Introduction

- A significant portion of communication in 1990s was in analog.
- It has been replaced rapidly by digital communication.
- Now most of the communications become digital, with analog communication playing a minor role.
- This chapter addresses the framework (several major aspects) of digital data transmission.
- All we learnt in this course so far is utilized here.
- Hence, this chapter is naturally a conclusion of this course.
Digital Communication Systems: Source

- Digital Communication Systems: Figure 7.1
 Source encoder, Baseband modulation (Line coding), Digital carrier modulation, Multiplexer, Channel, Regenerative repeater, Receiver (detection).

- Source: The input
 - A sequence of digits
 - We discuss mainly: The binary case (two symbols)
 - Later in this chapter: The M-ary case (M symbols)
 more general case
Line Coder (Transmission Coder)

- The output of a multiplexer is coded into electrical pulses or waveforms for the purpose of transmission over the channel.
- This process is called a line coding or transmission coding.
- Many possible ways of assigning waveforms (pulses) to the digital data.

- On-off:
 \[
 \begin{cases}
 1 & \leftrightarrow \text{a pulse } p(t) \\
 0 & \leftrightarrow \text{no pulse}
 \end{cases}
 \]

Line Coder …

- Polar:
 \[
 \begin{cases}
 1 & \leftrightarrow \text{a pulse } p(t) \\
 0 & \leftrightarrow \text{a pulse } -p(t)
 \end{cases}
 \]

- Bipolar (pseudoternary or alternate mark inversion (AMI))
 \[
 \begin{cases}
 1 & \leftrightarrow \text{a pulse } p(t) \text{ or } -p(t) \text{ depending on whether the previous 1 is encoded by } -p(t) \text{ or } p(t) \\
 0 & \leftrightarrow \text{no pulse}
 \end{cases}
 \]

 In short, pulses representing consecutive 1’s alternate in sign.
- All the above three could use half-width pulses. It is possible to select other width.
- Figure 7.1 (parts a, b and c).
Line Codes

- Full width pulses are often used in some applications.
 - i.e., the pulse amplitude is held to a constant value throughout the pulse interval (it does not have a chance to go to zero before the next pulse begins).
 - These schemes are called non return-to-zero (NRZ) in contrast to return-to-zero (RZ)
 - Figure 7.2 shows
 - An On-off NRZ signal
 - A Polar NRZ signal in d and e parts of the figure
Multiplexer

- Usually, the capacity of a practical channel >> the data rate of individual sources.

- To utilize this capacity effectively, we combine several sources through a digital multiplexer using the process of interleaving.

- One way: A channel is time-shared by several messages simultaneously.

Regenerative Repeater

- Used at regularly spaced intervals along a digital transmission line to: 1) detect the incoming digital signal and 2) regenerate new clean pulses for further transmission along the line.

- This process periodically eliminates, and thereby combats the accumulation of noise and signal distortion along the transmission path.

- The periodic timing information (the clock signal at R_b Hz) is required to sample the incoming signal at a repeater.

- R_b (rate): pulses/sec
Regenerative Repeater...

- The clock signal can be extracted from the received signal.
 - e.g., the polar signal when rectified ⇒ a clock signal at R_b Hz
- The on-off signal = A periodic signal at R_b
 + a polar signal (Figure 7.)
- When the periodic signal is applied to a resonant circuit tuned to R_b Hz, the output, a sinusoid of R_b Hz, can be used for timing.

On-off Signal Decomposition

Figure 7.8. An on-off signal is the sum of a polar signal and a clock frequency periodic signal.
Regenerative Repeater…

- The bipolar signal \[\text{rectified} \] an on-off signal \[\Rightarrow \] the clock signal can also be extracted.
- The timing signal (the output of the resonant circuit) is sensitive to the incoming pattern, sometimes.
 - e.g. in on-off, or bipolar
 \[\{0 \leftrightarrow \text{no pulse}\} \]
- If there are too many zeros in a sequence, will have problem.
 - no signal at the input of the resonant circuit for a while
 - sinusoids output of the resonant circuit starts decaying
- Polar scheme has no such a problem.

Transparent Line Code

- A line code in which the bit pattern does not affect the accuracy of the timing information is said to be a transparent line code.
 - The polar scheme is transparent.
 - The on-off and bipolar are not transparent (non-transparent).
Desired Properties of Line Codes

1. Transmission bandwidth: as small as possible
2. Power efficiency: for a specific bandwidth and detection error rate, transmitted power should be as small as possible.
3. Error detection and correction capability: as strong as possible
4. Favorable power spectral density: desirable to have zero PSD at (dc), called DC null, because of ac coupling requires this. If at dc, \(\omega = 0 \), \(PSD \neq 0 \), then dc wanders in the pulse stream, which is not desired.
5. Adequate timing content: should be possible to extract the clock signal (timing information).
6. Transparency

PSD of Various Line Codes

- Consider a general PAM signal, as shown in Figure 7.4 (b):
 \[R_b \quad T_b = \frac{1}{R_b} \quad t = kT_b \]
 - the \(k \)th pulse in the pulse train \(y(t) = a_k p(t) \)
 - \(p (t) \): the basic pulse
 - \(P (\omega) \ [P(f)] \): Fourier spectrum of \(p (t) \)
 - \(a_k \): arbitrary and random
 - The on-off, polar, bipolar line codes are all special cases of the general pulse train \(y(t) \), \(a_k = 0, +1, -1 \)
A Random PAM signal

All 3 line codes can be represented this way.

New approach to determine PSD of y(t)

Figure 7.4: A random PAM signal and its generation from a PAM impulse sequence.

PSD of Various Line Codes …

- How to determine the PSD?
 - Figure 7.4
 - An attractive general approach

 \[R_x(\tau), S_x(\omega) \] need to be studied once

 Then for different \(p(t) \), \(\Rightarrow \) different PSD

 - \(x(t) \): an impulse train
 - \(\hat{x}(t) \): a rectangular pulse train \((\epsilon \cdot h_k = a_k) \)

 when \(\epsilon \to 0, \hat{x}(t) \to x(t) \)

 (Figure 7.5)
PSD of Various Line Codes ...

\[R_0 = \overline{a_k^2} \quad \Rightarrow \quad \text{time average of } a_k^2 \]

\[R_1 = a_k a_{k+1}, \ldots \ldots, R_n = a_k a_{k+n} \]

\[R_X(\tau) = \frac{1}{T_b} \sum_{n=-\infty}^{\infty} R_n \delta(\tau - nT_b) \]

\[S_X(\omega) = \frac{1}{T_b} \sum_{n=-\infty}^{\infty} R_n e^{-jn\omega T_b} = \frac{1}{T_b} \left[R_0 + 2 \sum_{n=1}^{\infty} [R_n \cos(n \omega T_b)] \right] \]

\[S_Y(\omega) = |P(\omega)|^2 S_X(\omega) \]

