Signal and System

• Signal: A signal is defined as the time history of some quantity, usually a voltage or current.
 – Deterministic Signals
 – Random Signals

• System: A system is a combination of devices and networks (subsystems) chosen to perform a desired function.
Signal Models

• **Deterministic Signals** are modeled as completely specified functions of time.

• Examples:

 - \(x(t) = A \cos(\omega_0 t), -\infty < t < \infty \)
 - Sinusoidal

 • \(A \): magnitude
 • \(\omega_0 \): angular frequency

 - \(x(t) = \begin{cases}
 1 & |t| < \frac{1}{2} \\
 0 & \text{otherwise}
 \end{cases} \)
 - unit rectangular pulse function
 - denoted by \(\Pi(t) \)

Signal Models…

• **Random signals** are signals that take on random values at any given time instant and must be modeled probabilistically.

• Example → Figure in the next slide

 a) A sinusoidal signal – deterministic

 b) Unit rectangular pulse signal – deterministic

 c) A random signal (its one sample function)
Signal Models…

- **Periodic signals** A signal $x(t)$ is periodic if

 $$x(t + T_0) = x(t), -\infty < t < \infty$$

 where the constant T_0 is a period. (deterministic)

- **Fundamental period** The smallest period is referred to as fundamental period.

- **Aperiodic signals** Any signal not satisfying

 $$x(t + T_0) = x(t) \quad \forall t$$

 is called aperiodic.
Signal Models…

• **Rotating phasor** A useful tool to deal with sinusoidal quantities.
 - A rotating phasor: \(\bar{x}(t) = Ae^{j(\omega_0 t + \theta)} \quad -\infty < t < \infty \)
 - Three parameters:
 • A: amplitude
 • \(\theta \): phase (in radians)
 • \(\omega_0 \): frequency (in radians per sec)

• Phasor: \(Ae^{j\theta} \) where \(e^{j\omega_0 t} \) is implicit.

\[
\bar{x}(t) = \bar{x}(t + T_0), \quad T_0 = \frac{2\pi}{\omega_0}
\]

\[\therefore \bar{x}(t + T_0) = Ae^{j[\omega_0 (t + T_0) + \theta]} \]

\[
= A\cos \left[\omega_0 (t + \frac{2\pi}{\omega_0}) + \theta \right] + jA\sin \left[\omega_0 (t + \frac{2\pi}{\omega_0}) + \theta \right]
\]

\[= A\cos(\omega_0 t + \theta) + j \sin(\omega_0 t + \theta) \]

\[= Ae^{j(\omega_0 + \theta)} = \bar{x}(t) \]
Signal Classifications: Energy and Power

- Power and Energy

- \(p(t) = x^2(t) : \) power

 It is “normal” power (with \(1\Omega \) impedance).

- Higher-energy signals are detected more reliably with fewer errors than lower energy signals.

Signal’s Energy and Power: Definition

Let \(x(t) \) be an arbitrary signal (possibly complex function).

- Its **total energy** is:

 \[
 E = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt
 \]

- Its **average power** is:

 \[
 P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt
 \]
Energy signal vs. Power signal

• The function $x(t)$ is an **energy signal** iff
 \[0 < E < \infty \]
 (Hence $P = 0$, because of having non-zero and finite energy.)

• The function $x(t)$ is a **power signal** iff
 \[0 < P < \infty \]
 (Thus $E = \infty$, because of having non-zero and finite power.)

For a periodic signal $x_p(t)$

\[
P = \frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |x_p(t)|^2 \, dt \quad T_0 \text{ is the period.}
\]

• No need to carry out the limiting operation to find P for a periodic signal.

