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Abstract

We consider mass-constrained minimizers for a class of non-convex energy functionals
involving a double-well potential. Based upon global quadratic lower bounds to the en-
ergy, we introduce a simple strategy to find sufficient conditions on a given critical point
(metastable state) to be a global minimizer. We show that this strategy works well for the
one exact and known metastable state: the constant state. In doing so, we numerically
derive an almost optimal lower bound for both the order-disorder transition curve of the
Ohta-Kawasaki energy and the liquid-solid interface of the Phase-Field Crystal energy. We
discuss how this strategy extends to non-constant computed metastable states, and the re-
sulting symmetry issues which one must overcome. We give a preliminary analysis of these
symmetry issues by addressing the global optimality of a computed lamellar structure for
the Ohta-Kawasaki energy in one (1D) and two (2D) space dimensions. We also consider
global optimality of a non-constant state for a spatially in-homogenous perturbation of the
2D Ohta-Kawasaki energy. Finally we use one of our simple quadratic lower bounds to
rigorously prove that for certain values of the Ohta-Kawasaki parameter and aspect ratio
of an asymmetric torus, any global minimizer v(x) for the 1D problem is automatically a
global minimizer for the 2D problem on the asymmetric torus.

Keywords: Global minimizers, non-convex energy, double-well potential, metastable state,
convex/quadratic lower bound, Ohta-Kawasaki functional, phase-field crystal functional.

AMS Subject Classifications: 49M30, 49S05.

1 Introduction

Pattern formation in complex systems (both physical and biological) has attracted much at-
tention in applied mathematics and condensed matter physics. A classical viewpoint, emerging
from ideas of Turing, has been that pattern formation outside of thermal equilibrium can be
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captured via bifurcations off a homogeneous (thermal equilibrium) state, wherein patterns are
classified according to linear instabilities of the homogeneous state (cf. [9]). On the other
hand, in systems which are driven out of thermal equilibrium it is often the case that there
is some non-convex energy functional associated with the phenomenon, and the PDE mod-
els used are indeed variational; that is, they represent a gradient flow (with respect to some
metric) of a postulated “energy”. We call such systems energy-driven, and often periodic
pattern formation is a direct consequence of the competition between different terms in the
energy [22, 16].

In this article, we address a ubiquitous class of non-convex functionals associated with
energy-driven pattern formation, focusing on two paradigms: the Ohta-Kawasaki energy [20]
used to model self-assembly of diblock copolymers, and a variant of the Swift-Hohenberg energy
[23, 9, 12] used in phase-field crystal modeling. These functionals and the associated variational
problems are defined for order parameters u with fixed relative average m ∈ (−1, 1) (conserved
“mass”). They share the following common features:

• They are based upon a double-well potential regularized with higher order terms. As such
they may be viewed as offsprings of the ubiquitous Ginzburg-Landau functional. The
wells represent two preferred states (phases) of the order parameter u. Energetically,
the additive regularization prefers pure phases – regions of space wherein u is essentially
constant.

• They also contain a term which competes energetically with the regularization, favoring
modulations (oscillations) of the order parameter u. This competition is responsible for
periodic pattern formation, that is, minimizers tend to be periodic on an intrinsic scale.
In addition to the mass parameter m, a parameter denoted here by γ (or ε) weighs the
relative importance of the different terms. Together, these two parameters control the
pattern morphology of minimizers.

• The constant state u ≡ m remains a critical point for all values of γ (resp. ε).

• For most points in the γ (resp. ε) vs. m phase plane, the associated energy landscape is
highly non-convex with a tremendous number of critical points and local minimizers
around which the energy landscape is relatively “flat”.

This last feature presents many difficulties in computing local and global minimizers. In
particular, a gradient flow starting from any given state (for example, a random state) may
appear to converge to a state which is not a local minimizer. Using gradient dynamics alone,
one cannot distinguish between stable and unstable critical points, since they are both identified
as solutions for which the relative change in the order parameter or the energy between time-
steps is smaller than some tolerance level. We call such states metastable. These include
states which are sufficiently “near” to local minimizers that the gradient dynamics are so slow
that solutions appear to be stable. This sort of dynamic metastability can be misleading in
the sense that after a long time, the solution undergoes drastic change. Techniques for dealing
with metastability and highly non-convex energy landscapes often belong to the broad class
of statistical methods which include techniques of simulated annealing. They were created to
navigate through a complex energy landscape, surpassing energy barriers in search of a global
minimizer. An example of such a technique is spectral weighting or spectral projection ([5]).
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Figure 1: Metastable states associated with the gradient flow of the Ohta-Kawasaki (OK) func-
tional with m = 0.25, γ = 10. The first result (hexagonally packed spots) has the lowest energy
per unit area and we believe it represents a depiction of the ground state. The energy densities
of the states are (l-r) top row 0.1218, 0.1234, 0.1263 and bottom row 0.1239, 0.1263, 0.1265.

This technique is used in Figure 1 to show the vast array of metastable states. They show
final metastable states for simulations of the H−1 gradient flow of the (OK) functional with
m = 0.25, γ = 10. In each case, we start with random initial data but use several iterations of
spectral projection to push the flow into a metastable state. Figure 2 shows another metastable
state resulting from straight gradient flow with random initial conditions. While this structure
exhibits defects and a lack of symmetry, it is not clear as to the type of metastable state, e.g.
dynamically metastable or local minimizer. Note that the hexagonally packed spots in Figure
1 have the lowest energy per unit area and we believe this represents a depiction of the ground
state.

Clearly if one wants to address the energy landscape of a non-convex functional with a
goal of describing global minimizers throughout the phase plane, neither the local analysis
around critical points, nor the solution of a gradient flow from any given state, is sufficient.
Moreover, in contrast to 2D pattern formation where simple stripes and spots form the basis
of the overriding patterns, the analogous class of metastable and minimizing patterns in 3D is
far more complex, and any sort of classification is as yet unclear. Thus, studying 3D pattern
formation from purely the PDE point of view is unproductive without guidance from the overall
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Figure 2: A metastable state obtained by running a gradient flow starting with random initial
conditions. Here m = 0.25, γ = 10 while the relatively high energy density is 0.1290. Note
that the state exhibits defects and a lack of symmetry.

energy landscape. A long term goal is to exploit the structure of the energy functional to

• develop verification strategies (based upon sufficient conditions) for determining whether
or not a computed steady state is a global minimizer;

• develop and explore tools of simulated annealing for navigating through the non-convex
energy landscape in order to access low energy states.

In this article, we focus on the first goal by deriving global quadratic lower bounds to
the energy about a given metastable state. In Section 3, we consider the simplest, so-called
disordered, state associated with a constant order parameter. For any fixed m, when γ (resp.
ε) is sufficiently small, the constant state u ≡ m becomes energetically favorable. We derive a
new strategy to determine when the disordered state is the (unique) global minimizer. More
precisely, we find a lower bound on the order-disorder curve (ODT) in the phase plane which is
simply the curve below which the disordered state is the unique global minimizer. Note that a
standard (local) technique pertaining to the ODT (or in fact any phase transition) is via linear
stability analysis ([9]). Linear stability analysis about the constant state gives an upper bound
on the true ODT, since above the linear stability curve the constant state is linearly unstable
and hence cannot possibly be a minimizer. From the point of view of global minimization this
gives little information. What does give precise information, and requires a different argument,
is a lower bound on the ODT; this is our strategy here. It is simple and based upon a very
common theme in the modern calculus of variations: Replace a non-convex variational problem
with an “suitable” convex problem which one can solve. In Sections 4 and 5, we discuss how
this strategy can be used to find sufficient conditions on non-constant computed metastable
states to be global minimizers.

Let us give a few details about our simple strategy. As we explain in the next section, the
class of non-convex variational problems considered here all take the form: Minimize

F [u] = a(u, u) +

∫
Ω

1

4
(1− u2)2 dx,
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over all u with average m in some Sobolev space. Here, a denotes a bilinear form on the Sobolev
space. We are interested in verifying whether a given critical point v is a global minimizer of
F . This amounts to showing

F [v + f ]−F [v] ≥ 0, ∀f ∈ H,

where H is the subspace of mean zero functions in the Sobolev Space. Using the fact that v is
a critical point, i.e., vanishing first variation in the sense of (4.2), we have

F [v + f ]−F [v] = a(f, f) +

∫
Ω

(
3v2

2
− 1

2

)
f2 + vf3 +

f4

4
dx. (1.1)

Using the structure of F , we now attempt to bound from below the right hand side by a
convex quadratic functional Q[f ] = Q(f, f)1. Then if the quadratic bilinear form Q is positive
semi-definite, i.e., for some C ≥ 0

Q(f, f) ≥ C

∫
Ω
f2dx,

then v will be the global minimizer for the particular choice of parameters γ (resp. ε) and m.
Note that a, and hence Q and the constant C, will depend on these parameters, and moreover,
Q will also depend on v. Thus, sufficient conditions for global minimality are transferred to
linear conditions based upon the positivity of the eigenvalues of an associated linear operator
on H. Both the structure of v and the energy functional F will be used deriving the lower
bound Q. We present two approaches:

1. The first approach is particularly simple and based upon elementary inequalities (e.g.
the Cauchy-Schwarz inequality in the L2 sense).

2. The second approach uses more information about the functional by invoking the Cauchy-
Schwarz inequality in the inner product induced by the second variation bilinear form (a
together with the quadratic terms in (1.1)).

These approaches allow us to numerically compute values for C.
As we show in Section 3, this strategy works very well for the simplest critical point,

the constant state v ≡ m. The constant state is indeed special as it remains a critical point
throughout the entire phase plane, moreover it is stable throughout a region of the phase plane.
In Section 4 and 5 we specialize to the Ohta-Kawasaki functional and address non-constant
critical points. Non-constant states are particularly important as rigorous results about global
minimizers for these are scarce (cf. [4] and the references therein). On the torus, the energy is
invariant under certain symmetry transformations, and this results in degeneracy issues for our
lower bounds. These issues require one to constrain the set of possible perturbation functions
f . In Section 4.3, we argue that a computed lamellar state in 1D is nearly optimal. In Section
4.4, we computed a lamellar state in 2D, but at present, give only a partial picture as a result

1Given the simplicity of the idea of a global convex bound, it seems likely that it has been invoked in the
past. We note that the idea has been recently used in [11] to study profiles of point defects in the Landau-de
Gennes theory of liquid crystals.
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of the larger number of symmetry transformations. However, by working on an asymmetric
rectangular torus, we show that our method is successful (Section 4.5). In Section 4.6, we
address global optimality of a computed metastable state for a perturbed functional which
includes a spatially non-symmetric potential. In Section 5, we use our first lower bound to
rigorously prove that for certain values of the Ohta-Kawasaki parameter and aspect ratio of an
asymmetric rectangular torus, any global minimizer v(x) for the 1D problem on the torus is
automatically a global minimizer for the 2D problem on the asymmetric 2D torus. Combining
this with previous work [18, 21, 25] on minimizers in 1D, we obtain a proof of the existence of
periodic, lamellar global minimizers on certain 2D domains.