Different line codes \(\Rightarrow \) different \(P(\omega) \) \(\Rightarrow \) different \(S_Y(\omega) \)
Polar Signaling

\[1 \leftrightarrow p(t), \quad 0 \leftrightarrow -p(t) \backslash \backslash \]
\[a_k = \pm 1, \text{equally likely}, a_k^2 = 1 \]

\[R_0 = a_k^2 = 1 \]
\[R_1 = a_k \cdot a_{k+1} = 0 \quad \therefore a_k \cdot a_{k+1} = 1 \quad \text{or} \quad -1 \]
\[R_n = 0, n \geq 1 \quad \text{Similar reasoning} \]

\[S_y(\omega) = \left| P(\omega) \right|^2 S_x(\omega) = \left| P(\omega) \right|^2 \frac{1}{T_b} \]

Polar Signaling…

- To be specific, assume \(p(t) \) is a rectangular pulse of width \(\frac{T_b}{2} \) (a half-width rectangular pulse)

\[p(t) = \text{rect} \left(\frac{t}{T_b/2} \right) \]

\[P(\omega) = \frac{T_b}{2} \sin \left(\frac{\omega T_b}{4} \right) \]

\[S_y(\omega) = \frac{T_b}{4} \sin^2 \left(\frac{\omega T_b}{4} \right) \]

\[\text{lst zero-crossing}: \quad \omega T_b = \pi \Rightarrow \omega = \frac{4\pi}{T_b} \]

\[\Rightarrow f = \frac{2}{T_b} = 2R_b \]
PSD of polar signal (half-width rectangle)

Polar Signaling …

• Comment 1: The essential bandwidth of the signal (main lobe) = 2 R_b
 For a full-width pulse, $\Rightarrow R_b$
 “Polar Signaling is not bandwidth efficient.”

• Comment 2: “No error-detection or error-correction capability.”

• Comment 3: “Non-zero PSD at dc($\omega = 0$)”
 \Rightarrow This will rule out the use of ac coupling in transmission.

• Comment 4: “Most efficient scheme from the power requirement viewpoint” \Rightarrow for a given power, the detection-error probability for a polar scheme is the smallest possible.

• Comment 5: “Transparent”
Achieving DC Null in PSD by Pulse Shaping

\[P(\omega) = \int_{-\infty}^{\infty} p(t)e^{-j\omega t} \, dt \]

\[P(0) = \int_{-\infty}^{\infty} p(t) \, dt \]

⇒ If the area under \(p(t) = 0 \), \(P(0) = 0 \).

Manchester (split-phase, twinned-binary) Signal

Figure 7.6 7 Split phase (Manchester or twinned-binary) signal. (a) Basic pulse \(p(t) \) for Manchester signaling. (b) Output of Manchester signaling.
On-off Signaling

- 1 \leftrightarrow p(t)
 0 \leftrightarrow no pulse

\[
R_o = \frac{1}{2}
\]

\[
R_n = \frac{1}{4} \quad \text{for all} \quad n \geq 1
\]

\[
S_X(\omega) = \frac{1}{2T_b} + \frac{1}{4T_b} \sum_{n=-\infty}^{\infty} e^{-jn\omega T_b}
\]

\[
= \frac{1}{4T_b} + \frac{1}{4T_b} \sum_{n=0}^{\infty} e^{-jn\omega T_b}
\]

Note: 1. For some derivation, refer to the next four pages.
2. PSD is shown in Figure 7.8.
3. PSD consists of both a discrete part and a continuous part.
Some Derivation
(Lathi’s book, pp. 58-59, Example 2.12)

• A unit impulse train: \(\delta_{T_b}(t) = \text{Comb}_{T_b}(t) = g(t) \)

\[
g(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_b t} = \frac{1}{T_b} \sum_{n=-\infty}^{\infty} e^{jn\omega_b t} = \frac{1}{T_b} + \frac{2}{T_b} \sum_{n=-\infty}^{\infty} \cos(n\omega_b t)
\]

\[
G(f) = FT\{g(t)\} = \frac{1}{T_b} \sum_{n=-\infty}^{\infty} \delta(f - nf_0)
\]

\[
G(\omega) = FT\{g(t)\} = \frac{2\pi}{T_b} \sum_{n=-\infty}^{\infty} \delta(\omega - n\frac{2\pi}{T_0})
\]

\[
\cong \omega_0 \text{COMB}_{\omega_0}(\omega)
\]

Example 2.12

Find the exponential Fourier series and sketch the corresponding spectra for the impulse train \(\delta_{T_b}(t) \) shown in Fig. 2.37.
Some Derivation…

• Fact 1 (Lathi’s book, p.83, Eq. (3.20a, 3.20b):

\[1 \leftrightarrow \delta(f) \]

\[e^{j2\pi f t} \leftrightarrow \delta(f - f_b) \quad \left[e^{j\omega_b t} \leftrightarrow \delta(\omega - \omega_b) \right] \]

• Fact 2: Also,

\[\delta(t) \leftrightarrow 1 \]

\[\delta(t - nT_b) \leftrightarrow e^{-jn\omega_b T_b} \]

Some Derivation …

• Fact 3:

\[
\sum_{n=-\infty}^{\infty} \delta(t - nT_b) \quad \overset{FS}{\Rightarrow} \quad \frac{1}{T_b} \sum_{n=-\infty}^{\infty} e^{jn\omega_b t} \quad \omega_b = \frac{2\pi}{T_b}
\]

\[\uparrow FT \]

\[
\sum_{n=-\infty}^{\infty} e^{-jn\omega_b t} = \omega_b \sum_{n=-\infty}^{\infty} \delta(\omega - n\omega_b)
\]

\[\uparrow FT \]
On-off Signaling

- This is reasonable since, as shown in Fig. 7.2, an on-off signal can be expressed as the sum of a polar and a periodic component.

- Comment 1: For a given transmitted power, it is less immune to noise interference.
 - \[\text{Noise immunity} \propto \text{difference of amplitudes representing binary 0 and 1}. \]
 - If a pulse of amplitude 1 or \(-1\) has energy \(E\), then a pulse of amplitude 2 has energy \((2)^2E = 4E\).
On-off Signaling …

• For polar: \(\frac{1}{T_b} \) digits are transmitted per second
 \[\therefore \text{polar signal power} = E\left(\frac{1}{T_b}\right) = \frac{E}{T_b} \]

• For on-off: \(\text{power} = 4E\left(\frac{1}{2T_b}\right) = \frac{2E}{T_b} \) Power is now as large as twice of above.