• Energy and power classifications are mutually exclusive.
 1. An energy signal must have zero average power, \(\Rightarrow \) not a power signal.
 2. A power signal must have infinite energy, \(\Rightarrow \) not an energy signal

• There are some signals: neither energy nor power signals. (The ramp signal is such an example.)
Example 1

• Refer to a figure about unit step function.

\[x(t) = Ae^{-\alpha t}u(t) \]

\[\alpha > 0 \quad u(t) = \begin{cases} 1 & t \geq 0 \\ 0 & t < 0 \end{cases} \]

\[E = \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 \, dt = \int_{0}^{\infty} \frac{A^2}{e^{2\alpha t}} \, dt \]

\[= A^2 \frac{e^{2\alpha t}}{-2\alpha} \bigg|_{0}^{\infty} = A^2 \frac{e^{-2\alpha t}}{2\alpha} \bigg|_{0}^{\infty} = \frac{A^2}{2\alpha} \]

\[\Rightarrow x(t) \text{ is an energy signal.} \]

• If \(\alpha \to 0, x(t) = Au(t) \), \(\Rightarrow \) infinite energy.

\[P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 \, dt \]

\[= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} A^2 \, dt = \frac{1}{2} A^2 \]

• Final power.

• It is a power signal
Example 2

• Refer to figure shown before.

\[x_p(t) = A \cos(\omega_0 t + \theta) \]

a sinusoidal signal

infinite energy

\[P = \frac{1}{T_0} \int_{\theta_0}^{\theta_0 + T_0} A^2 \cos^2(\omega_0 t + \theta) \, dt \]

\[= \frac{1}{T_0} \int_{\theta_0}^{\theta_0} \frac{A^2}{2} [1 + \cos 2(\omega_0 t + \theta)] \, dt \]

\[= \frac{A^2}{2} \]

It is a power signal.

• A frequently used skill:

\[\int_{\theta_0}^{\theta_0} \cos[2(\omega_0 t + \theta)] \, dt = 0 \]

\[\therefore \frac{2\pi}{2\omega_0} = \frac{\pi}{\omega_0} = \frac{\pi}{2\pi} = \frac{T_0}{2} \]

• That is, period of \(\cos[2(\omega_0 t + \theta)] \) becomes half.

• Integration of a sinusoid within an integral number of periods is zero.
Energy Spectral Density (ESD)

1. **Derivation**

 Total Energy:

 $$E = \int_{-\infty}^{\infty} |x(t)|^2 dt$$

 $$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} X(f)e^{j2\pi f t} \right] x^*(t) dt$$

 $$= \int_{-\infty}^{\infty} X(f) \left[\int_{-\infty}^{\infty} x^*(t)e^{j2\pi f t} dt \right] df$$

 $$= \int_{-\infty}^{\infty} X(f) X^*(f) df = \int_{-\infty}^{\infty} |X(f)|^2 df = \int_{-\infty}^{\infty} \xi_x(f) df$$

2. **Definition**

 Energy spectral density of a signal $x(t)$.

 $$\xi_x(f) = |X(f)|^2$$

 $$E = \int_{-\infty}^{\infty} \xi_x(f) df = 2\int_{0}^{\infty} \xi_x(f) df$$
3. Unit

\[X(f) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt \]

\[|X(f)|^2 : (\text{volts} - \text{seconds})^2 \]

\[\therefore \quad \text{On a per ohm basis for total energy & average power} \]

\[(\text{volts} - \text{seconds})^2 \Rightarrow \frac{(\text{volts})^2}{\text{ohm}} \cdot (\text{seconds})^2 \]

\[= \frac{\text{watts} \cdot \text{seconds}}{\text{hertz}} \cdot \left(\frac{1}{\text{hertz}} = \text{second} \right) \]

\[= \text{joules} / \text{hertz} \]

It is the Energy Density.

4. Comment 1. (Parseval’s Theorem)
(Rayleigh’s Energy Theorem)

\[E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df \]

Comment 2.
\[\xi_s(f) \] is energy spectral density.

\[\therefore \int_{-\infty}^{\infty} \xi_s(f) df = E \]
Power Spectral Density (PSD)

1. Consider $x(t)$ as a real-valued power signal, then its average power is

$$P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x^2(t) dt$$

This is similar to definition given before (slide 10) except that the absolute value sign has been removed.