Given that our strategy will reduce to linear analysis based upon a critical point, it is
important to differentiate our analysis with standard local perturbation theory which is also
based upon a linear operator about a critical point. Figure 3 illustrates the difference via a
simple non-convex finite-dimensional energy (in black). Focusing on the critical point at x = 0,
the top parabola (in blue) on the left illustrates the standard theory based upon the analysis
of an approximating convex (parabolic) function which is locally a good “fit” at x = 0. On
the other hand, the bottom parabola (in red) illustrates our approach based upon the analysis
of a convex (parabolic) lower bound to the entire energy. For this finite-dimensional case, it is
clear that one could simply choose the convex hull of the energy. In our infinite-dimensional
setting, our strategy will be to find a “good” quadratic lower bound based upon information
about the energy F .

Figure 3: Simple schematic illustrating our approach vs. the standard local approach.

We end with a few important remarks concerning our focus on global minimizers2. For any
physical application, one could certainly argue that the ground state is in fact not accessible,
and hence have reservations for a study which is focused on its structure and how to reach it.
Indeed, even if the energy has direct physical meaning most thermodynamical principles do
not dictate global energy minimization. On the other hand, global energy minimization has
often proved to be a convenient postulate for gaining insight into a variety of phenomena. In
the current situation, without guidance from the energy one would have no way of weeding out
“non-desirable” (non-physical) metastable states; this is particularly pertinent in 3D where

2We must acknowledge that there are interesting phenomena at the level of critical points to Swift-Hohenberg-
type energies. Of particular interest here are localized patterns (see for example [2]). There is also work on
localized patterns for the Ohta-Kawasaki energy ([14]).
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the number and complexity of metastable states is considerably higher. Thus, even if a global
minimizer is not the eventual goal, strategies for navigating the energy landscape to achieve
states of lower energy are of fundamental importance, and any results or methods which give
insight into the overall energy landscape should prove fruitful. Moreover, we remind the reader
that while much work is concerned with the dynamics to a metastable state (cf. [10]), these
notions of dynamics are based upon a gradient flow which is a priori not well-defined; in fact,
a gradient flow involves a choice of a metric, and based upon notions of entropy dissipation,
one can debate the appropriateness of using different metrics. While the L2 metric is often
used without question, it has recently been shown that the Wasserstein metric is a natural
metric for the variational interpretation of many time-dependent PDEs (cf. [15, 1]). For our
class of mass-constrained problems, it is convenient to compute the gradient in the Hilbert
space H−1. Physicists call this the diffusive dynamics. For certain problems, e.g. the standard
Cahn-Hilliard problem, the H−1 dynamics can be directly justified on purely physical grounds
[3]. However, for other problems, for example the Ohta-Kawasaki energy, no such justification
exists.

2 The Common Structure of the Energy Functionals

We begin with some notation. Throughout this article, Ω denotes a flat torus in Rn (usually
n = 2 or 3). In other words, we invoke periodic boundary conditions throughout. We denote
the average of any function φ on Ω by

φ := −
∫

Ω
φ(x) dx =

1

|Ω|

∫
Ω
φ(x) dx.

When we do not average we use the notation

〈φ〉 :=

∫
Ω
φ(x) dx.

We denote the L2 inner product and norm of functions u and v in L2(Ω) by

〈u, v〉 :=

∫
Ω
u(x)v(x) dx, ‖u‖ := 〈u, u〉.

Our functionals will be defined over functions in the Sobolev Space Hk(Ω), k = 1, 2 with
fixed average. The choice of k depends on the precise functional with k = 1 and 2 respectively
for the Ohta-Kawasaki and Phase-Field Crystal functionals. Perturbation functions will have
mean zero, and hence we will often work in the Hilbert space

H :=

{
f ∈ Hk(Ω)

∣∣∣∣ f = 0

}
, with either k = 1 or k = 2.

We will also use a version of the H−1 norm on functions in L2(Ω) with mean zero. To this
end, if u ∈ L2(Ω) with 〈u〉 = 0, then we define

‖u‖2H−1(Ω) := ‖∇(−4)−1u‖2.
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That is,

‖u‖2H−1(Ω) =

∫
Ω
|∇v2| dx where −4v = u in Ω.

Note that this norm is simply the dual norm to H1 with respect to the L2 pairing. That is,

‖u‖H−1(Ω) = sup
v∈H1(Ω)

〈u, v〉
‖∇v‖L2(Ω)

. (2.1)

We consider functionals of the following form:

F [u] = a(u, u) +

∫
Ω

1

4
(1− u2)2 dx (2.2)

defined over functions u ∈ Hk(Ω) with average u = m, for some fixed −1 < m < 1. Since a
constant plays no role in the minimization, we can equivalently write (2.2) as

F [u] = a(u, u) +

∫
Ω

u4

4
− u2

2
dx. (2.3)

Here a represents a bilinear form on Hk(Ω), for some appropriate choice of k ≥ 1. Func-
tionals (2.2) arise in different physical problems, for example, in phase transitions in complex
fluids, self-assembly of block copolymers, superconductivity, etc. Two specific examples are
an appropriately rescaled version of the Ohta-Kawasaki functional for self-assembly of diblock
copolymers (see [20, 6]) and a variant of the Swift-Hohenberg energy [23].

• The Ohta-Kawasaki functional, defined over

Hm := m+H =

{
u ∈ H1(Ω)

∣∣∣∣u = m

}
,

is given by

(OK) F1[u] :=

∫
Ω

1

2
γ−2|∇u|2 +

1

2
|∇(−∆)−1(u−m)|2 +

1

4
(1− u2)2 dx.

Note that∫
Ω
|∇(−∆)−1(u−m)|2 dx =

∫
Ω
|∇v|2 dx where −∆v = u−m in Ω.

In this case, the associated bilinear form a in (2.2), defined over Hm, is given by

a1(u1, u2) =

∫
Ω

1

2
γ−2∇u1 · ∇u2 +

1

2
∇w1 · ∇w2 dx, (2.4)

with −∆wi = ui −m in Ω.
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• The Phase-Field Crystal functional is an example of a Swift-Hohenberg-type func-
tional commonly used in models for pattern formation ([23, 9, 19, 24]). This particular
variant3 [12, 13] is the functional defined over

Hm := m+H =

{
u ∈ H2(Ω)

∣∣∣∣u = m

}
by

(PFC) F2[u] :=

∫
Ω

1

2
u(q2

0 + ∆)2u+
1

2
(1− ε)u2 +

1

4
(1− u2)2 dx.

For (PFC) the associated bilinear form in (2.2) is

a2(u1, u2) =

∫
Ω

1

2
(q2

0 + ∆)u1 (q2
0 + ∆)u2 +

1

2
(1− ε)u1u2 dx.

In what follows, we set q0 = 1.

In all these functionals, the order parameter u describes an average material density and
satisfies a fixed mass (or mass ratio) constraint: for a fixed m with −1 < m < 1, u = m.
The parameters γ (resp. ε) and m describe material properties and determine the morphol-
ogy (structure) of minimizing states. More precisely, they determine the morphology of the
domains, wherein u takes on one of two preferred values, and their diffuse interfaces. These
patterns have an intrinsic length. For (OK), this intrinsic length is set by γ, and results from
the minimization via competition of the Dirichlet energy regularization with the long-range in-
teraction repulsive term

∫
Ω |∇(−∆)−1(u−m)|2 dx. For (PFC), the intrinsic length is directly

set by the parameter q0, which we will henceforth set to be 1. By integrating by parts in F2,
we find ∫

Ω

1

2
u(1 + ∆)2u dx =

∫
Ω

u2

2
+
|∆u|2

2
− |∇u|2 dx.

Hence we see it is now the negative of the Dirichlet energy which favors modulations and
competes with the regularization |∆u|2.

3 Analysis for the Constant State and Lower Bounds on the
ODT Curve

The order-disorder phase transition (ODT) occurs when there is a transition in the global
minimizer of the functional from the disordered (i.e., no phase separation) state u(x) ≡ m. The
curve in the γ (or ε) vs. m plane differentiates two regimes; one wherein the global minimizer is
u(x) ≡ m and one wherein it is some state u(x) 6≡ m which typically exhibits some symmetric
pattern. One standard approach for computing the ODT curve is through a linear stability

3This functional is also related to what is commonly called the Coleman-Mizel functional introduced in 1984
in the context of second-order materials, and then studied in [8]. An interesting asymptotic analysis of this
functional appears in [7].
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analysis about the state u(x) ≡ m. In all these functionals, such a calculation overestimates
the critical parameters γc and εc. For instance, when the disordered state becomes unstable,
the function u(x) ≡ m is certainly not a global minimizer of the functional. In contrast, the
state u(x) ≡ m may be stable, yet still not minimize the functional. In our approach, we
compute a region in which u(x) ≡ m is guaranteed to be the global minimizer. We therefore
underestimate the exact ODT via a lower bound. However, we provide numerical evidence
that this underestimation is small.

We consider finite perturbations in H of the general energy F about the disordered state.
That is, we define the excess energy about the disordered state u ≡ m in direction
f ∈ H, to be δmF where

δmF [f ] := F [m+ f ]−F [m]

= a(m+ f,m+ f) +

∫
Ω

1

4
(1− (m+ f)2)2 − a(m,m) − 1

4
(1−m2)2 dx

= a(f, f) + 2a(f,m) +

∫
Ω

1

4
(1−m2 − 2mf − f2)2 − 1

4
(1−m2)2 dx

= a(f, f) +

∫
Ω

(m3 −m)f +

(
3

2
m2 − 1

2

)
f2 + mf3 +

f4

4
dx

= a(f, f) +

∫
Ω

(
3m2

2
− 1

2

)
f2 + mf3 +

f4

4
dx

= b(f, f) +
1

4
〈f4〉+m〈f3〉. (3.1)

Note that the linear terms in f vanish as the constant state is a critical point (vanishing first
variation) of the energy functional4. Here, we have incorporated the quadratic terms into a
new bilinear form b defined on H, i.e.,

b(f, g) := a(f, g) +

∫
Ω

(
3m2

2
− 1

2

)
f g dx. (3.2)

The form b(f, f) is none other than 1/2 the second variation of the functional F about the
critical point u ≡ m, taken in direction f . For (OK), this bilear form is

b1(f, g) :=

∫
Ω

1

2
γ−2∇f · ∇g +

1

2
∇w1 · ∇w2 +

1

2
(3m2 − 1)fg dx,

where
−∆w1 = f and −∆w2 = g.