• Comment 2: Not transparent

Bipolar Signaling
(Pseudoternary or Alternate Mark Inverted (AMI))

A. 0 ↔ no pulse
 1 ↔ \(p(t) \) or \(-p(t) \) depending on whether the previous 1 was transmitted by \(-p(t) \) or \(p(t) \)

B. [p(t), 0, -p(t)]: In reality, it is ternary signaling.

C. Merit: a dc null in PSD
 demerit: not transparent
Bipolar Signaling...

D. \(R(0) = \lim_{N \to \infty} \frac{1}{N} \sum_{k} a_k^2 = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{2} (\pm 1)^2 + \frac{N}{2} (0) \right] = \frac{1}{2} \)

\[R(1) = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{4} (-1) + \frac{3N}{4} (0) \right] = -\frac{1}{4} \]

\(R(2) = a_k a_{k+n} = 111, 101, 110, 011, 010, 001, 000 \)

\[R(2) = \lim_{N \to \infty} \frac{1}{N} \left[\frac{N}{8} (1) + \frac{N}{8} (-1) + \frac{5N}{8} (0) \right] = 0 \]

\[R_n = \lim_{N \to \infty} \frac{1}{N} \sum_{k} a_k a_{k+n} = 0, n > 1 \]

Bipolar Signaling...

E. \(S_y(\omega) = |P(\omega)|^2 S_x(\omega) \)

\[= \frac{|P(\omega)|^2}{T_b} \left(\sum_{n=-\infty}^{\infty} R_n e^{-jn\omega T_b} \right) \quad (7.10b) \]

\[= \frac{|P(\omega)|^2}{T_b} \left(R_0 + 2 \sum_{n=1}^{\infty} R_n \cos n\omega T_b \right) \quad (7.10c) \]

\[= \frac{|P(\omega)|^2}{T_b} \left(\frac{1}{2} + 2 \cdot (-\frac{1}{4}) \cos \omega T_b \right) \]

\[= \frac{|P(\omega)|^2}{2 \cdot T_b} (1 - \cos \omega T_b) = \frac{|P(\omega)|^2}{T_b} \sin^2 \left(\frac{\omega T_b}{2} \right) \]
Bipolar Sampling ...

⇒ \(S_y(\omega) = 0 \) As \(\omega = 0 \) (dc) regardless of \(P(\omega) \)
A dc null (desirable for ac coupling)

\[
sin^2\left(\frac{\omega T_b}{2}\right) = 0 \quad \text{at} \quad \omega = \frac{2\pi}{T_b} \quad \therefore f = \frac{1}{T_b} = R_b
\]

⇒ \text{bandwidth} = R_b \text{ Hz}, \quad \text{regardless of} \quad P(\omega)

For a half-width rectangular pulse,
\[
R(t) = \text{rect}\left(\frac{t}{T_b}\right)
\]

\[
P(\omega) = \frac{T_b}{2} \sin c\left(\frac{\omega}{4}\right)
\]

Dr. Shi
Lathi & Ding-Digital Commun

⇒ \(S_y(\omega) = \frac{T_b}{4} \sin c^2\left(\frac{\omega T_b}{4}\right) \sin^2\left(\frac{\omega T_b}{2}\right) \)

\(\omega_1 T_b = 4\pi \quad \omega_2 T_b = 2\pi \)

Zero:
\(\omega_1 = \frac{4\pi}{T_b} \quad \omega_2 = \frac{2\pi}{T_b} \quad \Rightarrow R_b = \left(\frac{1}{T_b} \right) \)

\(f_1 = 2R_b \quad f_2 = R_b \quad \text{essential \cdot bandwidth} \)

Half that of polar or on-off signaling.
Twice that of theoretical minimum bandwidth (channel b/w).

Table 3.1:
\[
\text{rect}\left[\frac{t}{\tau}\right] \leftrightarrow \tau \sin c\left(\frac{\omega \tau}{2}\right) = \tau \sin c\left(\frac{\omega}{2}\right)
\]

Dr. Shi
Lathi & Ding-Digital Commun
Merits of Bipolar Signaling

1. Spectrum has a dc dull.
2. Bandwidth is not excessive.
3. It has single-error-detection capability.
 Since, a single detection error ⇒ a violation of the alternation pulse rule.
Demerits of Bipolar Signaling

1. Requires twice as much power as a polar signaling.
 Distinction between A, -A, 0
 vs.
 Distinction between A/2, -A/2
2. Not transparent

Pulse Shaping

\[S_y(\omega) = |P(\omega)|^2 S_X(\omega) \]
\[= \frac{|P(\omega)|^2}{T_b} (R_0 + 2 \sum_{n=1}^{\infty} R_n \cos n \omega T_b) \quad \text{[Slide 19]} \]

- Different signaling (line coding, \(S_x(\omega) \)) \(\Rightarrow \) diff. \(S_y(\omega) \)
- Different pulse shaping (\(P(\omega) \)) \(\Rightarrow \) diff. \(S_y(\omega) \)
 An additional factor.
- Intersymbol Interference (ISI) (refer to the next slide)
 - Time-limited pulses (i.e., truncation in time domain) \(\Rightarrow \) not band-limited in frequency domain
 - Not time-limited, causes problem \(\leftarrow \) band-limited signal (i.e., truncation in frequency domain)
Phase Shaping…

Intersymbol Interference (ISI)

- Whether we begin with time-limited pulses or band-limited pulses, it appears that ISI cannot be avoided. An inherent problem in the finite bandwidth transmission.
- Fortunately, there is a way to get away: be able to detect pulse amplitudes correctly.
Nyquist Criterion for Zero ISI

- The first method proposed by Nyquist.

\[p(t) = \begin{cases}
1, & t = 0 \\
0, & t = \pm nT_b \quad T_b = \frac{1}{R_b}
\end{cases} \quad (7.22) \]

- Example 6.1 (p.256)

\[p(t) = \text{sinc}(2\pi Bt), \quad B = \frac{1}{2T_b} = \frac{1}{2} R_b \]

Since \(2\pi B T_b = \pi \),

\(T_b \) is the 1st zero crossing.

- Minimum bandwidth pulse that satisfies Nyquist Criterion Fig. 7.10 (b and c)

Minimum Bandwidth Pulse (Nyquist Criterion)
Nyquist Criterion for Zero ISI…

\[p(t) = \text{sinc}(\pi R_b t) = \begin{cases} 1 & t = 0 \\ 0 & t = \pm nT_b \end{cases} \quad \left(T_b = \frac{1}{R_b} \right) \]

\[P(\omega) = \frac{1}{R_b} \text{rect} \left(\frac{\omega}{2\pi R_b} \right) \quad \text{bandwidth} = \frac{R_b}{2} \]

Table 3.1:

\[\frac{W}{\pi} \text{Sinc} (Wt) \leftrightarrow \text{rect} \left(\frac{\omega}{2W} \right) \]

Problems of This Method

- Impractical
 1. \(-\infty < t < \infty\)
 2. It decays too slowly at a rate \(1/t\).

\[\Rightarrow \text{Any small timing problem (deviation) } \Rightarrow \text{ISI} \]

- Solution: Find a pulse satisfying Nyquist criterion (7.22), but decays faster than \(1/t\).

