
Finite difference numerical methods for Poisson
equation; Multigrid methods
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1-D model

Poisson Equation

∇2U(x , y , z) = −f (x , y , z),

where ∇2U(x , y , z) is the Laplacian of U.
Consider the following 1-D boundary value problem:
0 < x < 1

d2U

dx2
= −f

U(0) = U(1) = 0,

Discretized as

−2ui + (ui+1 + ui−1) = −∆x2fi , i = 0, 1, . . . ,N

with
u0 = uN = 0
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HW 1

Write

−2ui + (ui+1 + ui−1) = −∆x2fi , i = 1, 2, . . . ,N − 1

as a simple Jacobi iteration, i.e.:

uni =
(
un−1
i+1 + un−1

i−1 + ∆x2fi
)
/2, n > 0

with
u0 = uN = 0

Then write a program to find the solution.
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HW 2

Consider an intermediate ui , called u∗i :

u∗i =
(
un−1
i+1 + un−1

i−1 + ∆x2fi
)
/2,

and write
uni = (1− ω)un−1

i + ωu∗i

we will then have th weighted Jacobi methode

uni = (1− ω)un−1
i + ω

(
un−1
i+1 + un−1

i−1 + ∆x2fi
)
/2, n > 0

Use the weighted Jacobi method and compare your results with
the simple Jacobi method. Find the optimal ω:
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1-D model: Matrix equation

The above discretization leads to the matrix equation Ax = b,
where

A =


2 −1 0

−1
. . .

. . .
. . .

. . . −1
0 −1 2

 .

x = [u1, . . . , uN−1]T

b = ∆x2[f1, . . . , fN−1]T
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HW3

Write A as
A = D− L−U

where D is the diagonal of A, and −L and −U are the strictly
lower and upper triangular parts of A, respectively.
Show that in matrix form, the Jacobi method then amounts to:

un = D−1 (L + U) un−1 + D−1∆x2f

In matrix form, write the weighted Jacobi method.
Use your matrix multiplication method to solve for u above and
compare the performance with your simple Jacobi method code in
HW1.
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HW4

Consider the problem:
0 < x < 1

d2U

dx2
= f

U(0) = U(1) = 0,

Find the exact solution for f = −(kπ)2 sin(kπx).
For k = 1, 2, 3, 4, 5, 6, use the Jacobi method with N = 65 and
plot the norm of error as a function of the number of iterations for
nmax = 150.
For n = 1, 2, 5, 10, 20, plot the error at grid points i = 1 to i = 64
for k = 1, 2, 3, 4, 5, 6.
Explain your results.
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Multigrid method: Introduction

Write

−2ui + (ui+1 + ui−1) = 0, i = 1, 2, . . . ,N − 1

as a simple Jacobi iteration, i.e.:

uni =
(
un−1
i+1 + un−1

i−1

)
/2, n > 0

with
u0 = uN = 0

Use Fourier modes as initial iterates:

(u0i )k = sin(ikπ/N)
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Multigrid method: Introduction
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Multigrid method: Introduction
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Multigrid method: Introduction
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Multigrid method

Error appears to be relatively higher in frequency on the coarse
grid, making modes of the error eliminated more effectively using
Jacobi iteration, for example.

Coarse gird can be used to improve the initial guess for the fine
grid.
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Multigrid method

Smoothing: reducing high frequency errors, for example using
a few iterations of the Jacobi method.

Restriction: downsampling the residual error to a coarser grid.

Interpolation or prolongation: interpolating a correction
computed on a coarser grid into a finer grid.
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Multigrid method: Interpolation or prolongation - 1D

Values at points on the coarse grid map unchanged to the fine
grid.

Values at fine grid points NOT on the coarse grid are the
averages of their coarse grid neighbors.
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Multigrid method: Full weighting restriction - 1D

Mapping from the fine grid to the coarse grid:
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Full Multigrid method

Apply the Jacobi iteration m times on Ωh with initial guess vh.

Compute the fine grid h solution and restrict to the coarse
gird 2h.

Compute the coarse grid solution.

Interpolate the coarse grid solution to the fine grid.

Apply the Jacobi iteration m times on Ωh with initial guess vh.
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HW

Consider the problem:
0 < x < 1

d2U

dx2
= f

U(0) = U(1) = 0,

Find the exact solution for f = −(kπ)2 sin(kπx).
For k = 1, 2, 3, 4, 5, 6, use the Multigrid method with N = 65 and
plot the norm of error as a function of the number of iterations for
nmax = 150.
For n = 1, 2, 5, 10, 20, plot the error at grid points i = 1 to i = 64
for k = 1, 2, 3, 4, 5, 6.
Explain your results.
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