For (PFC) with q0 = 1, the associated bilinear form is

b2(f, g) :=

∫
Ω

1

2
[(1 + ∆)f ] [(1 + ∆)g] +

1

2
(3m2 − ε)fg dx.

4For example, in (OK) the term a(f,m) = 0 trivially, while in (PFC) the term a(f,m) = 0 follows from
〈f〉 = 0.
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Our general strategy is to seek a quadratic functional Q[f ] defined on H such that

Q[0] = 0 and δmF [f ] ≥ Q[f ] for all f ∈ H.

Then if in addition Q[f ] is positive semi-definite, i.e., Q[f ] ≥ 0 for all f ∈ H, we are guaranteed
that the disordered state u(x) ≡ m is a global minimizer of F [u].

Note that b depends on the parameters γ (resp. ε) and m, and we are seeking conditions
for which u(x) ≡ m is a global minimizer. Hence without loss of generality, we work in the
parameter regime of positive-definite second variation

b(f, f) > 0 for all f 6= 0. (3.3)

We remark that this assumption may not in general hold when one analyzes a non-constant
state as b(f, f) may only be positive semi-definite across parameter space due to certain sym-
metry invariances of the energy. The degeneracy due to symmetry does not however effect the
constant state.

We now use the trivial consequence of (α+ β)2 ≥ 0, that

for α > 0 and any β α+ 2β ≥ −β
2

α
, (3.4)

applied to

α =
1

4
〈f4〉 β =

m

2
〈f3〉,

to find from (3.1)

δmF [f ] ≥ b(f, f)−m2 〈f3〉2

〈f4〉
(3.5)

= b(f, f)
[
1−m2 〈f3〉2

b(f, f)〈f4〉

]
. (3.6)

In general, one can always rescale a function to saturate the inequality (3.5). Therefore, to
describe the exact ODT curve, the critical parameters γc and εc must satisfy the following
criteria

max
f

〈f3〉2

b(f, f)〈f4〉
= m−2. (3.7)

Solving (3.7) is difficult, essentially as difficult as the original problem. However, all is not lost
as one can now replace (3.7) with an approximate convex problem. To this end, we will apply
the Cauchy-Schwarz inequality to (3.6). We first do this with respect to the usual L2 inner
product and then show that we can produce a sharper lower bound by using the inner product
induced by b. Note that by (3.3) and the fact that b(f, g) = b(g, f) for all f, g, the quadratic
functional b(f, g) defines an inner product:

〈f, g〉b := 2b(f, g). (3.8)
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In addition, we can relate the inner product 〈·, ·〉b to the conventional L2 inner product by
introducing the positive-definite, self-adjoint operator5 B defined on H by

〈f, g〉b =: 〈f,Bg〉. (3.9)

The operator B defined on H is invertible on H.

3.1 First quadratic lower bound.

As a first attempt to find a quadratic lower bound on δmF [f ], we apply the the Cauchy-Schwarz
inequality in the L2 inner product: for all f ∈ H,

〈f3〉2 ≤ 〈f2〉 〈f4〉.

Applying this in (3.6) gives

δmF [f ] ≥ b(f, f)−m2 〈f3〉2

〈f4〉
≥ b(f, f)−m2〈f2〉. (3.10)

Hence if

inf

{
b(f, f)− m2〈f2〉

∣∣∣∣ f ∈ H, f 6= 0

}
≥ 0

or equivalently,

inf

{
b(f, f)− m2〈f2〉

∣∣∣∣ ‖f‖H = 1

}
≥ 0,

u ≡ m is a global minimizer of F over Hm. If the inequality is strict, v is the unique global
minimizer.

By invoking the correspondence of the Rayleigh quotient and the eigenvalues of the associ-
ated operator, we can equivalently rephrase in terms of eigenvalues involving B, the self-adjoint
operator on H associated with b(f, f), of the eigenvalue problem

(B − 2m2)ψ = λψ. (3.11)

Then if the smallest eigenvalue λ1 is positive then u ≡ m is a global minimizer of F over Hm.
Given b (i.e. B), we can readily compute this smallest eigenvalue which will depend on the
exact size of the torus Ω. On the other hand, one can easily compute a lower bound, exact
in the limit where the torus size tends to ∞, by transforming to Fourier space (Fourier series)
and optimizing in the Fourier variable |k|, treated as a continuous variable. To this end, for
the Ohta-Kawaski functional, the operator

B − 2m2 =
1

γ2
(−4) + (−4)−1 + (m2 − 1),

5For (OK)
B = γ−2(−∆) + (−∆)−1 + (3m2 − 1),

while for (PFC),
B = (1 + ∆)2 + (3m2 − ε).

12



in Fourier space (defined on the flat torus with size L× L) is multiplication by

1

γ2
|k12|2 + |k12|−2 + (m2 − 1)

where |k12| = 2πL−1(n1, n2) for integers (n1, n2), with n2
1 + n2

2 6= 0. Optimizing |k12|, treated
as a continuous variable, implies that this factor is always positive if

λ1 = min
k12

1

γ2
|k12|2 + |k12|−2 + (m2 − 1)

≥ min
k∈R

1

γ2
k2 + k−2 + (m2 − 1)

=
2

γ
+ (m2 − 1) ≥ 0.

In the limit as the torus size L → ∞, there are values of k12 arbitrarily close to the optimal
(continuous) k. The excess energy for (OK) about the disordered state then satisfies

δmF [f ] ≥ b1(f, f)−m2〈f2〉

=

∫
Ω

1

2
γ−2|∇f |2 +

1

2
|∇(−∆)−1f |2 +

1

2
(m2 − 1)f2 dx

≥
∫

Ω

1

γ
f2 +

1

2
(m2 − 1)f2 dx (3.12)

=

(
1

γ
+

1

2
(m2 − 1)

)∫
Ω
f2 dx.

We conclude that if

γ ≤ 2

1−m2
(3.13)

then δmF [f ] ≥ 0 for all f ∈ H, i.e., u ≡ m is a global minimizer of (OK) over u ∈ Hm. This
proves a lower bound on the ODT which, except at m = 0, is far from optimal: This was
essentially the approach taken in [6] (see also [14]).

For the Phase-Field Crystal functional, the analogous steps give that if

ε ≤ m2 (3.14)

then u ≡ m (the liquid phase) is a global minimizer of (PFC) over u ∈ Hm.

3.2 An improved quadratic lower bound.

In this subsection we derive an improved quadratic lower bound by exploiting the structure of
B. Generally speaking, we aim to tighten the two consecutive inequality approximations ((3.4)
and Cauchy-Schwarz) used in the previous subsection. Here the gap in the lower bound comes
from the drastically different nature in the functions which i) optimize Cauchy-Schwarz, and
ii) optimize the quadratic term (3.10) involving b(f, f) . Ideally, we may improve the lower
bound if we use a sequence of inequalities which have almost the same optimizing functions.
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Our new approach therefore relies on first using the Cauchy-Schwarz inequality in the more
natural b(f, f) inner product, followed by a constrained optimization problem involving B.

We write

〈f3〉 =
〈
f
(
f2 − f2

)〉
=
〈
fBB−1

(
f2 − f2

)〉
to find that

〈f3〉2 =
〈
fBB−1

(
f2 − f2

)〉2

=
〈
f,B−1

(
f2 − f2

)〉2

b

≤ 〈f, f〉b
〈
B−1

(
f2 − f2

)
, B−1

(
f2 − f2

)〉
b

(3.15)

= 2b(f, f)
〈(
f2 − f2

)
, B−1

(
f2 − f2

)〉
(3.16)

In line (3.15) we used the Cauchy-Schwarz inequality in the inner product 〈f, g〉b. The operator
B−1 is defined on H. We can extend B−1 to all of Hk by defining B−1 to be zero on constants.
In other words, its extension to Hk is simply composition of B−1 with projection P onto H.
Abusing notation slightly, let us use B−1 to also denote the extension. Thus, by (3.16)

〈f3〉2 ≤ 2b(f, f)
〈(
f2 − f2

)
, B−1

(
f2 − f2

)〉
= 2b(f, f)

〈
f2, B−1f2

〉
(3.17)

Thus (3.17) implies

〈f3〉2

b(f, f)〈f4〉
≤ 2

〈
f2, B−1f2

〉
〈f4〉

.

Since

max
f∈H,f 6=0

〈
f2, B−1f2

〉
〈f4〉

≤ max
g≥0,g 6=0

〈
g,B−1g

〉
〈g2〉

, (3.18)

we define

r := max
g≥0,g 6=0

〈
g,B−1g

〉
〈g2〉

. (3.19)

Note that for all functionals, B−1, extended to Hk, is a bounded linear self-adjoint operator,
and (3.19) is a constrained Rayleigh quotient. Combining (3.6), (3.17) and (3.19), we have the
following prescription for the quadratic functional Q[f ]

δmF [f ] ≥ Q[f ] where Q[f ] := (1− 2m2r)b(f, f).

Lastly note that if 1 − 2m2r ≥ 0, the disordered state u(x) ≡ m is a global minimizer of F .
We summarize the previous calculations in the following theorem:
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Theorem 3.1. Let −1 < m < 1 and consider any functional F of the form (2.2) defined over

Hm =

{
u

∣∣∣∣ u = m+ f, f ∈ H
}
.

Define the bilinear form b on H by (3.2) and assume, without loss of generality, that (3.3) holds
true. Let B be the associated operator on H defined by (3.8)-(3.9) extended, by projection, to
all of Hk. Finally let r be given by (3.19). Then

if 1− 2m2r ≥ 0, u(x) ≡ m is a global minimizer of F .

3.3 Solving for r.

To solve for r one must maximize a Rayleigh quotient (3.19), restricted to a convex set of
functions

K1 = {g | g(x) ≥ 0}

For numerical purposes, we can further rephrase the problem (3.19) as a maximization of
a quadratic (convex) functional over a convex set of functions. First, we may remove the
denominator in (3.19) as follows. Introduce the ball of functions

K2 = {g | 〈g2〉 ≤ 1}.

We note that K2 is convex, and hence K = K1
⋂
K2 is also convex. The problem (3.19) may

then be rephrased as

r = max
g(x)∈K

〈gB−1g〉. (3.20)

For a constrained convex optimization problem, the Karush-Kuhn-Tucker (KKT) condi-
tions describe the criteria for an optimal g(x) in (3.20). Namely, optimality occurs when the
gradient of the functional (2B−1g) in (3.20) lies within the normal cone Ng(K) of the feasible
set

2B−1g ∈ Ng(K) where Ng(K) =

{
u

∣∣∣∣ 〈h− g, u〉 ≤ 0, ∀ h ∈ K
}
. (3.21)

To describe the normal cone at a location g, we introduce the positive variables y(x) ≥ 0 and
λ ≥ 0. When g(x) is on the boundary of the feasible set, for instance g(x0) = 0 for some x0 ,
then the normal cone contains functions which are negative at x = x0. Here we use y(x) and
λ to parameterize such functions. To do so, first introduce a sum over all constraints

L = −2

∫
Ω
y(x)g(x) dx + λ

(
〈g2〉 − 1

)
.
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The normal cone is then given by the (L2) variational derivative δL
δg

Ng(K) =

{
δL
δg

∣∣∣∣ y(x) ≥ 0, λ ≥ 0, y(x)g(x) = 0, λ
(
〈g2〉 − 1

)
= 0

}
.

