1.2.3 The thermal energy balance for an arbitrary slice of cross-sectional
area A(x) between x = a and z = b is:
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where Q(x,t) = 0. We can rewrite equation 1 as:
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For an arbitrary slice, the integrand must be zero:
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replacing e(z,t) = pcu(z,t) and ¢(z,t) = —K,0u/0z in 4 gives:
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1.2.9(a) The thermal energy balance for an arbitrary slice between x = a

and x =D is:
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where A(z) is the cross sectional area, P(x) is the perimeter, and Q4(x,t) is
the heat loss through the lateral surface. We can rewrite equation 1 as:
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For an arbitrary slice, the integrand must be zero:
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replacing e(z,t) = p(x)c(x)u(z,t) and ¢(x,t) = —K,0u/0z in 4 gives:
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where p, ¢, K,, A, and P are constants. 1.2.9(b) Replacing Q,(z,t) =
h(z)[u(z,t) — up(z,t)] in 6 gives:
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where k is the thermal diffusivity and h is the proportionality coefficient.
1.2.9(c) For Q4(z,t) = 0, we recover:
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1.2.9(d) For up(z,t) = 0 and a circular cross section, we get:
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where h is constant. For uniform temperature, 9*u/0x? = 0, therefore:
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1.2.9(e) With u(t = 0) = U, solving 10 will give:

u(t) = U, exp(—%t) (16)
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