
Parallel Programming with OpenMP

OpenMP Parallel Programming

Introduction: OpenMP Programming Model

Thread-based parallelism utilized on shared-memory platforms

Parallelization is either explicit, where programmer has full
control over parallelization or through using compiler
directives, existing in the source code.

Thread is a process of a code is being executed. A thread of
execution is the smallest unit of processing.

Multiple threads can exist within the same process and share
resources such as memory

OpenMP Parallel Programming

Introduction: OpenMP Programming Model

Master thread is a single thread that runs sequentially; parallel
execution occurs inside parallel regions and between two
parallel regions, only the master thread executes the code.
This is called the fork-join model:

OpenMP Parallel Programming

OpenMP Parallel Computing Hardware

Shared memory allows immediate access to all data from all
processors without explicit communication.

Shared memory:

multiple cpus are attached to the BUS

all processors share the same primary
memory

the same memory address on different CPU’s
refer to the same memory location

CPU-to-memory connection becomes a
bottleneck: shared memory computers
cannot scale very well

OpenMP Parallel Programming

OpenMP versus MPI

OpenMP (Open Multi-Processing):

easy to use; loop-level parallelism

non-loop-level parallelism is more difficult

limited to shared memory computers

cannot handle very large problems

An alternative is MPI (Message Passing Interface):

require low-level programming; more difficult programming

scalable cost/size

can handle very large problems

OpenMP Parallel Programming

OpenMP core structure

OpenMP Parallel Programming

OpenMP core structure

Beginning of the parallel region

Serial region

Parallel region: all threads execute this

Fork a team of threads

Compiling:
export OMP NUM THREADS=4
gcc -o hello omp -fopenmp hello omp.c

OpenMP Parallel Programming

OpenMP C Directives

A directive has a name followed by clauses

OpenMP Parallel Programming

OpenMP C Directives: Reduction

A private copy for each list variable is created and initialized for
each thread. At the end of the reduction, the reduction variable is
applied to all private copies of the shared variable, and the final
result is written to the global shared variable.

double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)

for (i = 0; i <= MAX ; i++)
sum += A[i];

avg = sum/MAX;

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)

for (i = 0; i <= MAX ; i++)
sum += A[i];

avg = sum/MAX;

#pragma omp critical
sum=sum+x

Reduction

double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)

for (i = 0; i <= MAX ; i++)
sum += A[i];

avg = sum/MAX;

Flow dependence

Dependence removed

OpenMP Parallel Programming