Equating the gradient of the functional (3.20) with the normal cone parameterization, we arrive
at the KKT conditions for optimality

B−1g = −y + λg (3.22)

with

g(x)y(x) = 0, g(x) ≥ 0, y(x) ≥ 0, (〈g2〉 − 1)λ = 0. (3.23)

Here y(x) and λ are the Lagrange multipliers for the constraints. Using the conditions (3.23),
we can partially solve (3.22) as

y = (−B−1g)+ and λg = (B−1g)+ (3.24)

Here f(x)+ = 1
2(f + |f |) is the non-negative component of a function. Physically, (B−1g)+

represents the component of the gradient B−1g inside the set K1.

Remark 1. The value r from (3.19) corresponds to the largest λ satisfying the KKT condition
(3.22).

Since we cannot solve (3.24) exactly, we numerically maximize (3.20) and use (3.24) as a
stopping criterion. We do so by performing a modified power iteration. Here we work on a
regular grid with N grid points xk = kh for 0 ≤ k ≤ N − 1, and grid spacing h = L/N where
L = Lx = Ly is the size of the domain. Letting gij = g(xi, yj) denote the discrete values of g
on the grid we estimate r via the following algorithm. When gn is deep inside the feasible set,
(B−1gn)+ is always non-negative, and the algorithm reduces to a standard power iteration.
When gn is on the boundary of the feasible set K, the algorithm is a power iteration restricted
to the tangent of the feasible set. Figure 4 outlines the evolution of δ and r versus the number
of iterations for (OK), while figure 5 shows a plot of the solutions g(x) and y(x). For the
functionals and parameter values we consider, the modified power iteration algorithm achieves
machine precision for δ within 105 iterations.

Remark 2. The algorithm converges to a KKT point which is a necessary condition for
optimality. At this point we do not have a proof that for the functionals under consideration,
satisfying a stable KKT condition is also sufficient for global optimality. More specifically,
maximizing a convex function over a convex set via gradient flow may have multiple stable
KKT points. In our case, we have repeated the numerics with random initial data and have
only observed convergence to a unique maximizer.
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(Modified power iteration)

1. Initialize g0:

g0
ij = βσij

where β is an appropriate normalization constant. The σij are independent random
samples (i.i.d.) from a uniform distribution 0 ≤ σij ≤ 1.

2. Iterate via

gn+1 = βn(B−1gn)+

= βn(F−1 B−1Fgn)+

Here βn is just a rescaling to ensure 〈(gn+1)2〉 = 1. To efficiently compute the operator
(B−1gn) we use a fast Fourier transform (FFT) ĝ(k) = Fg and exploit the fact that B−1

is a diagonal operator in Fourier space.

3. Stopping criteria: let

λ =

∫
Ω
g(B−1g)+ dx

δ =
1

|Ω|1/2
||(B−1g)+ − λg||.

Here δ is the volume averaged L2 norm of the error in the KKT condition. Iterate until
a δ achieves a pre-described tolerance. In our case we typically control δ ≤ 10−8. The
exact solution to (3.24) has δ = 0.
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Figure 4: Top: Plot of the value r (dashed line) versus the number of iterations in the modified
power iteration algorithm. Bottom: norm δ (solid line) versus number of iterations. Here
m = 0.9 and γ = 2.1. The norm δ achieves machine precision by ∼ 4× 104 iterations.

Figure 5: (OK) with m = 0.25, γ = 2.35. Left: plot of the maximizer g(x) to (3.19). Right:
plot of the Lagrange multiplier function y(x) which arises in solving the optimization problem
(3.19). Note that y(x) ≥ 0 and g(x) ≥ 0 have disjoint supports.
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Figure 6: Plot of the ODT curve for (OK). The solid line is the lower bound estimate using
(3.19), the dashed line is the conventional linear stability curve, while the circles (O) are a
numerical approximation to the exact ODT curve (they represent the smallest γ with a function
u(x) having lower energy than u = m). Here the upper and lower bound computations are
performed on a domain 8π× 8π and N = 256 grid points. The bottom dotted curve is the less
optimal lower bound estimate (3.13).

Figure 7: Plot of the ODT curve for (PFC). The solid line is the lower bound estimate using
(3.19), the dashed line is the conventional linear stability curve, while the circles (O) are a
numerical approximation to the exact ODT curve. The bottom dotted curve is the less optimal
lower bound estimate (3.14).
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Figure 8: Computed lower bound of the ODT curve for (OK) in 3D (bottom dashed) vs. the
2D bound (top solid) of Figure 6.

3.4 Results for the ODT and their optimality.

In the following section we numerically compute an upper and lower bound to the ODT curve
for the two functionals (OK) and (PFC). Specifically, for the lower bound we seek to char-
acterize the curve in the phase diagram (m, γc) or (m, εc) where 1 − 2m2r = 0. Such a curve
partitions the phase diagram so that in one region m is the global minimum, i.e., the region
where 1− 2m2r ≥ 0. In our case, we solve for r using the modified power iteration algorithm
outlined in the previous section with 2× 104 iterations to ensure that the stopping criteria of
δ ≤ 10−8 is reached. We also note that r can depend on m, γ or ε depending on the functional
at hand. To compute the curve, we fix a value of m and perform a root finding algorithm to
solve for γc (or εc) such that 1− 2m2r = 0. Specifically, we use a bisection algorithm and solve
for the critical γc with a tolerance of |1 − 2m2r| ≤ 10−5. It is important to note that for a
fixed value of m, the ratio r is monotonic in the parameters γ (or ε)6. Hence, the root finding
algorithm converges to the single root, and the curve γc versus m partitions the phase plane
into distinct regions.

The solid curves in Figures 6 and 7 show the numerical lower bound for the ODT curve.
In addition to the numerical computation of a lower bound on the ODT curve, we also

obtain an upper bound by searching for states which have an energy lower than the constant
u = m. We emphasize again that since the functionals are non-convex, we have no guarantee

6Observe that for two values γ1 < γ2, the difference in the associated operators B2 −B1 is positive definite.
Indeed, B1−B2 = −

(
γ−2
1 − γ

−2
2

)
∆, and multiplying each side first on the left by B−1

1 and then on the right by
B−1

2 , we have

B−1
2 −B−1

1 =
(
γ−2
1 − γ−2

2

)
B−1

1

(
−∆

)
B−1

2

But B = B−1
1 (−∆) B−1

2 is the product of three self-adjoint, positive definite operators, and on the torus, B1,
(−∆), B2 all mutually commute. As a result B is self-adjoint and positive definite (one can use the complete
set of common eigenfunctions to show that every eigenvalue of B is positive). It follows that for any function
g(x) 6= 0, we have 〈g,B−1

2 g〉 > 〈g,B−1
1 g〉. This proves that the associated ratios r2 and r1 corresponding to γ2

and γ1 satisfy r2 > r1. An identical argument holds for ε in (PFC).
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1a. (0.2, 0.07) 1b. (0.2, 0.15)

2a. (0.4, 0.27) 2b. (0.4, 0.07)

3a. (0.7, 0.82) 3b. (0.7, 0.90)

4a. (0.9, 1.28) 4b. (0.9, 1.33)

Figure 9: Computations for (PFC). Left column 1a-4a: Plot of the maximizer g(x) to (3.19) for
(PFC). Values are reported as (m, ε). Right column 1b-4b: Plot of the computed metastable
pattern associated with the smallest ε for which one could simulate a pattern having lower
energy than u = m. Images beside each other occur at the same value of m, but with different
ε - the left and right being lower and upper bounds on the ODT respectively. Note that there
are strong similarities in the patterns of g(x) and the approximate critical (large) perturbations
from the constant state. 21



that the upper bound is close to optimal. To obtain an upper bound curve, we first fix a value
of m. We then vary the parameter γ (or ε) looking for the smallest value at which there exists
a state u 6= m with F [u] ≤ F [m]. The circles in Figure 6 correspond to the smallest value
of γ we found with such a state. As a result, the true ODT curve in Figure 6 lies below the
circles and above the solid curve. To determine if a specific value of m and γ (or ε) has a
non-constant minimizer u 6= m, we start with a candidate initial data u(x, 0) = u0(x) and run
a gradient flow for some time T ≤ 50 to minimize the energy. We then check if the energy
F [u(x, T )] ≤ F [m]. We then repeat the process to find the best upper bound γUB yielding
states with energy lower than the constant state u = m. In this approach, the error in γUB
with the true ODT curve depends on how close u(x, T ) is to the global minimizer. As a result,
the quality of the upper bound depends on how well one chooses u0(x). In our case, we try
several initial conditions u0(x) and take the smallest γ found over all trials as our upper bound
γUB. Specifically, for the functional (OK) we try initial data u0(x) i) corresponding to a pure
hexagonal lattice, ii) a single point mass, iii) a non-perfect hexagonal array with defects.

We also performed a 3D computation based upon (3.19) for the ODT of (OK). In Figure
8 we plot the 3D computed ODT (a lower bound) and the 2D one presented in Figure 6. As
expected, the 3D curve lies below the 2D. Note that for 3D we only computed the curve up
to m = 0.7. Computation for larger m can readily be performed but requires more CPU time.
All our computations were done in MATLAB.

Finally, we observe that in some cases the computed function g(x) accurately predicts
the pattern of minimizers. For instance Figure 9 shows a comparison of optimal functions
associated with both the numerically estimated upper bound (optimal u) and the computed
lower bound (optimal g). Close to the ODT and m = 0, the optimal g(x) accurately predicts
the pattern of what is believed to be the global minimizer, including the correct lattice size.

Remark 3. The computed lower bound (3.19) and the numerical upper bound in Figures 6
and 7 have a small gap. The gap is due to the fact that i) the upper bound is only a numerical
investigation and is not sharp (in fact the numerics become increasingly difficult with large
values of m), and ii) our lower bound is not sharp. In the case of our lower bound, we use the
estimate (3.17) which is sharp for functions of the form

αf = B−1f2 (3.25)

for some α. Meanwhile, optimizers of the ratio (3.19) satisfy the KKT condition (3.22). If
every function of the form (3.25) also satisfied the KKT condition, then our lower bound would
be exact. The gap is therefore partially due to the fact the functions do not simultaneously
satisfy (3.25) and (3.22).

