
MPI parallelization

MPI parallelizationl



More MPI

Massage Passing:

The same program runs on all processes (Single Program
Multiple Data, SPMD).

The program is written in a sequential language. Data
exchange, i.e., sending and receiving of messages, is done via
calls to an appropriate library.

All variables in a process are local to this process. There is no
concept of shared memory.

The parallel loop is trivially parallel, with the only difference
that it now operates on a fraction of the arrays.

MPI parallelizationl



More MPI

SPMD model:
In SPMD model, each processor executes the same code. The
local program has access only to local data.

If I am processor 0 do nothing, otherwise receive an element
from the left.

If I am the last processor do nothing, otherwise send my
element to the right.

See heat mpi.c example

MPI parallelizationl



More MPI

SPMD model:
blocking communication instructions: a send instruction does not
finish until the sent item is actually received, and a receive
instruction waits for the corresponding send. This means that
sends and receives between processors have to be carefully paired.

This situation, where the program can not progress because every
processor is waiting for another, is called deadlock.

Alternatively, non-blocking communication requires the use of a
temporary buffer: a processor could put its data in a buffer, tell the
system to make sure that it gets sent at some point, and later
checks to see that the buffer is safe to reuse.

MPI parallelizationl



More MPI

A possible solution to deadlock:
A simple solution to this deadlock problem is to interchange the
MPI Send() and MPI Recv()

If I am an odd numbered processor, I send first, then receive;

If I am an even numbered processor, I receive first, then send.

MPI parallelizationl



More MPI

Collective operations: (blocking)

barrier: synchronizes the members of the communicator, i.e.,
all processes must call it before they are allowed to return to
the user code.

reduction: each processor has a data item, and these items
need to be combined arithmetically with an addition,
multiplication, max, or min operation. The result can be left
on one processor, or on all, in which case we call this an
allreduce operation.

broadcast: one processor has a data item that all processors
need to receive.

MPI parallelizationl



More MPI

Collective operations: (blocking)

gather : each processor has a data item, and these items need
to be collected in an array, without combining them in an
operations such as an addition. The result can be left on one
processor, or on all, in which case we call this an allgather.

scatter : one processor has an array of data items, and each
processor receives one element of that array.

all-to-all : each processor has an array of items, to be
scattered to all other processors.

MPI parallelizationl



Homework

Use MPI barrier, broadcast, scatter, and gather to do a matrix
multiplication.

Have a look at the attached OpenMP Jacobi iterative solver
for a system of linear equations. Use barrier, broadcast,
scatter, and gather and write an MPI implementation of the
Jacobi solver.

MPI parallelizationl


