Finite difference numerical methods for 1-D heat

equation; lterative methods, Jacobi,
Gauss-Seidel, SOR.




eat Equation

Heat Equation
ou_ U
P = Tox2
where k/(p c) is the diffusivity considered constant here.
Consider the following boundary and initial conditions, for
0<x<L:
U0, t) = Uy U(L,t) = Uy,

known as Dirichlet boundary conditions (we can also specify a
heat flux, Neumann boundary conditions, or combination thereof,
known as mixed or Robin boundary conditions), and

U(x,0) = f(x) 0<x<L.



Jurier Series Solution to the 1-D Heat Equation

A solution to the homogeneous Dirichlet boundary conditions
problem is

Ux,t) = gan sin (?) e_(T)Z(kaC)t

where

f(x) = ni::lan sin <$)



ite difference numerical methods for 1-D heat equation

Explicit Method O(At, Ax?)
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ive Methods for Solving Ax=b

Algorithm for Jacobi lterations
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Algorithm for Gauss-Seidel Iterations
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Algorithm for Successive Over Relaxation
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A sufficient condition for convergence is |aji| > E#,- |ajj].