4 Analysis for Non-Constant Metastable States

We now discuss how to extend our method to non-constant states. Here we adopt the approach
taken from section 3, but apply the inequalities to non-constant candidate minimizers v. Since
the initial steps are elementary and short but essential, we repeat them here. We consider
stable critical points (states with vanishing first and non-negative second variations) and derive
sufficiency conditions for global minimality based upon our two approaches for quadratic lower
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bounds. Unfortunately except for the constant state, we have no exact representative of critical
points for any of the functionals considered here. Hence our methods must be directly coupled
with numerics whereby we

• compute a metastable state (candidate minimizer) v for which the appropriate energy
gradient is small,

• address the sufficiency conditions for global minimality.

In our approaches, the lower bound takes the following form

F [v + f ]−F [v] ≥ C〈f2〉, (4.1)

where the constant C, dependent on the material parameters, is obtained numerically.

Let −1 < m < 1 and suppose v is a candidate for a global minimizer over u ∈ Hm. In
particular, we may assume that v

• Is a critical point in the sense that for all f ∈ H the first variation in direction f vanishes,
i.e.,

∀ f ∈ H 2a(v, f) −
∫

Ω
v(1− v2)f dx = 0. (4.2)

• The second variation is positive semi-definite ∀ f ∈ H, b(f, f) ≥ 0, i.e.,

b(f, f) = a(f, f) +

∫
Ω

(
3v2

2
− 1

2

)
f2 dx ≥ 0. (4.3)

In all subsequent numerical calculations, we always numerically verify that b(f, f) is positive
semi-definite for any candidate minimizer v.

As in (3.1), we compute the excess energy δvF about a state v satisfying (4.2): for all
f ∈ H

δvF [f ] = F [v + f ]−F [v]

= a(f, f) +

∫
Ω

(
3v2

2
− 1

2

)
f2 + vf3 +

f4

4
dx

= b(f, f) +

∫
Ω
vf3 +

f4

4
dx, (4.4)

where

b(f, g) = a(f, g) +

∫
Ω

(
3v2

2
− 1

2

)
f g dx.

Note that the linear terms in f (which are precisely the left hand side of (4.2)) vanish since v
is a critical point.

As with the previous case where v ≡ m, if b is positive-definite, we will make use of the
inner product on H induced by b:

〈f, g〉b := 2b(f, g). (4.5)
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and the self-adjoint operator B defined on H by

〈f, g〉b =: 〈f,Bg〉 or b(f, g) =
1

2
〈f,Bg〉 (4.6)

By composing both B and its inverse B−1 with the projection operator defined on Hm

Pu = u−−
∫
u dx,

we may extend both B and B−1 to all of Hk. While we do not rename these extensions, note
that on Hm

B ◦B−1 = P.

In Sections 4.1 and 4.2, we first give the details for two lower bounds via inequalities
analogous to the respective ones of Sections 3.1 and 3.2. However, in each case we note that
the resulting sufficiency conditions are empty as a result of the inherent symmetry invariance
of the energy on the torus. By restricting to the Ohta-Kawasaki function, we then present a
preliminary analysis of these symmetry issues by

1. addressing the global optimality of the lamellar phase in 1D and 2D space (Sections 4.3
and 4.4);

2. addressing the global optimality of the lamellar phase when the domain is a rectangular
torus (Section 4.5);

3. addressing global optimality of a metastable state for a perturbed (OK) functional which
includes a spatially non-symmetric potential (Section 4.6).

4.1 First quadratic lower bound.

As in Section 3.1, the first lower bound comes from elementary inequalities. There we used an
elementary pointwise inequality (3.4) combined with the L2 Cauchy-Schwarz inequality. Note
that we can combine these two into one elementary pointwise inequality: For any real numbers
α and β, β2(β/2 + α)2 ≥ 0 implies that

αβ3 +
β4

4
≥ −α2β2. (4.7)

Applying this pointwise to α = v and β = f , we find from (4.4) that

δvF [f ] ≥ b(f, f) −
∫

Ω
v2f2 dx. (4.8)

Now let −1 < m < 1 and consider any functional F of the form (2.2) defined over Hm. Let
v ∈ Hm be a critical point of F in the sense that (4.2) holds true. Then (4.4) implies that if

inf

{
b(f, f)− 〈v2f2〉

∣∣∣∣ f ∈ H, f 6= 0

}
≥ 0
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(
or equivalently inf

{
b(f, f)− 〈v2f2〉

∣∣∣∣ ‖f‖H = 1

}
≥ 0

)
,

v is a global minimizer of F overHm. If the inequality is strict, v is the unique global minimizer.
Alternatively, if λ1 is the first eigenvalue of the corresponding eigenvalue problem

(B − 2v2)ψ = λψ, (4.9)

then we let
C1 := λ1.

If C1 ≥ 0, then v is a global minimizer of F over Hm. If the inequality is strict, v is the unique
global minimizer.

This is our first sufficiency condition. However, we immediately note that, except for
v ≡ m, the condition C1 ≥ 0 may never hold true, suggesting that, except for the constant
phase, this strategy requires additional ideas. In fact, it is straightforward to see that this is
the case for periodic boundary conditions! For instance, small translations in the x direction
f(x) = v(x+ s, y)− v(x) ≈ s ∂v∂x will leave the energy unchanged. To show that such directions
imply C1 < 0, first note that v(x) solves the Euler-Lagrange equation (4.2), and hence v itself
is always an eigenvalue of B − 2v2 with corresponding eigenvalue 0, that is,

(B − 2v2)v = 0. (4.10)

Moreover, in our case of periodic boundary conditions, a minimizer can always be translated
with no cost to the energy, and this implies that one always has λ1 < 0. To see this let vx = ∂xv
be a derivative of v(x) (which can be in any direction). Recall that our operator B associated
with the bilinear form

b(f, g) = a(f, g) +

∫
Ω

(
3v2

2
− 1

2

)
f g dx,

is defined by (3.8) and (3.9). Translational symmetry of the energy functional implies that the
part of the operator, say A, associated with the form via a(f, g) = 1

2〈f,Ag〉 satisfies

(Au)x = Aux.

This is certainly the case for (OK) and (PFC) on the torus. Hence using B = A + 3v2 − 1
and differentiating (4.10) we find

0 = (Bv − 2v3)x

= (Av + v3 − v)x

= (Avx + 3v2vx − vx)

= Bvx.

If we normalize ṽx = cvx so that ||ṽx|| = 1, we obtain the following bound

〈ṽx, (B − 2v2)ṽx〉 = −2||v ṽx||2 < 0.
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4.2 Second quadratic lower bound.

In the second approach (analogous to that of Section 3.2), we exploit the structure of b,
the (local) second variation, by invoking the Cauchy-Schwarz inequality with respect to the
associated B-norm. To this end, using the trivial inequality (3.4) we have

F [v + f ]−F [v] = b(f, f) + 〈vf3〉+
1

4
〈f4〉

≥ b(f, f)− 〈vf
3〉2

〈f4〉

Thus we obtain the following lower bound

F [v + f ]−F [v] ≥ (1− 2r)b(f, f),

where

r :=
1

2
sup
f∈Hm

〈vf3〉2

b(f, f)〈f4〉
.

Next let us further assume that b is positive-definite, i.e.,

b(f, f) > 0, ∀ f 6= 0.

Unlike for the constant state, this assumption is not harmless. Indeed it will never hold true
on the torus for all f ∈ H, and we will have to restrict our perturbation Hilbert space by
projecting out certain directions related to symmetries. For the time being, let us assume that
b(f, f) > 0 for all f 6= 0 in perhaps some subspace of H.

To obtain the new lower bound coefficient we follow the same procedure as in Section 3.2,
and bound r using the Cauchy-Schwarz inequality with respect to the b induced inner product
(defined in (4.5) and (4.6)). We find

r =
1

2
sup
f∈H

〈
B−1vf2, Bf

〉2

b(f, f)〈f4〉

≤ sup
f∈H

〈
(vf2), B−1(vf2)

〉
b(f, f)

b(f, f)〈f4〉

= sup
g(x)≥0

〈
(vg), B−1(vg)

〉
〈g2〉

= r0 (4.11)

Note now that again we have set g = f2. We may then numerically optimize r0 defined by
(4.11) using the same algorithm as in the case where v = m with one modification. Here we
replace B−1 from algorithm 1 with vB−1v, i.e., multiplication by v followed by B−1 and then
again multiplication by v:

gn+1 = βn
(
(vB−1v)gn

)
+

Here βn is the appropriate normalization factor and (·)+ denotes the positive part of a function.
We also take the initial data g0 to be random.
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Figure 10: The L2 norm of the gradient (||vt|| from (4.12) ) during the evolution of the gradient
flow. The final state is the candidate lamellae vl.

Finally we compute7 the coefficient for the lower bound C2 as

C2 = (1− 2r0)

(
min
||f ||=1

b(f, f)

)
= (1− 2r0)

λb
2

where λb is the smallest eigenvalue of the operator B.

4.3 Analysis of the lamellar phase of (OK) in one dimension.

In one space dimension, it can indeed be proven that the global minimizer to (OK) on a periodic
domain must be periodic [18, 21, 25]. We call such a periodic structure lamellar. Thus far,
we have shown that neither of the results from Sections 4.1 or 4.2 are directly applicable to
non-constant states v on a torus geometry. In this subsection, we show that if we introduce
additional constraints in the search directions f , then we may use the ideas from section 4.1 to
analyze non-constant candidate minimizers to (OK) in a 1D periodic domain. Specifically, we
argue that, for certain parameters (m, γ), a computed lamellae structure is close to optimal.

We take m = 0, γ = 2.5 and a periodic domain Lx = 4π and obtain the candidate minimizer
vl(x) by running the H−1 gradient flow on random initial data. That is, we solve

vt = −γ−2∆2v + ∆(v3 − v)− (v −m), (4.12)

with random initial conditions v(xj) = σj , where xj is the jth grid point and σj is a random
number in [−1/2, 1/2]. The initial data is also projected to have an average m. We run the
gradient flow (integration time T ∼ 1000) with progressively smaller time steps so that the
candidate minimizer solves the Euler-Lagrange equations to a required tolerance ε = 6× 10−8

(Figure 10). As a result, we obtain a candidate minimizer vl, shown in Figure 11.
We now make several observations regarding the symmetries in F [v]. Note that for any

function v(x), the following have the same energy:

7As a numerical note, we compute B−1 as follows. We build the following operator

Lf = γ−2(∆2)f −∆
[
(3v2(x)− 1)f

]
+ f

and note that B = (−∆)−1L. Hence the inverse can be computed as

gn+1 = βn
(
(vL−1(−∆)v)gn

)
+
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Figure 11: Candidate minimizer vl for m = 0, γ = 2.5 on 1D periodic domain 4π.

• arbitrary translations: v(x− s), for any constant s;

• inversion symmetry: v(−x);

• flip about the vertical axis: −v(x).