PSD…

2. If $x(t)$ is a periodic signal with period T_0, then its average power is

$$P_x = \frac{1}{T_0} \int_{\frac{T_0}{2}}^{\frac{T_0}{2}} x^2(t) dt$$

$$P_x = \frac{1}{T_0} \int_{\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \cdot x^*(t) dt$$

$$= \sum_{n=-\infty}^{\infty} |X_n|^2$$

where X_n is Fourier series (FS) coefficient of $x(t)$.
PSD…

• This can be proved by using FS of x(t).
• Loosely speaking,

\[x(t) = \sum_{n=-\infty}^{\infty} X_n \exp \left(\frac{j2\pi nt}{T_0} \right) \]

\[x'(t) = \sum_{n=-\infty}^{\infty} X_n' \exp \left(-\frac{j2\pi n't}{T_0} \right) \]

All cross-product terms \(\Rightarrow 0 \), except as \(n = n' \),

due to orthogonality of complex exponential function, thus leading to \(\sum_n |X_n|^2 \).

PSD…

3. Define PSD of a periodic function \(x(t) \) as:

\[PSD_x(f) = \sum_{n=-\infty}^{\infty} |X_n|^2 \delta(f - nf_0) \]

• Recall that a periodic function has line spectra.

\[X(f) = \sum_{n=-\infty}^{\infty} X_n \delta(f - f_0n) \]
• Then

\[
P_x = \int_{-\infty}^{\infty} PSD_x(f) \, df
\]

\[
= \int_{-\infty}^{\infty} \left[\sum_{n=-\infty}^{\infty} |X_n|^2 \delta(f - nf_0) \right] \, df
\]

\[
= \sum_{n=-\infty}^{\infty} |X_n|^2 \int_{-\infty}^{\infty} \delta(f - nf_0) \, df
\]

\[
= \sum_{n=-\infty}^{\infty} |X_n|^2
\]

• Hence, \(PSD_x(f) \) thus defined is, indeed, PSD.

4. For a non-periodic function \(x(t) \), we first truncate \(x(t) \) as \(x_T(t) \) in \(\left[-\frac{T}{2}, \frac{T}{2} \right] \) then find its FT: \(X_T(f) \).

It can be shown that

\[
PSD_x = \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2
\]
Summary: ESD and PSD

- ESD: \(\xi_x(f) = |X(f)|^2 \)
- PSD:
 \[
 PSD_x(f) = \sum_{n=-\infty}^{\infty} X_n^2 \delta(f - nf_0), \quad x(t) \text{ periodic}
 \]
 \[
 PSD_x(f) = \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2, \quad x(t) \text{ non-periodic}
 \]
 \[
 X(f) = FT\{x(t)\}
 X_n = FS \text{ coefficient of } x(t)
 X_T(f) = FT\{x_T(t)\}
 \]

Autocorrelation

- Correlation function –
 Another approach to signal and systems.
- Autocorrelation –
 A measure of similarity (matching) of a signal with its delayed version.
Autocorrelation of an Energy Signal

• Definition

\[R_x(\tau) = \Delta \int_{-\infty}^{\infty} x(t) x(t + \tau) dt, -\infty < \tau < \infty \]

• A measure of how closely the signal \(x(t) \) matches a copy of itself as the copy is shifted \(\tau \) units in time

• The larger the more correlated.

Properties:

1. \(R_x(\tau) = R_x(-\tau) \) symmetrical in \(\tau \) about \(\tau = 0 \)

2. \(R_x(\tau) \leq R_x(0) \forall \tau \) maximum value of \(R(\tau) \) occurs at \(\tau = 0 \)

3. \(R_x(\tau) \leftrightarrow \xi_x(f) = ESD_x \) an important FT pair

4. \[R_x(0) = \int_{-\infty}^{\infty} x^2(t) dt = E_X \] (energy)
Autocorrelation of a Power Signal

• Definition

\[
R_x(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t + \tau) \, dt, -\infty < \tau < \infty
\]

or \(\langle x(t) x(t + \tau) \rangle \)

• For a periodic signal \(x(t) \) with period \(T_0 \)

\[
R_x(\tau) = \frac{1}{T_0} \int_{T_0}^{2T_0} \int_{T_0}^{2T_0} x(t) x(t + \tau) \, dt, -\infty < \tau < \infty
\]

• Properties \(R_x(\tau) \) of a real-valued periodic signal \(x(t) \):

1. \(R_x(\tau) = R_x(-\tau) \) even symmetry

2. \(R_x(\tau) \leq R_x(0), \ \forall \ \tau \) maximum value

3. \(R_x(\tau) \leftrightarrow PSD_x(f) \) an important FT pair

4. \(R_x(0) = \frac{1}{T_0} \int_{T_0}^{2T_0} x^2(t) \, dt \) average power
Random Signals

