calling MPI process. Initially,
each process will be assigned a unique integer rank between 0
and number of tasks - 1.

Parallel Programming



�✁ ✂✄☎✆✝✞✟✠✄✞ ✁�
✡✟✄☎✆✝☛☞ ✌✞✍☛✆✟✎✏✑✒ �✁ ✓✔✆✆✠☎✕✖✗ ✘✙☞☞✕✖ ✁�
✡✟✄☎✆✝☛☞ ✌✞✍☛✟✠✏✑✒ �✁ ✚✙✟✄✍✘✕✖ ✁�
✡✟✄☎✆✝☛☞ ✌✍✟✓☞✏✑✒ �✁ ☎✆✠☎✛✕✖ ✁�

�✁ ✜✙✠✍✠✍✢✚☞✞ ✁�
✣✤✥✣✤✦ ✧★✩✪✥✦ ✘✕✧★✩✪✥✦ ✔✖ ✫ ✬✦✭✩✬✤ ✕✮✏✯ � ✕✰✏✯ ✱ ✔✁✔✖✖✲ ✳

�✁ ✴✵✔✓✚✆☞ ✙✠✝✍✟✄☞ ✍✠ ☎✠✓✚✝✍☞ ✚✟ ✝✞✟✄✶ ✄✝✓☞✙✟☎✔✆ ✟✄✍☞✶✙✔✍✟✠✄ ✷✟✔
✚✟ ✸ ✮ ✁ ✟✄✍✹✯✺✰ ✰�✕✰✱✵✺✻✖ ☛✵✏ ✼☞ ✝✞☞ ✔ ✞✟✓✚✆☞ ✓✟☛✚✠✟✄✍ ✙✝✆☞ ✘✠✙ ✟✄✍☞✶✙✔✍✟✠✄✗ ✠✷☞✙
✞✝✎✟✄✍☞✙✷✔✆✞ ✠✘ ✘✟✵☞☛ ✞✟✽☞ ✰�✄✗ ✾✑☞✙☞ ✄ ✟✞ ✔ ✝✞☞✙✿✟✄✚✝✍ ✚✔✙✔✓☞✍☞✙✏ ✁�

✣✤✭ ✓✔✟✄✕✣✤✭ ✔✙✶☎✗ ❀❁❂✬✁ ✔✙✶✷❃❄✖ ✫

�✁ ✟✄✚✝✍ ✍✑☞ ✄✝✓✎☞✙ ✠✘ ✟✄✍☞✙✷✔✆✞ ✁�
✣✤✭ ✄✲
✚✙✟✄✍✘✕❅✴✄✍☞✙ ✍✑☞ ✄✝✓✎☞✙ ✠✘ ✟✄✍☞✙✷✔✆✞ ✕✯ ❆✝✟✍✞✖❇❈✄❅✖✲
✞☎✔✄✘✕❅❉✟❅✗ ❊✄✖✲
✣❋ ✕✄ ✌ ✰✖ ✫

✬✦✭✩✬✤✕✿✰✖✲
✳

�✁ ✞✍✔✙✍ ✍✟✓☞✙ ✁�
✍✟✓☞✹✍ ✞✍✟✓☞ ✸ ✍✟✓☞✕●❍■■✖✲

�✁ ✞☞✍ ✞✝✎✟✄✍☞✙✷✔✆ ✾✟☛✍✑ ✁�
✧★✩✪✥✦ ✑ ✸ ✰✏✯ � ✄✲

�✁ ✚☞✙✘✠✙✓ ✟✄✍☞✶✙✔✍✟✠✄ ✠✷☞✙ ✄ ✟✄✍☞✙✷✔✆✞ ✁�
✧★✩✪✥✦ ✵✗ ✚✟✸✯✏✯✲
✣✤✭ ✟✲
❋★✬ ✕✟✸✯✲ ✟✌✄✲ ✟✱✱✖ ✫

✵ ✸ ✑ ✁ ✕✟ ✱ ✯✏❏✖✲
✚✟ ✱✸ ✑ ✁ ✘✕✵✖✲

✳

�✁ ✞✍✠✚ ✍✟✓☞✙ ✁�
✍✟✓☞✹✍ ✘✍✟✓☞ ✸ ✍✟✓☞✕●❍■■✖✲
✧★✩✪✥✦ ✙✝✄✍✟✓☞ ✸ ✕✕✧★✩✪✥✦✖ ✕✘✍✟✓☞ ✿ ✞✍✟✓☞✖✖✲

�✁ ✠✝✍✚✝✍ ☎✠✓✚✝✍☞☛ ✷✔✆✝☞ ✔✄☛ ☞✙✙✠✙ ✁�
✧★✩✪✥✦ ✚✟✹✍✙✝☞ ✸ ❑✏✰✮✰❏▲✻▼❏❑❏◆▲❖▲❑✻❑◆✮▼✲
✚✙✟✄✍✘✕❅ ☎✠✓✚✝✍☞☛ ✚✟ ✸ ❉✏✰▼☞❈✄❅✗✚✟✖✲
✚✙✟✄✍✘✕❅ ✍✙✝☞ ✚✟ ✸ ❉✏✰▼☞❈✄❅✗✚✟✹✍✙✝☞✖✲
✚✙✟✄✍✘✕❅ ☞✙✙✠✙ ✸ ❉✏✰▼☞❈✄❅✗✚✟✹✍✙✝☞ ✿ ✚✟✖✲
✚✙✟✄✍✘✕❅ ✙✝✄✍✟✓☞ ✸ ❉✏✰▼☞❈✄❅✗✙✝✄✍✟✓☞✖✲

✳ �✁ ☞✄☛ ✓✔✟✄ ✁�

Parallel Programming



Homework: parallelizing the serial π computation program
(i) using openMP (ii) using MPI

Parallel Programming



Basics of parallelization

Basics of parallelization



Data parallelism

Medium-grained loop parallelism

Coarse-grained parallelism by domain decomposition

Load balancing: computational effort should be equal for all
domains

Basics of parallelization



Domain decomposition

After load balance, it comes reducing the communication overhead

Cutting into stripes is simple but needs more communication than
optimal decomposition.

Basics of parallelization



Scalability metrics

Algorithmic limitations

Serialized executions

Startup overhead

Communication

Basics of parallelization



Scalability metrics

The overall size of the problem is T s = s + p, where s is the serial
(nonparallelizable) part and p is the perfectly parallelizable fraction.
Strong scaling: solving the same problem on N workers will require
a runtime of

T p = s + p/N

where N is the number of workers.
Weak scaling: scale the problem size

T p = s + pN

Application speedup can be defined as the quotient of parallel and
serial performance for fixed problem size.

Basics of parallelization



Scalability metrics

Speedup:

Pp =
1

s + 1−s
N

Scalability:

Sp =
1

s + 1−s
N

For a fixed problem size, scalability is limited.

Basics of parallelization



Scalability metrics

In the case of weak scaling

Pp = Sp =
s + (1− s) ∗ Nα

s + (1− s) ∗ Nα−1

Weak scaling allows unlimitted performace.
Parallel efficiency = speedup/N

� = s/N + 1− s

Basics of parallelization