As a result of the collection of symmetries, the candidate minimizer vl is not unique. We now
constrain the search directions f to compute the lower bound coefficient C1. Without loss of
generality, one may restrict search directions f so that f ∈ Z where

Z :=
{
f ∈ H

∣∣ 〈f, e1〉 = 0
}

where e1 := ∂xv
l. (4.13)

To see this note that given any candidate minimizer v and any global minimizer w, one can
always find a translation s (which leaves the energy unchanged), such that f = w(x−s)−v ∈ Z
is orthogonal to e1. This is simply a fact about functions on the torus. First note that
〈v, vx〉 = 0. Then, given two functions v(x) and w(x) on the torus, one may always shift
w(x− s) so that 〈w, ∂xv〉 = 0. Let

h(s) :=

∫ 4π

0
w(x− s)∂xv(x) dx.

By applying the Cauchy-Schwarz inequality and a standard density argument for w, we see
that h(s) is a continuous function of s. We now observe that∫ 4π

0
h(s) ds = −

∫ 4π

0

∫ 4π

0
∂xw(x− s)v(x) dx ds

= −
∫ 4π

0

(∫ 4π

0
∂xw(x− s) ds

)
v(x) dx

=

∫ 4π

0

(∫ 4π

0
∂sw(x− s) ds

)
v(x) dx

= 0.

Hence by the mean value theorem, ∃s∗ such that h(s∗) = 0.

Thus it suffices to minimize the quadratic lower bound over a smaller subspace of search
directions:

inf

{
b(f, f)− 〈v2f2〉

∣∣∣∣ f ∈ Z, f 6= 0

}
≥ 0.
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Here the constraint f ∈ Z modifies the eigenvalue problem (4.9) slightly to(
B − 2(vl)2

)
ψ = λψ + κ(∂xv

l) with 〈ψ, ∂xvl〉 = 0 (4.14)

where κ is a new Lagrange multiplier introduced to handle the orthogonality condition. The
lower bound coefficient is then C1 = λ1, where λ1 is the smallest (constrained) eigenvalue of
(4.14).

To solve for λ1 in (4.14), we numerically build the operator (B−2(vl)2) and project out the
orthogonality constraints. Additional details are given in appendix A. This calculation yields

C1 = λ1 = 1.6× 10−6.

We note however that the discretization errors in the calculation for C1 are of O(10−6). Hence
for numerical purposes C1 is zero. This is also consistent with the fact, shown in equation (4.10),
that for an analytic critical point, the system (4.14) contains a zero eigenvalue corresponding
to ψ = vl. But what exactly does this imply in regard to vl being a global minimizer? In our
calculation yielding

δvlF1[f ] ≥ C1

∫
Ω
f2 dx,

we assumed that

2a1(vl, f) −
∫

Ω
vl(1− (vl)2)f dx = 0.

The extent to which this is true is measured by the tolerance via the size of the energy gradient

gradH−1F1(vl) = γ−2(−∆)2vl + (vl −m) + (−∆)((vl)3 − vl).

We ran the gradient flow sufficiently long so that

||gradH−1F1(vl)||H−1 < ε.

Integration by parts gives for any f ∈ H,〈
gradH−1F1(vl) , (−4)−1f

〉
= 2a1(vl, f) −

∫
Ω
vl(1− (vl)2)f dx.

On the other hand by (2.1),∣∣∣〈gradH−1F1(vl) , (−4)−1f
〉∣∣∣ ≤ ∥∥∥gradH−1F1(vl)

∥∥∥
H−1

∥∥(−4)−1f
∥∥
H1

=
∥∥∥gradH−1F1(vl)

∥∥∥
H−1
‖f‖H−1 .

Hence, ∣∣∣∣2a1(vl, f) −
∫

Ω
vl(1− (vl)2)f dx

∣∣∣∣ ≤ ε||f ||H−1 .

Thus, up to numerical errors, we have shown the following: If w(x) is the global minimizer
then

F1[w]−F1[vl] ≥ −ε||f ||H−1 + C1||f ||2, (4.15)
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Figure 12: Candidate minimizer vl for m = 0, γ = 2.02 with torus size to be 4π × 4π. Note
that the orientation of the lamellae is exactly at 45◦.

where f = w(x−s∗)−vl for some s∗. Note that (4.15) puts the energy of vl as being optimal up
to the order of numerical errors. Indeed, we can crudely estimate ||f ||H−1 by noting that since

F [w] ≤ F [m] = |Ω| (1−m
2)2

4 , ||w||2H−1 ≤ π and the same is true for vl (here m = 0, |Ω| = 4π).
Hence ||f ||H−1 ≤ 2

√
π. On the other hand C1 = 0 up to numerical errors since the discretization

errors are O(10−6). Thus we can conclude that
∣∣F [w]−F [vl]

∣∣ ∼ numerical errors. For our
current (adaptive) methods, these numerical errors are of the order 10−6.

4.4 Analysis of the lamellar phase of (OK) in two dimensions.

In this section we extend our analysis to a computed lamellar structure on a 2D square torus.
We show that a computed lamellar phase is optimal with respect to perturbations restricted
to various subspaces of H1(Ω). We note that difficulties in arguing optimality over all pertur-
bations are due to symmetries in the domain and may be overcome in other domains such as
an asymmetric rectangle. Let m = 0, γ = 2.02 with torus size 4π × 4π. To obtain the candi-
date minimizer vl(x), we again run an H−1 gradient flow (4.12) on the sinusoidal initial data
v(x, 0) = sin(x) cos(y). We run the gradient flow (integration time T ∼ 2000) to a required
tolerance ε = 8× 10−10. As a result, we obtain a candidate minimizer vl, shown in Figure 12.

In 2D, a number of symmetries exist in both the functional and in the candidate minimizer
vl,which can be described using the orbit-stabilizer theorem. Let G denote the symmetry group
acting on functions v, that leaves F invariant. Let H be the symmetry group that stabilizes
the candidate minimize vl. We then refer to the symmetry group of vl as the orbit-stabilizer
quotient group G/H. Note that the constant state has H = G and hence vl = m has a trivial
symmetry group. In 2D, the group G is generated by the following subgroups:

• The discrete dihedral group of order 4 generated by a π/2-rotation and a flip.

• The continuous group of translations.

• Inversion v(x)→ −v(x).

The computed lamellar structure vl (Figure 12) has a stabilizer group H consisting of

• A discrete flip along the line y = x.

• Rotations of π.

• Arbitrary translations along the direction (1,−1).
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• Discrete translations along (1, 1) with length
√

2π.

• An inversion v → −v, followed by a discrete translation along (1, 1) with length π/
√

2.

One immediate difference to 1D is that the orbits of vl(x) generate a symmetry group G/H
consisting of two tori. These tori may be parameterized by

vl(x+ s, y + s), vl(−x− s, x+ s) for s ∈ R.

In light of the above symmetries, we introduce the following vectors 8

e1 := ∂xv
l(x), e2 := ∂xv

l(4π − x, y), e3 := vl(4π − x, y), e4 := vl(x),

and subspaces of H

Z := {u ∈ H | 〈u, ej〉 = 0, j = 1 . . . 4} U := span{e1, e2, e3}, V := span{e4},

so that H = U
⊕
V
⊕
Z. We now argue that vl is nearly optimal when restricting search

directions f to any one of the subspaces U , V or Z.

As before we may, without loss of generality, restrict search directions f so that 〈f, e1〉 = 0.
Unfortunately the argument used to show that 〈f, e1〉 = 0 will not simultaneously work for e2,
e3 and e4. Suppose w(x) = A sin(x−y)+B sin(x+y)+C cos(x−y)+D cos(x+y) is the global
minimizer and v(x) = a sin(x− y) is the candidate minimizer. Then one can shift w(x) so that
w(x′) = A′ sin(x− y) +B′ sin(x+ y). However, no shift or flip will make (w − v) ⊥ sin(x+ y)
and simultaneously ⊥ cos(x+ y).

The subspace Z: Numerically, we find the smallest eigenvalues of B − 2(vl)2 over H to
be

−0.0066 − 0.0033 − 0.0033 0.0000 0.0023,

the latter with a degeneracy of 4. The corresponding eigenvectors (Figure 13) have a large
overlap with vlx (smallest eigenvalue), vl(4π − x, y), and vlx(4π − x, y) with the eigenspace
associated with eigenvalue −0.0033, while vl has eigenvalue 0. Note that all the eigenvectors
corresponding to eigenvalues below 0 are associated with symmetries of the energy, while higher
eigenvectors (Figure 14) are not related in a simple fashion.

We now argue that our computed vl is very close to being a global minimizer over pertur-
bations f ∈ Z. Indeed repeating the steps presented in Section 4.3, we find

δvlF1[f ] ≥ − ε||f ||H−1 + 〈f, (B − 2(vl)2)f〉, ∀ f ∈ H.

Restricting f ∈ Z, we solve for the smallest constrained eigenvalue to the operator B − 2(vl)2

and find C1 = 0.0023. Consequently we have

δvlF1[f ] ≥ − ε||f ||H−1 + C1||f ||2, ∀ f ∈ Z

≥ − ε||f ||H−1 +
C1

16
||f ||2H−1

≥ −4ε2

C1
> −4× 10−16

8For simplicity, when defining e1 and e2 we take the derivatives in the (1, 0), or x direction. Due to the fact
that vl is a lamellae, the derivative along (1, 0) is proportional to the derivative along the direction (1, 1).
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Figure 13: Plot of the first three eigenvectors of the operator B − 2(vl)2, corresponding to the
eigenvalues below 0. The plot of vl corresponding to eigenvalue 0 is given in Figure 12. The
eigenvectors very closely resemble the symmetry transformations e1, e2, e3.

Figure 14: Plot of e5, the eigenvector corresponding to the first eigenvalue above 0.

where in the middle line we used the Poincaré-type inequality9 ||f || ≥ (1/4)||f ||H−1 , and in
the last line, we optimized over ||f ||H−1 . We arrive at the following result. Let w be the exact
global minimizer over perturbations f ∈ Z, then

0 ≤ F1[vl]−F1[w] < 4× 10−16.

The subspace U : We make a general remark regarding lamellae functions. Suppose vl

is a mean zero (〈vl〉 = 0) lamellae function oriented along the vector n = 1√
2
(−1, 1). Namely

n ·∇vl = 0. Let f be any lamellae function in the perpendicular direction along n⊥ = 1√
2
(1, 1).