- Nyquist: Such a pulse requires a bandwidth

\[k \cdot \frac{R_b}{2}, \quad 1 \leq k \leq 2 \]
• Let \(p(t) \leftrightarrow P(\omega) \)
 - The bandwidth of \(P(\omega) \) is in \((R_b/2, R_b)\)
 - \(p(t) \) satisfies Nyquist criterion Equation (7.22)

• Sampling \(p(t) \) every \(T_b \) seconds by multiplying \(p(t) \) by an impulse train \(\delta_{T_b}(t) \).

\[
\Rightarrow \quad p^+ (t) = p (t) \delta_{T_b} (t) = \delta (t) \\
\downarrow \quad FT \\
\Rightarrow \quad \frac{1}{T_b} \sum_{n=-\infty}^{\infty} P (\omega - n \omega_b) = 1
\]

Equation (6.4)

\[
G (\omega) = \frac{1}{T_s} \sum_{n=-\infty}^{\infty} P (\omega - n \omega_s)
\]
Derivation

- \(|P(\omega)|\) is odd symmetric in \(y_1-o-y_2\) system.

Derivation...

- The bandwidth of \(P(\omega)\) is \(\frac{\omega_b}{2} + \omega_s\):
 - \(\omega_s\): the excess bandwidth
 - \(\gamma\), roll-off factor

\[
\gamma = \frac{\text{excess bandwidth}}{\text{theoretical minimum bandwidth}} = \frac{\omega_s}{\omega_b} = 2 \cdot \frac{\omega_s}{\omega_b} \quad 0 \leq r \leq 1
\]

- The bandwidth of \(P(\omega)\) is \(B_r = \frac{R_{th}}{2} + \frac{r R_{th}}{2} = (1 + \gamma) \frac{R_{th}}{2}\)
- \(P(\omega)\), thus derived, is called a **Vestigial Spectrum**.
Realizability

- A physically realizable system, $h(t)$, must be causal, i.e., $h(t) = 0$, for $t < 0$. (The n.c. & s.c.)
- In the frequency domain, the n.c. & s.c. is known as Paley-Wiener criterion
 $$\int_{-\infty}^{\infty} \ln \left| \frac{H(\omega)}{1 + \omega^2} \right| d\omega < \infty$$
- Note that, for a physically realizable system, $H(\omega)$ may be zero at some discrete frequencies.
 But, it cannot be zero over any finite band
- So, ideal filters are clearly unrealizable.

From this point of view, the vestigial spectrum $P(\omega)$ is unrealizable.
- However, since the vestigial roll-off characteristic is gradual, it can be more closely approximated by a practical filter.
- One family of spectra that satisfies the Nyquist criterion is
 $$P(\omega) = \begin{cases}
 1/2 & \left| \omega - \frac{\omega_b}{2} \right| < \omega_x \\
 1 - \sin \left(\frac{\pi (\omega - \frac{\omega_b}{2})}{2\omega_x} \right) & \left| \omega - \frac{\omega_b}{2} \right| < \omega_x \\
 0 & \left| \omega \right| > \frac{\omega_b}{2} + \omega_x \\
 1 & \left| \omega \right| < \frac{\omega_b}{2} - \omega_x
 \end{cases}$$
Realizability …

\[
\begin{align*}
\omega_s &= 0 \quad (r = 0) \\
\omega_s &= \frac{\omega_b}{4} \quad (r = 0.5) \\
\omega_s &= \frac{\omega_b}{2} \quad (r = 1)
\end{align*}
\]

Shown in the figure on next slide

• Comment 1: Increasing \(\omega_s \) (or \(r \)) improves \(p(t) \), i.e., more gradual cutoff reduces the oscillatory nature of \(p(t) \), \(p(t) \) decays more rapidly.

Pulses satisfying Nyquist Criterion

![Figure 7.13](image-url)
Realizability…

- Comment 2: As $\gamma = 1$, i.e., $\omega_s = \frac{\omega_c}{2}$

$$P(\omega) = \frac{1}{2} \left(1 + \cos \frac{\omega}{2R_b} \right) \text{rect} \left(\frac{\omega}{4\pi R_b} \right)$$

$$= \cos^2 \left(\frac{\omega}{4R_b} \right) \text{rect} \left(\frac{\omega}{4\pi R_b} \right)$$

- This characteristic is known as:
 - The raised-cosine characteristic
 - The full-cosine roll-off characteristic

Realizability…

$$p(t) = R_b \frac{\cos(\pi R_b t)}{1 - 4R^2_b t^2} \text{sinc}(\pi R_b t)$$

A. Bandwidth is R_b ($\gamma = 1$)
B. $p(0) = R_b$
C. $p(t) = 0$ at all the signaling instants & at points midway between all the signaling instants
D. $p(t)$ decays rapidly as $1/t^3$ relatively insensitive to derivations of R_b, sampling rate, timing jitter and so on.
Realizability...

E. Closely realizable
F. Can also be used as a duobinary pulse.
G. $H_c(\omega)$: channel transfer factor
$P_i(k):$ transmitted pulse
$P_i(\omega) \cdot H_c(\omega) = P(\omega)$

Received pulse at the detector input should be $P(\omega) [p(t)]$.

Signaling with Controlled ISI: Partial Response Signals

• The second method proposed by Nyquist to overcome ISI.
• Duobinary pulse: $p(nT_b) = \begin{cases} 1 & n = 0,1 \\ 0 & \text{for all other } n \end{cases}$
Signaling with Controlled ISI…

- Use polar signaling
 \[1 \leftrightarrow p(t) \]
 \[0 \leftrightarrow -p(t) \]
- The received signal is sampled at \(t = nT_b \)
 \[p(t) = 0 \quad \text{for all } n \text{ except } n = 0, 1. \]
- Clearly, such a pulse causes zero ISI with all the pulses except the succeeding pulses.

Signaling with Controlled ISI…

- Consider two such successive pulses located at 0 and \(T_b \).
 - If both pulses are positive, the sample value at \(t = T_b \) \(\Rightarrow 2. \)
 - If both pulses are negative, \(\Rightarrow -2 \)
 - If pulses are of opposite polarity, \(\Rightarrow 0 \)
- Decision Rule: If the sample value at \(t = T_b \) is
 - Positive \(\Rightarrow 1, 1 \)
 - Negative \(\Rightarrow 0, 0 \)
 - Zero \(\Rightarrow 0, 1 \text{ or } 1, 0 \)
Signaling with Controlled ISI…

• Table 7.1

Transmitted Seq.	1 1 0 1 1 0 0 0 1 0 1 1 1
Sample of x(Tb)	1 2 0 0 2 0 -2 -2 0 0 0 2 2
Detected seq.	1 1 0 1 1 0 0 0 1 0 1 1 1

Dr. Shi Lathi & Ding-Digital Commun 65

Signaling with Controlled ISI: Duobinary Pulses

• If the pulse bandwidth is restricted to be \(\frac{R_b}{2} \), it can be shown that the \(p(t) \) must be:

\[
p(t) = \frac{\sin(\pi R_b t)}{\pi R_b (1 - R_b t)}
\]

\[
P(\omega) = \frac{2}{R_b} \cos\left(\frac{\omega}{2 R_b}\right) \text{rect}\left(\frac{\omega}{2 \pi R_b}\right) e^{-j \frac{\omega}{2 R_b}}
\]

