1. a $\quad \begin{gathered}1 \\ -1 \\ 0\end{gathered}$
b. $X(f)=\frac{1}{1000} \sin \left(\frac{f}{1000}\right)\left(+e^{-j \pi f}-e^{-j 3 \pi f}+e^{-j 5 \pi f}+e^{-j 7 \pi f}-e^{-j 9 \pi f}\right)$
c. $X(1000)=0 \Rightarrow\left\{\begin{array}{l}|x(1000)|=0 \\ \arg X(1000) \text { arbitrary }\end{array}\right.$
2. $\quad x_{c}(t)=\sqrt{2} \operatorname{sinc}(t) \cos (2 \pi 100 t+2 \pi t)$
a. $x_{c}(t)=\sqrt{2} \underbrace{\sin e(t) \cos (2 \pi t)}_{x_{1}(t)} \cos (2 \pi 100 t)$

$$
-\sqrt{2} \underbrace{\sin c(t) \sin (2 \pi t)}_{x_{a}(t)} \sin (2 \pi 100 t)
$$

b.

$$
\begin{aligned}
x_{A}(t) & =\sqrt{x_{I}(t)^{2}+x_{Q}(t)^{2}} \\
& =\sqrt{(\sin c(t))^{2}} \\
& =|\sin c(t)|
\end{aligned}
$$

$$
\text { c. } \begin{gathered}
\operatorname{Re}\left\{X_{z}(f)\right\}=\operatorname{Re}\left\{X_{I}(f)\right\}-\operatorname{Im}\left\{X_{Q}(f)\right\} \\
X_{z}(f)=X_{I}(f)+j X_{a}(f)
\end{gathered}
$$

where

$80:$

d. $X_{c}(f)=\frac{1}{\sqrt{2}}\left(X_{z}\left(f-f_{c}\right)+X_{z}^{*}\left(-f-f_{c}\right)\right)$

3. $x_{c}(t)=(\sin (20 \pi t)+\cos (10 \pi t)) \cos (2 \pi 1000 t)$
a.
$\alpha\left|X_{c}(f)\right|$

We need a dieter $H_{c}(f)$ as folloriss

b. Baseband domain

4. $B_{T}=20 \mathrm{MHz}$
a. Since $B_{T}=2 W$ for $A M$, we have $W=10 \mathrm{MHz}$
b. Since $B_{T} \simeq 2 w(D+1)$ with $D=\frac{1}{2 \pi} \frac{3 w}{w}=\frac{3}{2 \pi}$ we obtain

$$
\begin{aligned}
& B_{T} \simeq 2 W\left(1+\frac{3}{2 \pi}\right)=20 \mathrm{MHz} \\
& \Rightarrow W \simeq 6.7 \mathrm{MHz}
\end{aligned}
$$

