ECE 642 - Midterm Fall 2013

Please justify all your responses (responses without justifications will not be considered). Please label your axes and plot with care.

- 1. (2 points) For the signal $x(t) = 4\cos(6\pi t) + \sin(2\pi t)$:
- a. Calculate the Fourier transform.
- b. Calculate the Fourier series.
- c. Plot the absolute value of the Fourier transform.
- d. Plot the phase of the Fourier transform.
- **2.** (4 points) For the complex envelope $x_z(t) = 5 + je^{j4\pi t}$:
- a. Calculate $x_I(t)$ and $x_O(t)$.
- b. Calculate and plot $X_z(f)$ (both amplitude and phase). Does it satisfy Hermitian symmetry? Why?
 - c. Calculate the passband signal $x_c(t)$ for carrier frequency $f_c = 30$ Hz.
- d. Calculate and plot $X_c(f)$ (both amplitude and phase). Does it satisfy Hermitian symmetry? Why?
- 3. (1 point) Consider the signal $\operatorname{sinc}(\frac{t-1}{4})\cos(20\pi t)$. Choose an appropriate sampling frequency.
- **4.** (2 points) A baseband message is given as m(t) = t for $0 \le t \le 1$ and x(t) = 0 elsewhere.
- a. Calculate the passband signal $x_c(t)$ obtained with PM modulation with $A_c = 1$, $f_c = 20$ Hz and $k_p = 2$.
- b. What is the bandwidth of the signal $x_c(t)$ of the previous point (you can approximate the bandwidth of the message with that of a rectangle of the same duration)?
- c. Calculate the passband signal $x_c(t)$ obtained with FM modulation with $A_c = 1$, $f_c = 20$ Hz and $k_f = 2$.
- d. What is the bandwidth of the signal $x_c(t)$ of the previous point (you can approximate the bandwidth of the message with that of a rectangle of the same duration)?
- 5. (1 point) A passband signal is given as $r_c(t) = \sin(2\pi(t-0.2))\cos(20\pi(t-0.2))$.
 - a. Calculate the baseband equivalent $r_z(t)$.
- b. A filter with baseband equivalent $H_z(f) = 1$ for $-1/2 \le f \le 1/2$ and H(f) = 0 elsewhere is applied. Calculate the passband output of the filter.