• Note: The raised-cosine pulse with \(\omega_s = \frac{\omega_{R_f}}{2}, (r = 1) \), satisfies the condition (7.3b) to be signaling with controlled ISI – refer to Figure 7.13 (slides 57).
Signaling with Controlled ISI
Duobinary Pulses…

Use of Differential Coding

• For the controlled ISI method, 0-valued sample \Rightarrow 0 to 1 or 1 to 0 transition.
• An error may be propagated.
• Differential coding helps.
• In differential coding, “1” is transmitted by a pulse identical to that used for the previous bit. “0” is transmitted by a pulse negative to that used for the previous bit.
• Useful in systems that have no sense of absolute polarity. \Rightarrow Fig 7.17
Differential Code

Scrambling

- **Purpose:** A scrambler tends to make the data more random by
 - Removing long strings of 1’s or 0’s
 - Removing periodic data strings.
 - Used for preventing unauthorized access to the data.

- **Example. (Structure)**
 Scrambler: \(S \oplus D^3 T \oplus D^5 T = T \rightarrow \text{Incomplete version} \)

 \(D^n T : \quad T \text{ delayed by } n \text{ units} \)

 \(\oplus : \quad \text{Modulo 2 Sum} \)

 \[
 \begin{align*}
 1 \oplus 1 &= 0 \\
 1 \oplus 0 &= 1 \\
 0 \oplus 0 &= 0 \\
 0 \oplus 1 &= 1
 \end{align*}
 \]
Scrambling…

- Descrambler:

\[
R = T \oplus (D^3 \oplus D^5)T \\
= [1 \oplus (D^3 \oplus D^5)]T \\
= (1 \oplus F^\Delta)T \\
F = D^3 \oplus D^5
\]
Example 7.2

- The data stream 1010100000111 is fed to the scrambler in Fig. 7.19a. Find the scrambler output T, assuming the initial content of the registers to be zero.

 - From Fig. 7.19a we observe that initially $T = S$, and the sequence S enters the register and is returned as $(D^3 \oplus D^5)S = FS$ through the feedback path. This new sequence FS again enters the register and is returned as F^2S, and so on. Hence,

$$T = S \oplus FS \oplus F^2S \oplus F^3S \oplus \ldots \quad (7.41)$$

Example 7.2 …

- Recognizing that $F = D^3 \oplus D^5$

 We have

$$F^2 = (D^3 \oplus D^5)(D^3 \oplus D^5) = D^6 \oplus D^{10} \oplus D^8 \oplus D^8$$

- Because modulo-2 addition of any sequence with itself is zero, $D^8 \oplus D^8 = 0$ and $F^2 = D^6 \oplus D^{10}$

- Similarly,

$$F^3 = (D^6 \oplus D^{10})(D^3 \oplus D^5) = D^9 \oplus D^{11} \oplus D^{13} \oplus D^{15}$$
Example 7.2 …

…… and so on ……

Hence,

\[T = (1 \oplus D^3 \oplus D^5 \oplus D^6 \oplus D^9 \oplus D^{10} \oplus D^{11} \oplus D^{12} \oplus D^{13} \oplus D^{15} \oplus ...)S \]

Because \(D^nS \) is simply the sequence \(S \) delayed by \(n \) bits, various terms in the preceding equation correspond to the following sequences:

\[
\begin{align*}
S &= 10101010000111 \\
D^3S &= 0001010101 00000111 \\
D^5S &= 0000010101 0100001111 \\
D^6S &= 0000001010 10100001111 \\
D^9S &= 0000000001 0101010000 0111 \\
D^{10}S &= 0000000000 1010101000 001111 \\
D^{11}S &= 0000000000 0101010100 00011111 \\
D^{12}S &= 0000000000 0010101010 00001111 \\
D^{13}S &= 0000000000 0001010101 00001111 \\
D^{15}S &= 0000000000 0000010101010000 011111 \\
T &= 1011100011101001
\end{align*}
\]
Example 7.2 …

- Note that the input sequence contains the periodic sequence 10101010…., as well as a long string of 0’s.
- The scrambler output effectively removes the periodic component as well as the long strings of 0’s.
- The input sequence has 15 digits. The scrambler output up to the 15th digit only is shown, because all the output digits beyond 15 depend on the input digits beyond 15, which are not given.
- We can verify that the descrambler output is indeed S when this sequence T is applied at its input.
- Homework: Learn to be able to determine where no terms needs to be considered.

Regenerative Repeater

- Three functions:
 1. Reshaping incoming pulses using an equalizer.
 2. Extracting timing information
 Required to sample incoming pulses at optimum instants.
 3. Making decision based on the pulse samples
Regenerative Repeater…

Preamplifier and Equalizer

- A pulse train is attenuated and distorted by transmission medium, say, dispersion caused by an attenuation of high-frequency components.
- Restoration of high frequency components \(\Rightarrow\) increase of channel noise
- Fortunately, digital signals are more robust.
 - Considerable pulse dispersion can be tolerated
- Main concern:
 Pulse dispersion \(\Rightarrow\) ISI
 \(\Rightarrow\) increase error probability in detection
Zero-Forcing Equalizer

- Detection decision is based solely on sample values.
 ⇒ No need to eliminate ISI for all t.
 All that is needed is to eliminate or minimize ISI at their respective sampling instants only.

- This could be done by using the transversal-filter equalizer, which forces the equalizer output pulse to have zero values at the sampling (decision-making) instant. (refer to the diagram in next slide)
Zero-Forcing Equalizer …

- Let \(c_0 = 1 \)
 \[c_k = 0 \quad \forall k \neq 0 \]
 \(\text{tap setting} \)

\[\Rightarrow P_0(t) = P_r(t - NT_b) \]
\[P_0(t) = P_r(t) \quad \text{If ignore delay.} \]

- Fig 7.22 (b) indicates a problem:
 \(a_1, a_{-1}, a_2, a_{-2}, \ldots \) are not negligible due to dispersion.
- Now, want to force \(a_1 = a_{-1} = a_2 = a_{-2} = \ldots = 0 \)
- Consider \(c_k \)'s assume other values (other tap setting).

Zero-Forcing Equalizer …

- Consider \(c_k \)'s assume other values (other tap setting).
 \[p_0(t) = \sum_{n=-N}^{N} c_n P_r(t - nT_b) \]
 \[p_0(kT_b) = \sum_{n=-N}^{N} c_n P_r((k-n)T_b), \quad k = 0, \pm 1, \pm 2, \ldots \]
- For simplicity of notation:
 \[p_0(k) = \sum_{n=-\infty}^{\infty} c_n P_r(k-n) \]
- Nyquist Criterion:
 \[p_0(k) = 0 \quad \forall k \neq 0 \]
 \[p_0(k) = 1 \quad \text{for} \quad k = 0 \]
Zero-Forcing Equalizer …

• ⇒ A set of infinitely many simultaneous equations:

\[2N+I: c_n's \]

Impossible to solve this set of equations.

