1. $x(t)=4 \cos (6 \pi t)+\sin (2 \pi t)$
a. $X(f)=2 \delta(f-3)+2 \delta(f+3)+\frac{1}{2 j} \delta(f-1)-\frac{1}{2 j} \delta(f+1)$
b. $x_{1}=\frac{1}{2 j}, x_{1}=-\frac{1}{2 j}, x_{3}=2, x_{3}=2, x_{n}=0$ elsewhere
C.

d.

2. $\quad x_{z}(t)=5+j e^{j 4 \pi t}=5-\sin (4 \pi t)+j \cos (4 \pi t)$
a. x

$$
\begin{aligned}
& x_{2}(t)=5-\sin (4 \pi t) \\
& x_{2}(t)=\cos (4 \pi t)
\end{aligned}
$$

b. $X_{z}(f)=5 \delta(f)+j \delta(f-2)$

It does not satisfy hermitian symmetry because the signal $x_{z}(t)$ is complex.
e. $X_{c}(t)=\sqrt{2} \operatorname{Re}\left\{\left(5+j e J^{4 \pi t}\right) e j^{60 \pi t}\right\}$

$$
\begin{aligned}
& =5 \sqrt{2} \cos (60 \pi t)+\sqrt{2} \cos (64 \pi t+\pi / 2) \\
& =\sqrt{2} \underbrace{(5-\sin (4 \pi t)}_{x_{I}(t)}) \cos (60 \pi t)-\sqrt{2} \underbrace{\cos (4 \pi t)}_{x_{2}(t)} \sin (60 \pi t)
\end{aligned}
$$

d. $X_{c}(f)=\frac{1}{\sqrt{2}}(5 \delta(f-30)+j \delta(f-32)+5 \delta(f+30)-j \delta(f+32))$

It does satisfy Hermitau symmetry since $X_{a}(t)$ is real.
3. $\quad 1 / T_{S}=10 \times 2 \times\left(10+\frac{1}{8}\right)=45$

4.

a,

$$
\begin{aligned}
& x_{p}(t)=2 m(t) \\
& x_{c}(t)= \begin{cases}\sqrt{2} \cos (40 \pi t+2 t) & \text { fr } 0 \leq t \leq 1 \\
\sqrt{2} \cos (40 \pi t) & \text { elsewhere }\end{cases}
\end{aligned}
$$

b. Using Cousin's formula: $B_{T} \simeq 2 W(1+D)$

$$
\begin{aligned}
W & \simeq 5 \mathrm{~Hz} \\
D=\frac{2}{2 \pi w} m a x\left|\frac{d m(t)}{d t}\right|=\frac{1}{5 \pi}=0.063 & \Rightarrow B
\end{aligned} \begin{aligned}
& \simeq 10(1+0.063) \\
& =10.63 \mathrm{~Hz}
\end{aligned}
$$

c. $x_{P}(t)=2 \int_{0}^{t} m(t) d t=q \frac{t^{2}}{4}$ for $0 \leq t \leq 1$

$$
x_{0}(t)= \begin{cases}\sqrt{2} \cos \left(40 \pi t+t^{2}\right) & \text { fo } 0 \leq t \leq 1 \\ \sqrt{2} \cos (40 \pi t+1) & \text { elsewhere }\end{cases}
$$

d. $D=\frac{2}{2 \pi W} \max |m(t)|=0.063 \Rightarrow B_{T} \simeq 10.63 \mathrm{~Hz}$
5.d. $r_{c}(t)=\sin (2 \pi(t-0.2)) \cos (20 \pi(t-0.2))$

$$
\begin{aligned}
r_{c}(t) & \left.=\sqrt{2} \operatorname{Re}\left\{\frac{1}{\sqrt{2}} \sin (2 \pi(t-0.2)) e\right)^{20 \pi(t-0.2)}\right\} \\
& \simeq \sqrt{2} \operatorname{Re}\{\underbrace{\frac{1}{\sqrt{2}} \sin (2 \pi(t-0.2)) e^{-j 4 \pi}}_{r_{z}(t)} e)^{20 \pi t}\}
\end{aligned}
$$

b.

\Rightarrow the output ripral is seno.

