1. a
$$1 + \frac{1}{1/2} + \frac{1}{2} + \frac{1$$

2.
$$x_{c}(t) = \sqrt{2} \operatorname{sinc}(t) \operatorname{cos}(2\pi \operatorname{toot} + 2\pi t)$$

a. $x_{c}(t) = \sqrt{2} \operatorname{sinc}(t) \operatorname{cos}(2\pi t) \operatorname{cos}(2\pi \operatorname{toot})$
 $x_{1}(t) = \sqrt{2} \operatorname{sinc}(t) \operatorname{sin}(2\pi t) \operatorname{sin}(2\pi \operatorname{toot})$
b. $x_{4}(t) = \sqrt{x_{1}(t)^{2} + x_{6}(t)^{2}}$
 $= \sqrt{(\operatorname{sinc}(t))^{2}}$
 $= \sqrt{(\operatorname{sinc}(t))^{2}}$
 $= \sqrt{(\operatorname{sinc}(t))^{2}}$
 $= \sqrt{\operatorname{sinc}(t)}$
c. $\operatorname{Ref} X_{2}(f) = \operatorname{Re} \left\{ X_{1}(f) \right\} - \operatorname{Im} \left\{ X_{0}(f) \right\}$
 $x_{2}(f) = X_{2}(f) + x_{6}(f)$
 $x_{2}(f) = x_{1}(f) + x_{6}(f)$
 $x_{2}(f) = x_{2}(f) + x_{6}(f) + x_{6}(f)$
 $x_{2}(f) = x_{2}(f) + x_{6}(f) + x_{6}(f$

4.
$$B_T = 20 \text{ MHz}$$

a. Since $B_T = 2W$ for AM, we have $W = 10 \text{ MHz}$
b. Since $B_T \simeq 2W(D+1)$ with $D = \frac{1}{2\pi} \frac{3W}{W} = \frac{3}{2\pi}$
we obtain
 $B_T \simeq 2W(1+\frac{3}{2\pi}) = 20 \text{ MHz}$
 $\Rightarrow W \simeq 6.7 \text{ MHz}$