• If, however, we specify the values of \(p_0(k) \) only at \(2N+I \) points:

\[
p_0(k) = \begin{cases}
 1 & k = 0 \\
 0 & k = \pm 1, \pm 2, \ldots, \pm N
\end{cases}
\]

then a unique solution exists.

Zero-Forcing Equalizer …

• Meaning: Zero ISI at the sampling instants of \(N \) preceding and \(N \) succeeding pulses.

• Since pulse amplitude decays rapidly, ISI beyond the \(N^{th} \) pulse is not significant for \(N > 2 \) in general.
Zero-Forcing Equalizer …

\[
\begin{bmatrix}
0 \\
0 \\
\vdots \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\end{bmatrix}
\begin{bmatrix}
p_1[0] & p_1[-1] & \cdots & p_1[-2N] \\
p_1[1] & p_1[0] & \cdots & p_1[-1] \\
\vdots & \vdots & \ddots & \vdots \\
p_1[N-1] & p_1[N-2] & \cdots & p_1[-1] \\
p_1[N] & p_1[N-1] & \cdots & p_1[-1] \\
\vdots & \vdots & \ddots & \vdots \\
p_1[2N] & p_1[2N-1] & \cdots & p_1[0] \\
\end{bmatrix}
\begin{bmatrix}
c_{-N} \\
c_{-N+1} \\
\vdots \\
c_{-1} \\
c_0 \\
c_1 \\
\vdots \\
c_{N-1} \\
c_N \\
\end{bmatrix}
\]

Think about when \(n = 2, 1, 0, -1, -2 \); an example in next slide

Example 7.3 For the received pulse \(p_i(t) \) in Fig. 7.21b, let

\[
\begin{align*}
a_0 &= p_i[0] = 1 \\
a_1 &= p_i[1] = -0.3, \ a_2 &= p_i[2] = 0.1 \\
a_{-1} &= p_i[-1] = -0.2, \ a_{-2} &= p_i[-2] = 0.05
\end{align*}
\]

Design a three-tap (\(N = 1 \)) equalizer.

Substituting the preceding values into Eq. (7.45), we obtain

\[
\begin{bmatrix}
0 \\
1 \\
0 \\
\end{bmatrix}
\begin{bmatrix}
1 & -0.2 & 0.05 \\
-0.3 & 1 & -0.2 \\
0.1 & -0.3 & 1 \\
\end{bmatrix}
\begin{bmatrix}
c_{-1} \\
c_0 \\
c_1 \\
\end{bmatrix}
\]

Solution of this set yields \(c_{-1} = 0.210, \ c_0 = 1.13, \) and \(c_1 = 0.318 \). This tap setting assures us that \(p_i[0] = 1 \) and \(p_i[-1] = p_i[1] = 0 \. The output \(p_i(t) \) is sketched in Fig. 7.21c.
Eye Diagram

- A convenient way to study ISI on an oscilloscope
- Figure

![Waveform and Eye Diagram](image)

Timing Extraction

- The received signal needs to be sampled at precise instants.
- Timing is necessary.
- Three ways for synchronization:
 1. Derivation from a primary or a secondary standard (a master timing source exists, both transmitter and receiver follow the master).
 2. Transmitting a separate synchronizing signal (pilot clock)
 3. Self synchronization (timing information is extracted from the received signal itself).
Timing Extraction …

- **Way 1:** Suitable for large volumes of data high speed comm. Systems.
 - High cost.
- **Way 2:** Part of channel capacity is used to transmit timing information.
 - Suitable for a large available capacity.
- **Way 3:** Very efficient.
- **Examples:**
 - On-off signaling (decomposition: Fig. 7.2)
 - Bipolar signaling → rectification → on-off signaling

Timing Jitter

- Small random deviation of the incoming pulses from their ideal locations.
- Always present, even in the most sophisticated communication systems.
- Jitter reduction is necessary about every 200 miles in a long digital link to keep the maximum jitter within reasonable limits.
- Figure 7.23
Detection – Error Probability

- Received signal = desired + AWGN
 Example: Polar signaling and transmission (Fig. 7.24, the next slide)
 Ap : Peak signal value
- Polar: Instead of $\pm Ap$, received signal = $\pm Ap + n$
- Because of symmetry, the detection threshold $= 0$.
 - If sample value > 0, \Rightarrow “1”
 - If sample value < 0, \Rightarrow “0”
 - Error in detection may take place
Error Probability for Polar Signal

- With respect to Figure 7.24

$P(\varepsilon | 0) = \text{probability that } n > A_p$

$P(\varepsilon | 1) = \text{probability that } n < -A_p$

$n: \text{AWGN}$

$$p(n) = \frac{1}{\sqrt{2\pi} \sigma_n} e^{-\frac{1}{2} \left(\frac{n}{\sigma_n} \right)^2}$$

$$\Rightarrow P(\varepsilon | 0) = \frac{1}{\sigma_n \sqrt{2\pi}} \int_{-\infty}^{-x} e^{-\frac{x^2}{2\sigma_n^2}} \, dn$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{-x}{\sigma_n}} e^{-\frac{x^2}{2}} \, dx = Q\left(\frac{A_p}{\sigma_n}\right)$$
Error Probability for Polar Signal…

where \[Q(y) = \frac{1}{\sqrt{2\pi}} \int_{y}^{\infty} e^{-\frac{x^2}{2}} \, dx \]

• Similarly,

\[
P(\varepsilon/1) = Q\left(\frac{A_p}{\sigma_n} \right) \quad \text{(Symmetric)}
\]

• Summary:

\[
P(\varepsilon) = P(\varepsilon,0) + P(\varepsilon,1)
\]

\[
= P(\varepsilon/0)P(0) + P(\varepsilon/1)P(1)
\]

\[
= \frac{1}{2} [P(\varepsilon/0) + P(\varepsilon/1)]
\]

• \(Q(x) \): Complementary error function: \(\text{erfc}(x) \)

\[
Q(x) = \frac{1}{x\sqrt{2\pi}} \left(1 - \frac{0.7}{x^2} \right) e^{-\frac{x^2}{2}}, \quad x > 2
\]

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
k & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline
Q(k) = P(\varepsilon) & 0.1587 & 0.0227 & 0.00135 & 3.16 \times 10^{-3} & 2.87 \times 10^{-5} & 9.9 \times 10^{-9} \\
\hline
\end{array}
\]

\[e.g. \quad 3.16 \times 10^{-5} \Rightarrow \text{one of} \quad 3.16 \times 10^{5} \quad \text{pulses will be possibly detected wrongly} \]

Dr. Shi

Lathi & Ding-Digital Commun

97
Error Probability for On-off Signals

• In this case, we have to distinguish between A_p and 0.