- Random experiment: E
- Outcome of r.e.: ξ
- Sample space: S
- Definition of probability
- Axioms of probability
- Random event: A
- Random variable (r.v.): X(A)
 a function of A, a real number,
 (numerical attribute)

Random Signals

CDF

- **CDF** Cumulative Distribution Function

\[F_X(x) = P(X \leq x) \]

- Properties:
 1. \(0 \leq F_X(x) \leq 1 \)
 2. \(F_X(x_1) \leq F_X(x_2), \quad \text{if} \quad x_1 \leq x_2 \)
 3. \(F_X(-\infty) = 0 \)
 4. \(F_X(+\infty) = 1 \)
 5. \(F_X(x) \) continuous from the right
Random Signals

PDF

- **PDF**

 \[f_X(x) = \frac{dF_X(x)}{dx} \]

 \[P(x_1 \leq X \leq x_2) = P(X \leq x_2) - P(X \leq x_1) \]

 \[= F_X(x_2) - F_X(x_1) \]

 \[= \int_{x_1}^{x_2} f_X(x) \, dx \]

- **Properties**

 1. \(f_X(x) \geq 0 \)

 2. \[\int_{-\infty}^{\infty} f_X(x) \, dx = F_X(\infty) - F_X(-\infty) = 1 \]

For discrete r.v.’s, instead of \(f_X(f) \), we often use \(P(X = x_i) \)

\[\rightarrow \text{probability mass function (PMF)} \]

- **Strictly speaking**

\[
\begin{cases}
 f_X(x) = \sum_i P(X = x_i) \delta(x - x_i) & \text{pdf of discrete r.v.} \\
 \forall i; x_i < x \\
 F_X(x) = \sum_i P(X = x_i) u(x - x_i) & \text{cdf of discrete r.v.}
\end{cases}
\]
Ensemble Average (statistical average)

• Numerical attributes of r.v.

 – Mean value, m_X (expected value)
 \[m_X = E(X) = \int_{-\infty}^{\infty} xf_X(x)dx \]

 – n^{th} moment
 \[E(X^n) = \int_{-\infty}^{\infty} x^n f_X(x)dx \]

 \[
 \begin{align*}
 n = 1, & \text{ mean value of } X, \text{ mean} \\
 n = 2, & \text{ mean-square value of } X \\
 n = 3, & \text{ } \\
 n = 4, & \text{ } \\
 \end{align*}
 \]

very important (this and next slides)

Ensemble Average (statistical average)…

– Central moment
 \[E[(X - m_X)^n] = \int_{-\infty}^{\infty} (x - m_X)^n f_X(x)dx \]

1\text{st} central moment: 0
2\text{nd} central moment: \[E[(X - m_X)^2] = \text{var}(X) = \sigma_X^2 \]

Important formula: \[\sigma_X^2 = E[X^2] - m_X^2 \] variance
3\text{rd} central moment: skewness of pdf
4\text{th} central moment: kurtosis of pdf
Random Process (r.p.)

- $X(A, t)$
 A: random event
 t: time

- a larger set
- a collection of r.v.’s
- or, a collection of random sample function
- often simplified as $X(t)$

Figure 8.1-1 from <Probability, Random Processes, and Estimation Theory for Engineers> by Stark & Woods 1994
• For a specified event A_j, $X(A_j, t) = X_j(t)$, a sample function

• For a specified time t_k, $X(A, t_k) = X_k$, a r.v.

• For specific A_j, t_k, $X(A_j, t_k) = a$ real value

Statistical Average of a r.p.

• A r.p. should be completely characterized by pdf of all r.v.’s. This is difficult.

• Hence, numerical characterization used often.

• A partial description:

 \{
 \begin{align*}
 & \text{mean function } (\text{1st order}) \\
 & \text{autocorrelation function } (\text{2nd order})
 \end{align*}
 \}

 \begin{align*}
 E[X(t_k)] &= \int_{-\infty}^{\infty} x f_{X_k}(x) dx = m_X(t_k) \\
 R_X(t_1, t_2) &= E[X(t_1) \cdot X(t_2)]
 \end{align*}
Stationarity

- **S.S.S. (Strict Sense Stationary)**
 A r.p. $X(t)$ is SSS if none of its statistics are affected by a shift in the time origin.

