ugate Gradient method

Consider the problem:
0<x<«1
d’U B
dx?
U(0) = U(1) =0,

Find the exact solution for f = —(km)?sin(kmx).

For k =1,2,3,4,5,6, use the Conjugate Gradient method with

N = 65 and plot the norm of error as a function of the number of
iterations for nmax = 150.

For n=1,2,5,10, 20, plot the error at grid points i =1 to i = 64
for k=1,2,3,4,5,6.

Explain your results.



Basic conjugate gradient algorithm:
https://en.wikipedia.org/wiki/Conjugate_gradient_method#
The_resulting_algorithm
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Minimization Condition
The vector x* is a solution to the positive definite linear system AX = b if and only if
X" minimizes
g(x) = (X, Ax) — 2(x, b).

In addition, for any x and v # 0 the function g(x + 7 v) has its minimum whep ; —
(v, b — Ax)/(v, Av).

To begin the conjugate gradient method, we choose X, an approximate Solution tq

AX* = b, and v # 0, which gives a search direction in which to move away from x to
improve the approximation. Let r = b — Ax be the residual vector associated with x and
(v,b—Ax)  (v,r)

(v, Av) (v, Av)’

Ifr # 0 and if v and r are not orthogonal, then x + v gives a smaller value for
and is presumably closer to x* than is x. This suggests the following method.
Let x be an initial approximation to x*, and let v(") # 0 be an initial

g than g(x)

search direction.

Fork=1,2,3,..., we compute
(v, b — Ax*-D)
1 =
: (V(k), Av(k)) ;
k =
x® = x*-1 4 p y®

and choose a new search direction v**1. The object is to make this selection so that the
sequence of approximations {x*)) converges rapidly to x*

g(xl,xz, SHye ,x,,) = (X, AX) = 2(X, b) = ZZa,-jxixj _ Zixibi-
i=] j=1 =1

Taki : 5o :
ng partial derivatives with fespect to the component variables Xy gives

dg n
E(x) 2 - 2;‘%% — 2b,.

Therefore, the gradient of g1is

e
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The method that chooses

v+ r%) — b - Ax®
1s called S -
18 the method of Steepest descent. Although we will see in Section 10.4 that this

. . m\ and Optlmlzatlon p Oblem\‘, it i;‘ nOt t‘

rgence.
. An alternative approach uses a set of nonzero direction vectors {v(", ..., v} that
satisfy
(v, AV =0, if ]
This is called an A-orthogonality condition, and the set of vectors {v()), . .., v} is said

to be A-orthogonal. It is not difficult to show that a set of A-orthogonal vectors associated

with the positive definite matrix A is linearly independent. [See Exercise 13(a).] This set
of search directions gives

CTTT 0, AavPy T (v, Av)

and x® = x*-D 4 £, v®

The following result shows that this choice of search directions gives convergence in
at most n steps, so as a direct method it produces the exact solution, assuming that the
arithmetic 1s exact.

A-Orthogonality Convergence

Let {v®, ..., v®} be an A-orthogonal set of nonzero vectors associated with the posi-
tive definite matrix A, and let x) be arbitrary. Define

= and  x® =x%V +4,vO,
; (v®, Av®)

fork =1,2,...,n. Then, assuming exact arithmetic, AX”™ = b.

Example 1 Consider the positive definite matrix

.-4 3 0'7
A= 3 4 =1
50 =l A

3 4 ' . -
ety = (1 00 ¥ = (-3,1,0)', and v® = (=3, 4, 1)'. By direct calculation,

T dad B 00— ]
(0t 4 v Qam (10D RS - Al o e &
(V(l),AV(z)) = v\ AV ( O] 4 St 0 |
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it g
() 3) (1 0 0) r : i _(1) _71_ - O,
(" 5 44‘ ) — s U, 0 _1 4 ; _ l J
and
o2 L el i _% 1
(v(z)' AV(3)) = (_g, 1, O) 3 4 -1 7 = 0
S e [ g
Thus, {v\", v® v} is an A-orthogonal set.
The linear system
e e sfashloler el 247
3 4 -1 Xy | = 30 |,
| O —'1 4 J b x3 & b _24 4

has the exact solution x* = (3, 4, —5)". To approximate this solution, let x(@ — 0,0, 0
Since b = (24, 30, —24)", we have

r® — i AX(O) =bh= (24, 30, _24)t’

SO

(v, 1) =y = og Vet 4 Wi e =

y

Thus,
xV =xO 4 1v® = (0,0, 0y 4 6(1,0,0)" = (6, 0, 0)".
Continuing, we have

b ae o BaEE At o) 0. 3

)it

x? = xM 4 4 y® _ (6,0,0)’+ﬁ (_g 1.0 : ~ o 48 0 &
7 4, b ] 7’ 7 s b/
t® = b~ 4x® (o, 0 _@) gy AECREONG By
7 (v®, Av®)) T o4 /7 dmaris
and
x® = 3@ O ( 6 48 \¢ 34 AT
7’ 7 ’0 +(—5) (-5, 7, 1) =(3,4’ —S)t.
Since we applied the techni =3 s
cClnique 7 = 3 times, this Is the actual solution. .