Then f3 is also lamellae along n⊥ and hence the integral 〈vlf3〉 = 0 by virtue of the fact that
〈vl〉 = 0. Let f be any function such that n⊥ · ∇f = 0. Then the energy in such directions is
always positive

δvlF1[f ] = b(f, f) + 〈vlf3〉+
1

4
〈f4〉 (4.16)

= b(f, f) +
1

4
〈f4〉 (4.17)

≥ 0 (4.18)

Now suppose w is a global minimizer with f = w − vl ∈ U . Then translating f so that
〈f, e1〉 = 0, we have that f = ae2 + be3 for some constants a, b. It follows that f is a lamellae

9Here 1/4 is the Poincaré constant for the torus with length 4π.
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function along n⊥ and hence F1[w] ≥ F1[vl] has a higher energy.

The subspace V: We have that ±vl solves the Euler-Lagrange equations (to a tolerance
ε), with a positive semi-definite second variation b(f, f) ≥ 0. Since the energy F1[λvl] is a
quartic in λ, there are only 2 local minima found at λ = ±1. Hence vl is almost optimal in V.

Unfortunately, the non-convexity of F1 implies that we could still lower the energy by
taking directions which are linear combinations of elements of Z and suitable combinations of
e1 . . . e4. Ideally, we would like a lower bound Q[f ] for all f ∈ H:

δvlF1[f ] ≥ Q(f, f)

For example, if f = g(x) + h(x) with g ∈ V and h ∈ Z, we have

δvlF1[g + h] ≥ Q1[g] +Q2[h] + cross terms in g and h,

for positive Q1 ≥ 0 and positive-definite Q2. It is not clear at this time how to use the structure
of the energy to control these cross terms.

Thus at this stage, we have computed a lamellar structure vl for which we can conclude: The
computed structure is close (up to numerical error) to being a global minimizer on the infinite
dimensional subspace m + Z. If it is not close to the global minimizer over the entire space
m+H, then the difference between it and a global minimizer must have a non-zero component
in both U

⊕
V and Z. Noting that e1 . . . e4 are directly linked to symmetry transformations

of vl (cf. Figure 13), these conclusions provide some support that vl is indeed close to a global
minimizer over all of m+H.

4.5 Analysis of the lamellar phase of (OK) on an aymmetric torus.

In light of the discrete flip symmetries on the square torus, we now consider an asymmetric
torus. In breaking the asymmetric flip symmetry about the line y = x, the symmetry group G
that leaves F invariant is reduced while the stabilizer H for a lamellar phase stays the same.
In this setting, we provide numerical evidence that a lamellar phase is optimal for certain
aspect ratios and parameters γ. This optimality is not surprising as in Section 5, we will use
our first lower bound to prove, for suitable aspect ratios, the optimality of a lamellar phase.
To this end, we fix Lx = 4π as before, γ = 2.15 but vary Ly > 0. For each Ly, we compute
the candidate minimizer, and using the algorithm in appendix A, we compute the constrained
minimizer to the eigenvalue problem (4.14). We find that for values of Ly < 3.82, the smallest
constrained eigenvalue λ1 is zero up to numerical errors. For Ly > 3.82, the eigenvalue drops
below zero.

Remark 4 (Two Remarks on the Choice of Parameters and the Use of the First
Lower bound). (i) For the lamellar states of the previous three subsections, we used param-
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Figure 15: Left: shows the irregular potential (4.19). Right: candidate minimizer v for m = 0
and γ = 1.25. Here v satisfies the Euler-Lagrange equation with an H−1 error of ∼ 2× 10−5.

eters which were close to the ODT. As γ becomes large the energy landscape becomes very
flat10 (cf. Section 6).

(ii) One could also pursue the analysis of the last subsections using the improved second
quadratic bound which uses the inner product induced by b to obtain a tighter lower bound.
To do so would require working on a subspace orthogonal to the null directions of b to enforce
its positive definiteness on the appropriate subspace. Hence this strategy is worth pursuing
only once we have a better treatment/understanding of the role of symmetries.

4.6 Analysis of non-constant state for (OK) with a spatially non-symmetric
potential.

In this subsection, we examine candidate minimizers for the (OK) functional with the addition
of a spatially dependent potential term V (x) which breaks the symmetries in the domain. We
consider the modified functional

(OK-V) F3[u] :=

∫
Ω

1

2
γ−2|∇u|2 +

1

2
|∇∆−1(u−m)|2 +

1

4
(1− u2)2 +

1

2
V (x)(u−m)2 dx.

If V (x) is asymmetric in space, then the functional (OK-V) may admit a unique non-constant
v 6= m global minimizer. Since there are a wide variety of potentials one could take, we choose
one (somewhat arbitrarily) that varies smoothly in space and shares the same periodicity as
the domain Ω.

V (x) = cos

(
2π

x2

D2

)
cos

(
2π

y2

D2

)
− Vm where Vm = −

∫
Ω

cos

(
2π

x2

D2

)
cos

(
2π

y2

D2

)
dx.

(4.19)

10We refer to an energy landscape of a functional F in the vicinity of a local minimize v as flat, if the associated
b(f, f) has an eigenvalue ε� 1 with eigenvector fε (with ||fε|| = 1). These directions fε need not be related to
symmetries of v. We observe that as one either increases the domain Ω or increases γ in (OK), i) the number
of small eigenvalues ε of b(f, f) increase, and ii) the amplitude of the small eigenvalues also decrease. Hence, in
this respect we say (OK) becomes increasingly flat.
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Figure 16: Evolution of energy (left) and the H−1 gradient (right) for a gradient flow of
(OKV) with random initial data. Here m = 0 and γ = 1.25. Note that the evolution implies
a non-convex energy landscape.

We now apply our approach to examine candidate minimizers for (OK-V) near the ODT
curve. We take the domain size Lx = Ly = 4π and m = 0. For m = 0 and the associated
domain, the constant solution v = m = 0 becomes unstable for γ ≈ 1.23. Choosing the
value γ = 1.25 and a grid of 256 × 256, we run a gradient flow of (OK-V) with random
initial data to obtain our candidate minimizer v. Figure 15 shows the candidate minimizer,
while Figure 16 shows the evolution of the energy and associated gradient during the gradient
flow. We note that although the gradient does not decrease monotonically, for the current
parameters we could not find other distinct local minima suggesting that perhaps v is also the
only local minimum. Once we obtain a candidate minimizer v, we then compute the two lower
bound coefficients Cj for j = 1, 2 to determine if they are non-negative. We note that in the
calculations 〈V f2〉 is directly added into the bilinear form b(f, f) and 2V (x) is added to the
associated operator B.

Since F3 and m = 0 is invariant under v → −v, any convex (quadratic) lower bound must
be optimal in the direction f = −v. Hence, any lower bound coefficient Cj ≤ 0 for j = 1, 2. We
seek to show that for the current parameters γ, the lower bound coefficient is optimal (Cj = 0).

For our candidate v at γ = 1.25, we compute the first 3 eigenvalues of (4.9) as

−0.0001 0.0149 0.025

yielding C1 = −0.0001. As expected, the first eigenvalue is (up to numerical errors) 0 and
corresponds to the function ψ = v satisfying (4.10). Furthermore, a convergence study, not
included here, shows that the smallest eigenvalue decreases in magnitude as one refines the
mesh, verifying that the smallest eigenvalue is 0.

Meanwhile the second eigenvalue λ2 = 0.0149 is bounded away from 0 implying that v is
the global minimizer11. We also compute the lower bound coefficient C2 = −0.0001.

We continue the procedure of verifying non-constant candidate minimizers for γ ≥ 1.25. Let
vγ parameterize the candidate minimizer for different γ. To obtain vγ , we start with γ = 1.25
and v1.25 as initial data. We then gradually (adiabatically) increase γ which continuously
changes the energy landscape of (OK-V). As the landscape changes, we constantly recompute

11Although the second eigenvalue 0.0149 is close to 0, the values are accurate to approximately 10−4.
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Figure 17: Coefficients of the quadratic lower bounds: solid line represents the coefficient using
the first lower bound while the dotted line represents the second lower bound. The solid curve
(C1 = λ1) is only piecewise smooth with kinks that arise from eigenvalue collisions. In addition
we also plot the second and third eigenvalues λ2 and λ3, as dashed lines to show how they
relate to the smallest eigenvalue of (4.9) λ1. Note that there is always an eigenvalue λ = 0.
The values numerically support that v is the global minimizer for γ < 1.269. For γ > 1.269,
two eigenvalues drop below 0.

the candidate minimizer using a gradient flow to obtain vγ . For each pair γ and vγ we then
compute the first 3 eigenvalues of the (4.9), as well as the lower bound coefficient C2 and
plot them in Figure (17). Here the plot shows that the second and third eigenvalue collide
with λ = 0 around the parameter γ ∼ 1.269. Hence, for values γ < 1.269, we have up to
numerical errors, verification that our computed vγ is the global minimizer to (OK-V), while
for γ > 1.269, the lower bound contains negative definite directions.

5 A Rigorous Connection Between 1D and 2D Minimizers of
(OK)

In this section we focus on (OK) on a rectangular torus of side lengths Lx by Ly. We use our
first convex lower bound to rigorously prove that for certain values of γ, Lx, and Ly, any global
minimizer v(x) for the 1D problem on the torus [0, Lx], is automatically a global minimizer
on the 2D torus. An asymptotic result, similar in spirit, for a sharp interface version of (OK)
was recently presented in [17]. However, we remark that our approach is elementary and yields
exact values for γ and Ly. We first prove that in a certain explicit regime for Ly and γ, any
global minimizer on the 2D torus must be a function of x only.

Theorem 5.1. Fix Lx > 0, γ > 0 and let Ly > 0 be such that Ly ≤ 2π
γ . Let v(x, y) be a global

minimizer for F1 on the two dimensional torus Ω = [0, Lx]× [0, Ly]. Then v(x, y) is a function
only of x, i.e. v(x, y) = v(x).

Proof. Our proof requires a simple result regarding the criticality of 1D functions with respect
to y-dependent perturbations. Specifically, let w(x) ∈ H1(Ω) be any function depending only
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on x (not necessarily a critical point of the functional F1), and let f(x, y) ∈ H (i.e., a function

in H1(Ω) with average 0) such that
∫ Ly

0 f(x, y) dy = 0 holds for a.e. x ∈ [0, Lx]. We claim the
first variation in f vanishes, i.e.,

2 a(w, f) +

∫
Ω
w(w2 − 1)f dx

=

∫
Ω
γ−2(∇w) · (∇f) + (−w + w3)f dx +

∫
Ω

(
∇(−∆)−1(w −m)

)
·
(
∇(−∆)−1f

)
dx

= 0 (5.1)

This follows by using Fubini’s theorem and integrating over the y variable first to show that
all the integrals above (5.1) vanish separately. To this end, we start with the non-local term.
First note that W := (−∆)−1(w(x)−m) depends only on x. Now let F := (−∆)−1f . Assume
for the moment that f ∈ C∞(Ω), hence, by elliptic regularity F ∈ C∞(Ω). Then

−∂xxF − ∂yyF = f =⇒ −∂xx
(∫ Ly

0
F dy

)
−
∫ Ly

0
∂yyF dy =

∫ Ly

0
f dy = 0.