• Threshold: $\frac{1}{2}A_p$

• Error Probabilities:

$P(\varepsilon/0) = \text{prob. of } n > \frac{1}{2}A_p = Q\left(\frac{A_p}{2\sigma_n}\right)$

$P(\varepsilon/1) = \text{prob. of } n < -\frac{1}{2}A_p = Q\left(\frac{A_p}{2\sigma_n}\right)$

$P(\varepsilon) = \frac{1}{2}[P(\varepsilon/0) + P(\varepsilon/1)] = Q\left(\frac{A_p}{2\sigma_n}\right)$

Also assume 0 and 1 equally probable

$P(\varepsilon) > P(\bar{\varepsilon})$ (in the case of polar signaling)
Error Probability for Bipolar Signals

\[1 \leftrightarrow A_p \text{or } -A_p \]
\[0 \leftrightarrow 0_v \]

\[\Rightarrow \text{If the detected sample value: } \epsilon \left(\frac{-A_p}{2}, \frac{A_p}{2} \right) \leftrightarrow 0 \]
\[\text{o.w. } \leftrightarrow 1 \]

\[P(\epsilon / 0) = \text{prob}\left(n > \frac{A_p}{2} \right) \]
\[= \text{prob}\left(n > \frac{A_p}{2} \right) + \text{prob}\left(n < -\frac{A_p}{2} \right) \]
\[= 2 \text{prob}\left(n > \frac{A_p}{2} \right) = 2Q\left(\frac{A_p}{2\sigma_n} \right) \]

Error Prob. for Bipolar Signals...

\[P(\epsilon / 1) = \text{prob}\left(n < -\frac{A_p}{2} \right) \text{ when positive pulse used} \]

or \[\text{prob}\left(n > \frac{A_p}{2} \right) \text{ when negative pulse used} \]

\[= Q\left(\frac{A_p}{2\sigma_n} \right) \]

\[P(\epsilon) = P(\epsilon / 0)P(0) + P(\epsilon / 1)P(1) = \frac{1}{2}[P(\epsilon / 0) + P(\epsilon / 1)] \]

\[= \frac{1}{2} \left[2Q\left(\frac{A_p}{2\sigma_n} \right) \right] > P(\epsilon) \text{ for on-off signaling} \]
Detection Error Probability…

- Summary, polar is the best, $Q\left(\frac{A_p}{\sigma_n}\right)$
- On-off is in middle, $Q\left(\frac{A_p}{2\sigma_n}\right)$
- Bipolar is the worst, $1.5Q\left(\frac{A_p}{2\sigma_n}\right)$

- Another factor:
 $P(\varepsilon)$ decreases exponentially with the signal power.

Assumption: “0” and “1” equally likely

Comparison among three line codes

- To obtain: $P(\varepsilon) = 0.286 \times 10^{-6}$

- We need:
 - $\frac{A_p}{\sigma_n} = 5$ for polar case $\therefore Q(5) = 0.286 \times 10^{-6}$
 - $\frac{A_p}{\sigma_n} = 10$ for on-off case $\therefore P(\varepsilon) = Q\left(\frac{A_p}{2\sigma_n}\right)$
 - $\frac{A_p}{\sigma_n} = 10.16$ for bipolar case $\therefore P(\varepsilon) = 1.5Q\left(\frac{A_p}{2\sigma_n}\right)$
 - $= 0.286 \times 10^{-6}$
 - $\therefore \frac{A_p}{2\sigma_n} = 5.08$
Comparison among three line codes…

- For the same error rate, required SNR $\frac{A_p}{\sigma_n}$,
 Polar < On-off < Bipolar (from previous example)
- For the same SNR $\frac{A_p}{\sigma_n}$, the caused error rate
 Polar < On-off < Bipolar (from next example)
- Polar is most efficient in terms of SNR vs. error rate
- Between, on-off and bipolar:
 Only 16% improvement of on-off over bipolar
- Performance of bipolar case ≈ performance of on-off case in terms of error rate.

Example

a) Polar binary pulses are received with peak amplitude $A_p = 1 \text{ mV}$. The channel noise rms amplitude is 192.3 μV. Threshold detection is used, and 1 and 0 are equally likely.

b) Find the error probability for
 (i) the polar case, and the on-off case
 (ii) the bipolar case if pulses of the same shape as in part (a) are used, but their amplitudes are adjusted so that the transmitted power is the same as in part (a)
Example …

a) For the polar case

\[\frac{A_p}{\sigma_n} = \frac{10^{-3}}{192.3 \times 10^{-6}} = 5.2 \]

From Table 8.2 (4th ed), we find

\[P(\varepsilon) = Q(5.2) = 0.9964 \times 10^{-7} \]

b) Because half the bits are transmitted by no-pulse, there are, on the average, only half as many pulses in the on-off case (compared to the polar). Now, doubling the pulse energy is accomplished by multiplying the pulse by \(\sqrt{2} \)

(in order to keep the power dissipation same)

Example…

Thus, for on-off \(A_p \) is \(\sqrt{2} \) times the \(A_p \) in the polar case.

• Therefore, from Equation (7.53)

\[P(\varepsilon) = Q \left(\frac{A_p}{2\sigma_n} \right) = Q(3.68) = 1.66 \times 10^{-4} \]

• As seen earlier, for a given power, the \(A_p \) for both the on-off and the bipolar cases are identical. Hence, from equation (7.54)

\[P(\varepsilon) = 1.5Q \left(\frac{A_p}{2\sigma_n} \right) = 1.749 \times 10^{-4} \]
M-ary Communication

- Digital communications use only a finite number of symbols
- Information transmitted by each symbol increases with M.
 \[I_M = \log_2 M \text{ bits} \]
 I_M : information transmitted by an M-ary symbol
- Transmitted power increases as M^2, i.e., to increase the rate of communication by a factor of $\log_2 M$, the power required increases as M^2.
 (see an example below)

M-ary Communication...

- Most of the terrestrial digital telephone network: Binary
- The subscriber loop portion of the integrated services digital network (ISDN) uses the quarternary code 2BIQ shown in Figure. 7.28
Pulse Shaping in Multi-amplitude Case

- **Nyquist Criterion** can be used for M-ary case
- **Controlled ISI**
- Figure 7.28: One possible M-ary Scheme
- Another Scheme: Use M orthogonal pulses:
 \[\varphi_1(t), \varphi_2(t), \ldots, \varphi_M(t) \]
- **Definition**:
 \[
 \int_0^{T_b} \varphi_i(t) \varphi_j(t) dt = \begin{cases}
 c & i = j \\
 0 & i \neq j
 \end{cases}
 \]
Pulse Shaping in Multi-amplitude Case

• The figure in next slide: One example in M orthogonal pulses:

\[\varphi_k(t) = \begin{cases}
\sin \left(\frac{2\pi \cdot k \cdot t}{T_b} \right), & 0 < t < T_b, \quad k = 1, 2, \ldots, M \\
0, & \text{otherwise}
\end{cases} \]

• In the set, pulse frequency:

\[\frac{k}{T_b}, \frac{1}{T_b}, \frac{2}{T_b}, \ldots, \frac{M}{T_b} \]

M times that of the binary scheme (see an example below)

Figure 7.36 M-ary orthogonal pulses.
Pulse Shaping in Multi-amplitude Case

• In general, it can be shown that the bandwidth of an orthogonal M-ary scheme is M times that of the binary scheme
 – In an M-ary orthogonal scheme, the rate of communication is increased by a factor of \(\log_2 M \) at the cost of an increase in transmission bandwidth by a factor of M.