- **W.S.S. (Wide Sense Stationary)**
 A r.p. $X(t)$ is WSS if its mean and autocorrelation function do not vary with a shift in the time origin.

For a W.S.S. random process,

\[
E[X(t)] = m_x \quad \text{a constant}
\]

\[
R_x(t_1, t_2) = R_x(t_1 - t_2) \quad \text{only a function of } t_1 - t_2
\]

- **Relation between SSS and WSS**

 \[
 \text{SSS} \quad \rightarrow \quad \text{WSS}\n \]

 \[
 \text{WSS} \quad \leftrightarrow \quad \text{not necessarily}
 \]
Autocorrelation of a WSS r.p.

- Let $\tau = t_1 - t_2$
 \[R_x(\tau) = E[X(t)X(t + \tau)], \quad -\infty < \tau < \infty \]
- $R_x(\tau)$ gives us an idea of the frequency response
- If $R_x(\tau)$ changes slowly as τ changes, then $X(t)$ has more low frequency components; otherwise, it has more high frequency comp.
- Four similar properties of $R_x(\tau)$ to that of autocorrelation of an energy (power) signal.

Time Average & Ergodicity

- To compute m_X and $R_x(\tau)$ needs to have $f_X(x)$ for all x, sometimes not possible, \(\Rightarrow\) prefer the time average
- Time average over a single sample function of the r.p.:
 \[
 \langle X(t) \rangle \quad \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t)dt \\
 \langle X(t)X(t + \tau) \rangle \quad \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} X(t)X(t + \tau)dt
 \]
 \[
 \left\{ \begin{array}{l}
 \text{always possible}
 \end{array} \right.
 \]
• An ergodic r.p.:
 \[m_X(t) = \langle X(t) \rangle \]
 \[R_X(\tau) = \langle X(t)X(t+\tau) \rangle \]

 \[\rightarrow \]
 \[\text{ergodicity} \quad \nleftrightarrow \quad \text{SSS} \]
 \[\text{not necessarily} \]

• A r.p. is ergodic in the mean, if
 \[m_X = \langle X(t) \rangle \]

• A r.p. is ergodic in the autocorrelation function if
 \[R_X(\tau) = \langle X(t)X(t+\tau) \rangle \]

A reasonable assumption in the analysis of most communication signals (in the absence of transient effects) is that random waveforms are ergodic in the mean and autocorrelation function.

• For ergodic r.p., time averages = statistical (ensemble) averages
some observations:
• $m_x = \text{dc levels of the signal}$
• $m_x^2 = \text{normalized power of dc component}$
• $E[X^2] = \text{total average normalized power}$
• $\sqrt{E[X^2]} = \text{root-mean-square (rms) value of } X$
• $\sigma_x^2 = \text{average normalized power in ac component}$
• If $m_x = 0$, $\sigma_x^2 = \text{mean-square value of } X \text{ or total power}$
• $\sigma_x = \text{rms of ac component}$
• If $m_x = 0$, $\sigma_x = \text{rms of the signal}$

PSD of a Random Process

• A r.p. $X(t)$ can generally be considered as a power signal.

• $PSD_X(f)$:
 $$PSD = \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2$$

 $x(t) \rightarrow x_T(t) \quad \text{as} \quad t \in \left(-\frac{T}{2}, \frac{T}{2}\right) \leftrightarrow X_T(f)$

• Useful in communication systems: Indicates the distribution of a signal’s power in frequency domain.
PSD of a Random Process…

- **Properties:**
 1. $PSD_x(f) \geq 0$ nonnegative real-valued
 2. $PSD_x(f) = PSD_x(- f)$ if $X(t)$ is real-valued
 3. $R_x(\tau) \leftrightarrow PSD_x(f)$
 4. $P_x = \int_{-\infty}^{\infty} PSD_x(f) df$

Noise in Communication Systems

- **Noise:** Unwanted electrical signals always present in electrical system

 Man-made Noise: switching transients, spark-plug ignition

 Natural Noise: thermal (always exists)