Hence

−∂xx
(∫ Ly

0
F dy

)
= 0.

Since F is continuous on the torus, we have

∂x

(∫ Ly

0
F (x, y) dy

)
= 0.

The non-local term reduces to∫
Ω

(∂xW )(∂xF ) dx =

∫ Lx

0
(∂xW )

(∫ Ly

0
∂xF dy

)
dx

=

∫ Lx

0
(∂xW ) ∂x

(∫ Ly

0
F dy

)
dx

= 0.

This property extends to f ∈ H1(Ω) by a density argument via a sequence fn ∈ C∞(Ω) which
converges in H1(Ω) to f , in which case the associated potentials Fn := (−∆)−1fn also converge
to F in H1(Ω).

For the other terms we find that, for f ∈ C∞(Ω),∫
Ω
γ−2(∇w) · (∇f) dx =

∫ Lx

0
γ−2(∂xw)

(∫ Ly

0
(∂xf) dy

)
dx = 0,∫

Ω
(−w + w3)f dx =

∫ Lx

0
(−w + w3)

(∫ Ly

0
f dy

)
dx = 0.

Again, we use a density argument to extend to f ∈ H1(Ω). This proves (5.1).
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Suppose now that v(x, y) is a global minimizer to F1. We show that the projection of
v(x, y) onto a 1D pattern has lower energy. Let f(x, y) ∈ H1(Ω) be such that

v(x, y) = w(x) + f(x, y) where w(x) =
1

Ly

∫ Ly

0
v(x, y) dy.

By the mass constraint, we have

1

Lx

∫ Lx

0
w(x) dx = m and

∫ Ly

0
f(x, y) dy = 0 for a.e. x ∈ [0, Lx].

Now consider the energy difference between the global minimizer v(x, y) and its projection
w(x):

F1[v]−F1[w] = F1[w + f ]−F1[w]

= a(f, f) +

∫
Ω

3

2
w2f2 − 1

2
f2 + wf3 +

1

4
f4 dx dy

≥ a(f, f) +

∫
Ω

1

2
w2f2 − 1

2
f2

=

∫
Ω

γ−2

2
|∇f |2 +

1

2
|∇(−∆)−1f |2 − 1

2
f2 +

1

2
w2f2 dx dy

≥
∫

Ω

γ−2

2
(∂yf)2 − 1

2
f2 dx dy

≥

((
2π

Lyγ

)2

− 1

)
1

2

∫
Ω
f2 dx dy.

To pass to the second line, we made use of (5.1). To pass to the third line, we used the
analogous lower bound (our first lower bound) as in (4.8). To pass to the last line, we used the
Poincaré inequality on f for each slice as a function of y. Hence if Ly ≤ 2π

γ , then F1[w] ≤ F1[v].
Since by definition of v we have F1[w] ≥ F1[v], it follows that f ≡ 0 a.e. and v(x, y) = w(x)
a.e.

Since for the parameters in Theorem 5.1 the global minimizer to F1 in 2D, which depends
only on x, is also the global minimizer to F1 in one dimension [0, Lx], we have the following
immediate corollary:

Corollary 5.2. For the parameters in Theorem 5.1, any global minimizer to the 1D problem
on Ω is also a global minimizer to the 2D problem.

Note that while we stated and proved Theorem 5.1 on the 2D torus, the same is true on the
n-dimensional torus with Ly being the side length of all sides except that corresponding to x.
A similar argument would also yield, for instance, that if v(x, y) is a global minimizer for F1

on the 2D torus of size Lx × Ly, then for Lz ≤ 2π
γ , v(x, y, z) = v(x, y) is the global minimizer

on the 3D torus of size Lx×Ly ×Lz. In a similar spirit, if max{Lx, Ly} ≤ 2π
γ , then the global

minimizer is the constant state v = m.
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The previous theorem makes no use of the structure of v(x). On the other hand combining
the theorem with previous work on the 1D (OK) problem, we can now rigorously prove that
for certain values of γ, Lx, and Ly, a lamellar state is a global minimizer. Indeed, on the 1D
torus it has been shown in [18, 25] (for the case m = 0) and in [21] for general m, that for
γ > γc, a periodic structure v(x) must be a global minimizer. In fact, their results prove
more: Any global minimizer for γ > γc (in fact, even a suitable local minimizer) must be
periodic. See, for example, Theorem 1.1 of Ren & Wei in [21]. Theorem 5.1 implies that there
is a threshold for Ly/Lx, in terms of γc, below which the periodic lamellar structure v(x) is a
global minimizer on the 2D torus. In other words, this proves the existence of periodic lamellar
global minimizers to (OK) in higher dimensions. Precisely, we have the following result:

Corollary 5.3. Consider minimization of (OK) for any m ∈ (−1, 1) on an n-dimensional
flat torus with one fixed side length, L0 and n − 1 side lengths L. There exist values of γ
and L such that a periodic lamellar structure, i.e., a periodic structure depending only on one
variable, is a global minimizer.

6 Summary and Discussion

For a class of non-convex energy functionals, we have presented a simple strategy to verify
whether or not a given metastable state is a global minimizer. In addition to the Ohta-
Kawasaki, Phase-Field Crystal and other Swift-Hohenberg-type functionals, this class includes
the simpler classical Ginzburg-Landau and Cahn-Hilliard functionals. Our method was based
upon finding a global quadratic lower bound for the excess energy about a critical point. We
gave two simple ways to find such lower bounds.

In Section 3 we considered the simplest metastable state: the constant state. We showed
the the second approach for a lower bound worked particularly well; indeed for both the
Ohta-Kawasaki and Phase-Field Crystal energies, it gave a good estimate for the actual true
order-disorder curve in phase space. However, we also note that one might further improve the
current ODT estimate by analyzing the structure of the ratio in (3.7). Note that the method
was numerically robust and independent of domain geometry or dimension.

In Section 4 we applied our methodology to the verification of non-constant candidate
minimizers v 6≡ m. Here one must deal with certain symmetry invariants of the energy, and
appropriately constrain the class of perturbation methods. Focusing on the Ohta-Kawasaki
energy and our first lower bound, we showed that this can be successfully done on the 1D torus
and on certain asymmetric 2D tori. In these cases, we computed a lamellar state for which
we were able to numerically verify was close to being globally optimal. On the symmetric
2D torus, however, the additional symmetry invariants led us to only a partial answer. Here
we were able to argue global optimality of a computed lamellar state only with respect to
perturbations which were orthogonal to four eigenfunctions directly tied to symmetries of vl.

In Section 5 we used our first lower bound to prove that global minimizers to the Ohta-
Kawasaki energy on the 1D torus are also global minimizers on certain asymmetric higher-
dimensional tori. Combining this result with previous work on the 1D torus, we were able to
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prove the existence of periodic, lamellar global minimizers to the Ohta-Kawasaki energy on
certain higher-dimensional domains.

We conclude with a few observations. The addition of symmetries in the energy functionals
lead to degenerate global minimizers. As a general observation, using a lower bound functional
to verify that a state is a global minimizer requires either: i) removing search directions of
symmetry or ii) requiring that the lower bound be optimal (flat) in any direction of symmetry.

One difficulty when dealing with the (OK) functional is that the energy landscape becomes
very flat as γ becomes large. Specifically, if v is a global minimizer of F1 and b(f, f) ≥ 0 is the
second variation about v, then as γ becomes large, b(f, f) contains many directions f along
which b(f, f) is small. Furthermore, as the domain size becomes large, the addition of the long
wavelengths can introduce more directions where b(f, f) becomes small. Indeed, one might
wonder as to why in Sections 4.3-4.6 we chose a value for γ close to 2 (i.e., close to the ODT
curve). Here the number of eigenvalues less that 0 to the operator B − 2v2 increases with
γ. By choosing values of γ close to 2 we restrict the number of eigenvalues less than 0 to 3.
The eigenvectors appear both related to the smallest eigenvalues of B (without the potential
v2) as well as the symmetries of the domain. For large values of γ many more eigenvalues
appear which are less than 0. In addition, although many of the eigenvectors appear to be
associated with symmetries of the domain, many do not. Hence, the approach presented here,
using a quadratic lower bound and accounting for symmetries, is restricted to small values
of γ. For example, we also examined the operator B − 2v2 using the (far from the ODT)
parameters γ = 10 and m = 0.25 mentioned in Figure 1. We did so about both the hexagonal
and lamellae states where we believe the hexagonal structure is the true ground state. In both
cases several eigenfunctions appeared to be related to translations of the hexagonal or lamellae
state. However, in both cases, we also found eigenfunctions with additional structures. Since
the quadratic functional containing the operator B − 2v2 is only a lower bound to the energy,
there is no a priori reason that eigenfunctions with eigenvalues less that 0 should represent
physically lower energy states – but only rather that they may suggest such states.
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which substantially improved the article. The authors would like to thank Ben Mares, Cyrill
Muratov, Leo Stein, Marco Veneroni, and Thomas Wanner for useful conservations, comments,
and suggestions. This research was partly supported by NSERC (Canada) Discovery Grants.
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A Appendix: Solving the Constrained Eigenvalue Problem

We seek to compute the minimizer of 〈ψ, (B − 2v2)ψ〉 subject to

〈ψ2〉 = 1

〈ψ, ∂xv(x)〉 = 0

Due to the large matrices involved, it is more efficient to first ignore the orthogonality
constraint and build a low rank approximation to (B−2v2) over the entire unconstrained space.
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Once the low rank approximation is built, we then project out the appropriate orthogonality
constraints and solve for the minimizer of (B − 2v2).

1. Build numerical finite difference operators:

L = γ−2(∆2)− (∆)(3v2(x)− 1) + I,

D = (−∆)

2. Use MATLABs eigenvalue function

[Q Λ] = eigs(L, D, k, ′sm′)

to compute the first k eigenvectors and values to the eigenvalue problem:

Lqj = λjDqj j = 1 . . . k

Here Q = [q1 q2 . . . qk], while Λ = diag[λ1 λ2 . . . λk].

3. Orthonormalize q with respect to the standard `2 inner product (if they are not orthonor-
mal already).

We now have the numerical representation for operator (B − 2v2) as follows:

(B − 2v2) ≈ D−1L

= QΛQT + R

where RT = R is a remainder term. Choose k large enough so that R is a positive-definite
matrix. Hence for any discrete vector ψ, we then have:

ψTD−1Lψ ≥ ψTQΛQTψ for all ψ

Finally, we minimize ψTQΛQTψ over the subspace ψTe1 = 0 with ||ψ|| = 1, where e1 ≈ ∂v
∂x

is the discrete vector for ∂v
∂x . The above problem can be solved using straightforward methods

as k will generally be small.
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