Before discussin

g how to determ;
Opment. The use of rLcrd

an A-orthogonal set {v(!) orthogonal set, we will continue the devel-
BN D) } of direction vectors gives what 15

—

L O v it S s S
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the residual vectors r®) gpq the direction vectors vl),

hogonal Residual Vectors

The residual vectors r®, where k=1,2,...,n, fora conjugate direction method,
satisfy the equations

(l‘(k),v(j)) =0, foreach j = L k.

The conjugate gradient method of Hestenes and Stiefel chooses the search directions

{v(®'} during the iterative process so that the residual vectors {r*)} are mutually orthogonal.

To construct the direction vectors {v(), v® .} and the approximations {x’, x@®, ...},

we start with an initial approximation x© and use the steepest descent direction r® =
b — Ax© as the first search direction v(V.

Assume that the conjugate directions v(, . . ., v*=1 and the approximations x, .
x*~1 have been computed with

. » ,

x*=D — x&=2) 4 o yl=1)
where
(v AvWY =0 and (@9, r¥)=0, fori#j.

If x*=1D is the solution to Ax = b, we are done. Otherwise, r*D =b — Ax*=D £ 0( :1113
the orthogonality implies that (r®=D, v@) =0,fori =1,2,...,k— 1. We thenuse r
to generate v%) by setting

N k-1
v =& g vED,

We want to choose si_ so that

(v(k‘l)’ Av(k)) = (.

Since
and
=1 (k—1)
WD, Av®) = (v¢0, arth) L spaivd D, AvEly,
VA
we will have (v&-1, Av®) = 0'when

(v&-D, Ark-D)
Sk=1 = T gD, Avk-D)’

b this choice of si—1 we have (v©, Av®) = 0, for each
wi

It can also be ShozwnTh ﬂl::t (v, ...v®} is an A-orthogonal set.
i=1,2,---’k— 3 ‘
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Having chosen v'*), we compute
(v, p=D) &= 4 5 v, pk=1)
= V0, AV0) (v®, Av®) ;
(r(k—l)’ r(k—l)) L (v(k—l)’ l'("‘l))
— (v, Av®) L (v®), Ay

Ik

By the orthogonality result, (v¢~", r&-D) =0, so
(=D, =Dy
=TV, Av0) (7.5)

Thus,
x® = x®D ¢ fv®.
To compute r'®), we multiply by A and subtract b to obtain

Ax® —b = Ax*) —b + 5 AV®

or
r') — r&=D _ f Av(k)_
Thus, J
K Lk i ) g

(l'( )’ r )) L (r(k l)’ r(k)) - tk(AV(k), r(k)) = —1 (l’(k), Av(")). | {f

Further, from Egq. (7.5),

a

(e, b kD) = g (v 4y®)y |
SO ;

_ V0, Ar0) g gy
(v Ayy — (v Ay(h))

Sy =

(1/) (r®, r®) (r®, r®)

In summary, we have the formulas:

0
r9=b-4x0. w0 _ 0,

and,fork=1,2,...,n

pk=1) _(k—
= (l‘ ,l'( l))

(v, Ayhyy

™ i3 ,’l.‘ /.‘ .
— k-l) . .- . .- I': -. o
=x%=D 4 ok . SRS ST
tkv( ), B '...'f- g

x®

(1/8) (e&=D pl=1)y = (rk=1) pk=1)) " ‘:' o e
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(k). . -
r _ r(k iy tkAv(k),

(r(k‘l)’ r(k—l)) ’

=r® 4 5v®, (7.6)

k:

We lel} now e).(tend the conjugate gradient method to include preconditioning. If the
matrix A 1s ill-conditioned, the conjugate gradient method is highly susceptible to rounding
errors. So, although the exact answer should be obtained in n steps, this is not usually
thg case. As a direct method the conjugate gradient method is not as good as Gaussian
elimination with pivoting. The main use of the conjugate gradient method is as an iterative

methf)d a.lpplied to a better-conditioned system. In this case an acceptable approximate
solution is often obtained in about ,/n steps.