Digital Carrier Systems

• So far: Baseband digital systems
 – Signals are transmitted directly without any shift in frequency.
 – Suitable for transmission over wires, cables, optical fibers.

• Baseband signals cannot be transmitted over a radio link or satellites.
 – Since it needs impractically large size for antennas
 – Modulation (Shifting signal spectrum to higher frequencies is needed)
Digital Carrier Systems…

- A spectrum shift to higher frequencies is also required when transmitting several messages simultaneously by sharing the large bandwidth of the transmission medium,
- FDM: Frequency-division Multiplexing. (FDMA: Frequency-division Multiplexing Access)

Several Types of Modulation

- **Amplitude-Shift Keying (ASK), also known as on-off keying (OOK)**

\[m(t) \cos(\omega_c t) \quad m(t) \text{: on-off baseband signal (modulating signal)} \]

\[\cos(\omega_c t) \quad : \text{carrier} \]
Modulation Types…

• **Phase-Shift Keying (PSK)**

 \[
 m(t) : \text{polar Signal} \\
 \]

 \[
 1 \leftrightarrow p(t)\cos(\omega t), 0 \leftrightarrow -p(t)\cos(\omega t) = p(t)\cos(\pi - \omega t) = p(t)\cos(\omega t - \pi) \\
 \]

 ![Figure 7.3a](image)

 ![Figure 7.3b](image)

 ![Figure 7.3c](image)

• **Frequency-Shift Keying (FSK)**

 – Frequency is modulation by the base band signal.

 \[
 1 \leftrightarrow \omega_1, 0 \leftrightarrow \omega_0 \\
 \]

 – Information bit resides in the carrier frequency.
FSK

- FSK signal may be viewed as a sum of two interleaved ASK signals, one with a modulating frequency ω_{c_0}, the other, ω_{c_1}
 - Spectrum of FSK = Sum of the two ASK
 - Bandwidth of FSK is higher than that of ASK or PSK
Demodulation
A. Review of Analog Demodulation

- Baseband signal and bandpass signal
 The end of the 2nd part of the slides of Ch. 2 and Ch. 3
- Double-sideband Suppressed Carrier (DSB-SC) Modulation

\[
m(t) \leftrightarrow M(\omega) \quad \text{message signal}
\]
\[
\cos(\omega t) \leftrightarrow \frac{1}{2} [\delta(\omega + \omega_c) + \delta(\omega - \omega_c)] \quad \text{carrier}
\]
\[
m(t)\cos(\omega t) \leftrightarrow \frac{1}{2} [M(\omega + \omega_c) + M(\omega - \omega_c)] \quad \text{modulated signal}
\]

Figure 4.1 (a), (b), (c) DSB-SC Modulation
DSB-SC Demodulation

• Demodulation:
 Synchronization Detection
 (Coherent Detection)
• Figure 4.1 (e) and (d)

Using a carrier of exactly the same frequency & pulse

DSB-SC Demodulation …

\[[m(t)\cos(\omega_c t)]\cos(\omega_c t) = e(t) = \frac{1}{2}[m(t) + m(t)\cos(2\omega_c t)] \]

\[E(\omega) = \frac{1}{2} M(\omega) + \frac{1}{4}[M(\omega + 2\omega_c) + M(\omega - 2\omega_c)] \]

After LPF \(\Rightarrow \) \(\frac{1}{2} M(\omega) \)

\(\frac{1}{2} m(t) \)
AM Signal

- **Motivation:**
 - Requirements of a carrier in frequency and phase synchronism with carrier at the transmitter is too sophisticated and quite costly
 - Sending the carrier ⇒ a. eases the situation
 b. requires more power in transmission
 c. suitable for broadcasting
Amplitude Modulation (AM)

\[\varphi_{AM}(t) = A \cos(\omega_c t) + m(t) \cos(\omega_c t) \]
\[= [A + m(t)] \cos(\omega_c t) \]
\[\varphi_{AM}(t) \Leftrightarrow \frac{1}{2} [M(\omega + \omega_c) + M(\omega - \omega_c)] \]
\[+ \pi \cdot A [\delta(\omega + \omega_c) + \delta(\omega - \omega_c)] \]

• AM Signal and its Envelope
• Demodulation of AM signals
 – Rectifier Detection: Figure 4.11
 Output: $\frac{1}{\pi} m(t)$
 – Envelope Detector: Figure 4.12
 Output: $A + m(t)$
B. Back to Digital Communication System: Demodulation

- Demodulation of Digital-Modulated Signals is similar to Demodulation of Analog-Modulated Signals

- Demodulation of ASK
 - Synchronous (Coherent) Detection
 - Non-coherent Detection: Say, envelope detection
Demodulation of PSK

- Cannot be demodulated non-coherently (envelope detection).
 - Since, envelope is the same for 0 and 1
- Can be demodulated coherently.
- PSK may be demodulated non-coherently if use: Differential coherent PSK (DPSK)

Differential Encoding

- Differential coding:
 - “1” \rightarrow encoded by the same pulse used to encode the previous data bit \rightarrow no transition
 - “0” \leftrightarrow encoded by the negative of pulse used to encode the previous data bit \rightarrow transition
- Figure 7.30 (a)
- Modulated signal consists of pulses $\pm A \cos(\omega_c t)$ with a possible sign ambiguity
Differential Encoding

- Figure

Differential Encoding...

- T_b: one-bit interval
- If the received pulse is identical to the previous pulse $\leftrightarrow 1$,
 \[Y(t) = A^2 \cos^2(\omega t) = \frac{A^2}{2} [1 + \cos(2\omega t)] \]
 \[z(t) = \frac{A^2}{2} \]
- If 0 is transmitted
 \[Y(t) = -A^2 \cos^2(\omega t) = -\frac{A^2}{2} [1 + \cos(2\omega t)] \]
 \[z(t) = -\frac{A^2}{2} \]
Demodulation of FSK

- FSK can be viewed as two interleaved ASK signals with carrier frequency ω_{c_0} and ω_{c_1}, respectively.
- Hence, FSK can be detected by non-coherent detection (envelope) or coherent detection technique.

![Diagram of FSK Demodulation](image-url)
Demodulation of FSK

- In (a), non-coherent detection (envelope),
 \(- H_0(\omega) \omega_{c_0} \)
 Turned to respectively
 \(- H_1(\omega) \omega_{c_1} \)

- Comparison: above or bottom
 Whose output is large \(\Rightarrow 0 \) or \(1 \)