 Gaussian noise (central limit theorem (slide 54))
Normalized Gaussian pdf

- \(m = 0 \)
- \(\sigma^2 = 1 \)

\[
f(n) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{n}{\sigma} \right)^2 \right]
\]

Gaussian Noise

- A random signal \(z = a + n \)
 - \(a \): deterministic component of the signal
 - \(n \): additive random noise

\[
f(z) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{z-a}{\sigma} \right)^2 \right]
\]

- Gaussian distribution is extremely important in practice due to the central limit theorem
- The theorem: The probability distribution of the sum of \(j \) statistically independent r.v.’s approaches the Gaussian distribution as \(j \to \infty \), no matter what the individual distribution functions may be.
White Noise

- **Def.**

 - “White” comes from the fact that white light contains equal amounts of all frequencies within the visible band of electromagnetic radiation

- **Autocorrelation function**

 \[R_n(\tau) = FT^{-1}\{PSD_x(f)\} = FT^{-1}\left\{ \frac{N_0}{2} \right\} = \frac{N_0}{2} \delta(\tau) \]

 - \(n(t) \) is totally decorrelated from its time-shifted version for any \(\tau > 0 \)

- **Meaning:** Any two different samples of a white noise are uncorrelated no matter how close together in time they are taken.

- **Average power**

 \[P_n = \int_{-\infty}^{\infty} \frac{N_0}{2} df = \infty \]
• In practice, as long as the bandwidth of the noise is appreciably larger than that of the system, the noise can be considered to have an infinite bandwidth.

• Thermal noise:
 Additive white Gaussian Noise (AWGN)
 Very important in both theory and practice.

Signal Transmission Through Linear Systems

- x(t), h(t), y(t) --- time domain
- X(f), H(f), Y(f) --- frequency domain
- h(t): unit impulse response of the LTI system
- H(f): transfer function
• **h(t): unit impulse response**
 - \(h(t) = y(t) \) when \(x(t) = \delta(t) \)
 - \(y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = \int_{-\infty}^{\infty} x(t-\tau)h(\tau)d\tau \)

• **Causality**
 - A system is causal if there is no output prior to the time, \(t = 0 \), when the input is applied.
 - A system is causal if \(h(t) = 0, \forall t < 0 \)
 \[\Rightarrow y(t) = \int_{0}^{\infty} x(\tau)h(t-\tau)d\tau \]

• **H(f): Frequency transfer function.**
 - \(H(f) = FT\{h(t)\} \)
 - \(Y(f) = FT\{y(t)\} = FT\{x(t) * h(t)\} = X(f) \cdot H(f) \)
 - \(H(f) = \frac{Y(f)}{X(f)} \)
Frequency Response

- $H(f)$: Complex in general
 \[H(f) = |H(f)|e^{\theta(f)} \]

- Amplitude frequency response: $|H(f)|$
- Phase frequency response: $\theta(f)$

- The transfer function of a LTI system can be measured by using a sinusoidal testing signal (that is swept over the frequency of interest) since the spectrum of sinusoid is a line at the testing frequency.

- For sinusoidal input, i.e., $x(t) = A \cos(2\pi f_0 t + \phi)$
 \[y(t) = A|H(f_0)|\cos(2\pi f_0 t + \phi + \theta(f_0)) \]
Random Process & Linear Systems

- If $x(t)$: a r.p.
 $h(t)$: LTI system
 then $y(t)$: output, another r.p.
 i.e., every sample function of the input r.p.
 \rightarrow a corresponding sample function

- $PSD_x(f)$: PSD of $x(t)$
 $PSD_y(f)$: PSD of $y(t)$

$$PSD_y(f) = PSD_x(f) \cdot |H(f)|^2$$

- The relation between the power spectral density (PSD) at the input, $PSD_x(f)$, and the output, $PSD_y(f)$

$$PSD_y(f) = |H(f)|^2 \cdot PSD_x(f)$$

- The power transfer function of the LTI system

$$G_h(f) = \frac{PSD_y(f)}{PSD_x(f)} = |H(f)|^2$$

$$\therefore PSD_y(f) = \lim_{T \to \infty} \frac{1}{T} |Y_T(f)|^2$$

$$Y(f) = X(f)H(f)$$

$$PSD_x(f) = \lim_{T \to \infty} \frac{1}{T} |X_T(f)|^2$$
• If $x(t)$ is a Gaussian r.p., $h(t)$ is LTI, then $y(t)$ is also Gaussian.