To apply the method to a better-conditioned system, we want to select a nonsingular
conditioning matrix C so that

A =CACT)
is better conditioned. To simplify the notation, we will use the matrix C~* to refer to

GtV
Consider the linear system

where X = C'x and b = C~'b. Then
A% = (C"'AC™")(C'x) = C'Ax.

Thus, we could solve AX = b for X and then obtain X by multiplying by C~*. However,
instead of rewriting Egs. (7.6) using ¥®, ¥®, 7, X*), and 5y, we incorporate the precondi-

tioning implicitly.
Since
i(k) = C‘:X(k)' AR SFOLA
\ ! . : - # V&" } B
we have ~ ( ' t “’ Sy 5 \‘ t f ‘.“.‘a ’,_f‘;' d‘ 1

A
T

ol L e NSO T e
<® _ p— Ax® =Ccb-(C ACHEXV=CH ix"”)= R

-
. -l
S -

y P . 5 = o 4 3 ;- e ' : .
’ RN e R " : [ o .
e e e R R
Let #® = @R andiwSisiCRin" I S
ST Vo s L Y. R e I oy %
i vt .| o '\‘, ‘ _'g ' 9 ,‘-\:".'- 2 : .’\ L 4 \‘\ ‘‘‘‘
o ? = R ALY P fO 2 , - - o ) ”
L \ A',',:’._;: — ! f
A “\\"

SO
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Finally, the third iteration gives

4 = Av® = (0.1014898976, —0.1040922099, —0.0286253554)’;

t; = 1.192628008;
x¥ = (2.999999998, 4.000000002, —4.999999998)";

r® = (0.36 x 107°, 0.39 X 1078, —0.141 x 107%)".

Since x® is nearly the exact solution, rounding error did not signiﬁcantly affect the
result. In Example 1 of Section 7.5, the Gauss-Seidel method required 34 iterations, apq the
SOR method, with @ = 1.25, required 14 iterations for an accuracy of 107, It shoy)q be
noted, however, that in this example, we are really comparing a direct method to iterative
methods. B

The next example illustrates the effect of preconditioning on a poorly conditioned
matrix. In this example and subsequently, we use D~'/2 to represent the diagonal matrix

whose entries are the reciprocals of the square roots of the diagonal entries of the coefficient
matrix A.

The linear system Ax = b with
102 0.0 S1end 0 ]
O =1, 1 =1 2
A= 15 =1 60 0% —2 and bi=#"3
1 G| R 4
0 -1 =2 4 700 3 e

has the solution

X" = (7.859713071, 0.4229264082, —0.07359223906.

—0.5406430164, 0.01062616286)" .

The matrix A is symmetric and
ber Ko (A) = 13961.71. We wi

Tab'B 7'5
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Method

Jacobi
Gauss-Seidel

Conjugate Gradient

Conjugate Gradient
(Preconditioned)

Number
of Iterations x k) Ix* — x|
49 (7.86277141, 0.42320802, —0.07348669. 0.00305834
~0.53975964, 0.01062847)"
15 (7.83525748, 0.42257868, —0.07319124. 0.02445559
—0.53753055, 0.01060903)’
7 (7.85152706, 0.42277371, —0.07348303. 0.00818607
—0.53978369, 0.01062286)’
5 (7.85341523, 0.42298677. —0.07347963. 0.00629785
—0.53987920, 0.008628916)’
4 (7.85968827, 0.42288329. —0.07359878, 0.00009312

—0.54063200, 0.01064344)’

required. In these systems, the preconditioning matrix C is approximately equal to L in tp’e
Choleski factorization LL' of A. Generally, small entries in A are ignc.)red. and Choleski’s
method is applied to obtain what is called an incomplete LL' factoqzatlon of A. Thgs,
C—'C~! ~ A~! and a good approximation is obtained. More information about the conju-

gate gradient method can be found in Kelley [Kelley].

Exercise Set 7.7

1. The linear system

' — (Lalo
has solution (x1, x2)" = (g, 7) - |
a. Solve the linear system USIng Gaussl

metic. | .
b. Solve the linear system using the conjug

two-digit rounding arithmetic.
¢. Which method gives the better an
d. Choose C~! = D~/ Does this ¢

2. The linear system

an elimination with two-digit rounding arith-

ate gradient method (C = C~' = I) with

swer’
hoice improve the conjugate gradient method?

0.1x; + 0.2x2 = 0.3,

(1, 1) Repeat the directions for Exercise 1 on this linear
x) = L |

has solution (X1,
system.




