1. (2 points) Consider a binary random process that, with probability 1/3, is a stationary Markov chain with transition probabilities (from 0 to 1 and from 1 to 0) both equal to 1/3, and with probability 2/3 is a memoryless Ber(1/2) process.
 a. Calculate the entropy rate.
 b. Suggest a compression scheme that achieves the entropy rate.

2. (1 point) The transmitter chooses an hour of the day and the recipient receives information about the correct hour with probability 1/2 and about the previous or next hour with equal probability 1/4. No information about the day information is sent and hence the hour alphabet is \{0,...,23\} with 23+1=0. What is the capacity of this channel?

3. (1 point) Are the sequences \(x^4 = (0,0,0,1) \) and \(y^4 = (0,e,1,1) \) jointly typical for \(\epsilon = 0.1 \) if the input distribution is Ber(0.5) and the channel is an erasure channel with erasure probability 0.3? Explain.

4. (2 points) Consider a memoryless source \(V^m \) and a memoryless channel \(p(y|x) \), used \(n \) times, which has capacity \(C \). Prove that, even with feedback, the condition \(n/m > H(V)/C \) is necessary to ensure vanishing probability of error as \(m \) and \(n \) go to infinity. For this purpose, use the data processing inequality, the Fano inequality and steps similar to the converse on the channel capacity.

5. (1 point) Given an i.i.d. sequence \(X^n \) of variables with zero mean and power 1, what are the probabilities of the events \(\frac{1}{n} \sum_{i=1}^{n} X_i^2 < 1.1 \) and \(\frac{1}{n} \sum_{i=1}^{n} X_i^2 < 0.9 \) when \(n \) is large?

6. (1 point) Find the maximum entropy distribution \(p(x) \) with \(\mathcal{X} = \{0,1,2\} \) and \(E[X^2] = 1 \).

7. (2 points) Prove that for any analog source with differential entropy \(h \), the mean squared distortion must satisfy the inequality \(D \geq \frac{2^{2h}}{2\pi e} 2^{-2R} \) if \(R \) is the number of available bits per source sample.

8. (3 points) Consider a ternary source with alphabets \(\mathcal{X} = \{0,?,1\} \) and pmf \(p(?) = q \) and \(p(0) = p(1) = (1 - q)/2 \)
 a. Calculate the entropy of this source.
 b. Calculate the rate-distortion function for this source with reproduction alphabet \(\hat{\mathcal{X}} = \{0,1\} \), under distortion metric \(d(x, \hat{x}) \) defined as \(d(i, i) = 0 \) for \(i \in \{0,?,1\} \); \(d(0,1) = d(1,0) = \infty \); and \(d(?, i) = 0 \) for \(i \in \{0,1\} \).