• If the input to a LTI system is periodic with spectrum given by

$$X(f) = \sum_{n=-\infty}^{\infty} X_n \delta(f - n \cdot f_0)$$

where \(\{X_n\} \) is the complex exponential FS coefficients of the input signal, then the output signal’s spectrum is

$$Y(f) = \sum_{n=-\infty}^{\infty} X_n H(nf_0) \delta(f - n \cdot f_0)$$

RC Low-Pass Filter

• Example 3-1

\[x(t) = R \ i(t) + y(t) \]

\[\therefore i(t) = C \frac{dy(t)}{dt} \implies RC \frac{dy(t)}{dt} + y(t) = x(t) \]

From the FT property of the differentiation,

\[\implies RC(\ j2\pi f \)Y(f) + Y(f) = X(f) \]
Distortionless Transmission

• What is an ideal transmission line?

• In time domain
 – Some time delay is allowed \((y(t) \text{ vs. } x(t))\)
 – A scale change in magnitude is allowed

\[y(t) = K x(t-t_0) \quad K: \text{ scale change} \quad t_0: \text{ time delay} \]
• In frequency domain

\[Y(f) = K \cdot X(f) e^{-j2\pi ft_0} \]

i.e., \[H(f) = K e^{-j2\pi ft_0} \]

- \[|H(f)| = K \] constant magnitude change \(\forall f \)
- \[\theta(f) = \angle H(f) = -2\pi ft_0 \]

\[t_0 = \frac{-\theta(f)}{2\pi f} \]

\(t_0 \) needs to be fixed.

→ Phase shift must be proportional to frequency in order for the time delay of all components to be identical, i.e.,

phase delay \(\theta \propto f \)

“Equalization”: phase or amplitude correction network

Ideal Filters

- One cannot build the ideal network described above since it implies an infinite bandwidth capability (Sklar’s, page 33).

- An approximation to the ideal infinite-bandwidth network is to use a truncating network that passes all freq. components between \(f_l \) and \(f_u \) without distortion, where \(f_l \) and \(f_u \) are the lower and upper cutoff frequency, respectively.

- Ideal BPF
 - LPF
 - HPF
• Take a look at ILPF

$$H(f) = |H(f)|e^{-j\theta(f)}$$

$$|H(f)| = \begin{cases} 1 & \text{for } |f| < f_u \\ 0 & \text{for } |f| \geq f_u \end{cases}$$

$$e^{-j\theta(f)} = e^{-j2\pi f_0}$$
$$h(t) = FT^{-1}\{H(f)\} = \int_{-\infty}^{\infty} H(f)e^{-j2\pi ft} df$$

$$= \int_{-\frac{f_u}{2}}^{\frac{f_u}{2}} e^{-j2\pi f t_0} e^{j2\pi ft} df$$

$$= \int_{-\frac{f_u}{2}}^{\frac{f_u}{2}} e^{j2\pi f(t-t_0)} df$$

$$= 2f_u \frac{\sin [2\pi f_u (t-t_0)]}{2\pi f_u (t-t_0)}$$

$$= 2f_u \text{Sinc} [2\pi f_u (t-t_0)]$$

Unit Impulse Response of ILPF
Effect of an ILPF on White Noise

- Example 1.2.

\[
PSD_n(f) = \frac{N_0}{2}, \quad PSD_Y(f) = ?, \quad R_Y(\tau) = ?
\]

- Solution:

\[
PSD_Y(f) = PSD_n(f) |H(f)|^2
\]

\[
= \begin{cases}
\frac{N_0}{2} & \text{for } |f| < f_u \\
0 & \text{otherwise}
\end{cases}
\]

\[
R_Y(\tau) = FT^{-1} \{ PSD_Y(f) \}
\]

\[
= 2 \cdot f_u \cdot \frac{N_0}{2} \cdot \text{sinc} \left(\frac{2f_u}{\text{area of } PSD_Y} \right) \cdot \text{width of } PSD_Y(f) \cdot \frac{1}{2f_u} \cdot \text{1st zero crossing}
\]

After LPF, is it white noise or not?

