
Parallel Programming with OpenMP

OpenMP Parallel Programming

Introduction: OpenMP Programming Model

Thread-based parallelism utilized on shared-memory platforms

Parallelization is either explicit, where programmer has full
control over parallelization or through using compiler
directives, existing in the source code.

Thread is a process of a code is being executed. A thread of
execution is the smallest unit of processing.

Multiple threads can exist within the same process and share
resources such as memory

OpenMP Parallel Programming

Introduction: OpenMP Programming Model

Master thread is a single thread that runs sequentially; parallel
execution occurs inside parallel regions and between two
parallel regions, only the master thread executes the code.
This is called the fork-join model:

OpenMP Parallel Programming

OpenMP Parallel Computing Hardware

Shared memory allows immediate access to all data from all
processors without explicit communication.

Shared memory:

multiple cpus are attached to the BUS

all processors share the same primary
memory

the same memory address on different CPU’s
refer to the same memory location

CPU-to-memory connection becomes a
bottleneck: shared memory computers
cannot scale very well

OpenMP Parallel Programming

OpenMP versus MPI

OpenMP (Open Multi-Processing):

easy to use; loop-level parallelism

non-loop-level parallelism is more difficult

limited to shared memory computers

cannot handle very large problems

An alternative is MPI (Message Passing Interface):

require low-level programming; more difficult programming

scalable cost/size

can handle very large problems

OpenMP Parallel Programming

OpenMP core structure

OpenMP Parallel Programming

OpenMP core structure

Beginning of the parallel region

Serial region

Parallel region: all threads execute this

Fork a team of threads

Compiling:
export OMP NUM THREADS=4
gcc -o hello omp -fopenmp hello omp.c

OpenMP Parallel Programming

OpenMP C Directives

A directive has a name followed by clauses

OpenMP Parallel Programming

OpenMP C Directives: Reduction

A private copy for each list variable is created and initialized for
each thread. At the end of the reduction, the reduction variable is
applied to all private copies of the shared variable, and the final
result is written to the global shared variable.

double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)

for (i = 0; i <= MAX ; i++)
sum += A[i];

avg = sum/MAX;

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)

for (i = 0; i <= MAX ; i++)
sum += A[i];

avg = sum/MAX;

#pragma omp critical
sum=sum+x

Reduction

double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)

for (i = 0; i <= MAX ; i++)
sum += A[i];

avg = sum/MAX;

Flow dependence

Dependence removed

OpenMP Parallel Programming

Matrix multiplication

OpenMP Parallel Programming

Performance with OpenMP

Performance with OpenMP

The factor by which the time to solution can be improved
compared to using only a single processor is called speedup.

It is critical to parallelize the large majority of a program.

Every time the program invokes a parallel region or loop, it
incurs a certain overhead for going parallel.

In addition to the costs of invoking the parallel loop and
executing the barrier, cache and synchronization effects can
greatly increase the cost.

OpenMP Parallel Programming

Performance with OpenMP

Load balancing

If some threads have to do more work than others,
performance will suffer.
Consider the problem of scaling the elements of a sparse
matrix; if some rows have many more non-zero terms than
others, load balancing can be a problem with static schedules.
The load balancing problem can be solved by using a dynamic
schedule.
There are also costs to using dynamic schedules.
A static schedule can usually achieve good load distribution in
situations where the amount of work per iteration is uniform
or if it varies in a predictable fashion

OpenMP Parallel Programming

Scalability metrics

Algorithmic limitations

Serialized executions

Startup overhead

Communication

OpenMP Parallel Programming

Scalability metrics

The overall size of the problem is T s = s + p, where s is the serial
(nonparallelizable) part and p is the perfectly parallelizable fraction.
Strong scaling: solving the same problem on N workers will require
a runtime of

T p = s + p/N

where N is the number of workers.
Weak scaling: scale the problem size

T p = s + pN

Application speedup can be defined as the quotient of parallel and
serial performance for fixed problem size.

OpenMP Parallel Programming

Scalability metrics

Amdahls law, speedup for a parallel program using N processors, in
which s is the non-parallelizable work, is given by:

Pp =
1

s + 1−s
N

Scalability: So-called strong scalability is in effect the same as
speedup.
A code that shows perfect speedup presents strong scalability:

Sp =
1

s + 1−s
N

For a fixed problem size, scalability is limited.

OpenMP Parallel Programming

Scalability metrics

In the case of weak scaling

Pp = Sp =
s + (1 − s) ∗ Nα

s + (1 − s) ∗ Nα−1

Weak scaling allows unlimited performance.
Parallel efficiency = speedup/N

ε = s/N + 1 − s

OpenMP Parallel Programming

Matrix multiplication

Homework: Matrix multiplication

Analyze the speedup and efficiency of the parallelized code.

Vary the size of your matrices from 250, 500, 750, 1000, and
2000 and measure the runtime with one thread.

For each matrix size, change the number of threads from
2,4,8., and plot the speedup versus the number of threads.
Compute the efficiency.

Explain whether or not the scaling behavior is as expected.

OpenMP Parallel Programming