Not a white noise anymore
Realizable Filters

- **RC LPF:**

 ![RC LPF Circuit Diagram]

- **RC filter (frequency analysis of sinusoidal circuits)**

 \[
 \frac{V_{\text{out}}}{V_{\text{input}}} = \frac{1}{j 2 \pi f_c} \frac{1}{R + \frac{1}{j 2 \pi f_c}} = \frac{1}{1 + j 2 \pi f R_c}
 \]

\[
|H(f)| = \frac{1}{\sqrt{1 + (2\pi f R_c)^2}}
\]

\[
\theta(f) = -\tan^{-1}(2\pi f R_c)
\]

![Amplitude and Phase Responses](image-url)
• Consider R = 1, i.e., the normalized case.

\[P = \frac{V^2}{R} = V^2 \]

\[\frac{V_2}{V_1} = \frac{\sqrt{2}}{2} \Rightarrow \frac{V_2^2}{V_1^2} = \frac{1}{2}, \quad \frac{P_2}{P_1} = \frac{1}{2} \]

\[\frac{V_2}{V_1} = 0.707 \Leftrightarrow \frac{P_2}{P_1} = \frac{1}{2} \quad \text{half-power} \]

• No. of dB

\[10\log_{10} \left(\frac{P_2}{P_1} \right) = 10\log_{10} \left(\frac{1}{2} \right) = -10 \cdot 0.3010 = -3\text{dB} \]

• Hence, half-power \(\Leftrightarrow -3\text{dB} \)

Effect of an RC filter on white noise

• Example 1.3

\[G_n = \frac{N_0}{2} \]

\[G_s(f) = G_n(f) \cdot |H(f)|^2 = \frac{N_0}{2} \cdot \frac{1}{1 + (2\pi f Rc)^2} \]

\[R_s(\tau) = F^{-1} \{ G_s(f) \} = \frac{N_0}{4Rc} \exp\left(\frac{-|\tau|}{Rc} \right) \text{ exponential function} \]

When input is white noise, output of the RC filter: Not white noise anymore
Several Useful Realizable Filters

- Butterworth filter (most flat one in passband)
- Chebychev filter Ripple in passband smaller variation in stopband
- For pass-band and stop-band refer to the figure on slide 82

Butterworth Low Pass Filter

\[|H_n(f)| = \frac{1}{\sqrt{1 + \left(\frac{f}{f_u}\right)^{2n}}}, n \geq 1 \]

\(f_u \), or \(f_c \) called corner frequency

\(n \rightarrow \infty, H_n(f) \rightarrow ILPF \)
Butterworth Amplitude Response

Signals, Circuits & Spectra

• Input signal $x(t)$, its spectrum $|X(f)|$
 \[\text{rect}(t) \quad |\text{sinc}(f)| \quad \text{e.g.} \]
• Circuit, RC circuit, $|H(f)|$, $\theta(f)$
• Output $y(t)$, $|Y(f)|$
• Case 1: Output bandwidth is constrained by input signal bandwidth,
 i.e., $H(f)$ is wideband.
• Case 2: Output bandwidth is constrained by filter bandwidth,
 i.e., $H(f)$ is narrowband.
Bandwidth of Digital Data

- Baseband vs. Bandpass
 - Double sideband (DSB) modulation
 - $x(t)$ signal (low-pass or baseband signal)
 - $|X(f)|$ spectrum, $0 - f_m$: baseband bandwidth
 - DSB modulated signal
 - $x_c(t) = x(t) \cos(2\pi f_c t), f_c \geq f_m$
 - Baseband signal $x(t) \rightarrow \otimes \rightarrow x_c(t)$ DSB modulated signal
 \uparrow
 - $\cos(2\pi f_c t)$ local oscillator (LO) carrier
\[X_c(f) = \frac{1}{2} \left[X(f - f_c) + X(f + f_c) \right] \]

\[
\therefore F\{\cos(2\pi f_c t)\} = \frac{1}{2} \left[\delta(f - f_c) + \delta(f + f_c) \right]
\]

and convolution of a normal factor with a \(\delta\) function.