Please provide clear and complete answers.

1. (4 points) Consider the optimization problems P1, P2, P3 and P4 below, where $f_o(x)$ is the cost function and $f_1(x)$ defines the inequality constraint (i.e., the problem is "minimize $f_o(x)$ s.t. $f_1(x) \leq 0$"):

P1. $f_o(x) = x$, $f_1(x) = |x|$ with domain $D = \mathbb{R}$;

P2. $f_o(x) = x^3$, $f_1(x) = -x + 1$ with domain $D = \mathbb{R}$;

P3. $f_o(x) = x^3$, $f_1(x) = -x + 1$ with domain $D = \mathbb{R}^+$;

P4. $f_o(x) = x$, $f_1(x) = \begin{cases}
-x - 2 & \text{for } x \leq -1 \\
-2 & \text{for } -1 \leq x \leq 1 \\
x & \text{for } x \geq 1
\end{cases}$ with domain $D = \mathbb{R}$.

a. For all the problems above, state whether the problem is convex and, if so, whether Slater’s condition holds.

b. For all the problems above, derive and plot the perturbation function $p(u)$, and identify p^*, d^* along with x^* and λ^* if they exist (please provide all the necessary details).

Sol.:

P1. a. The problem is convex, and Slater’s condition does not hold.
b. The perturbation function is $p(u) = -u$ with $domp = \{u : u \geq 0\}$. We thus have $p^* = d^* = 0$ with $x^* = 0$ and $\lambda^* = 1$ (more precisely, any $\lambda^* \geq 1$ is dual optimal).

P2. a. The problem is not convex.
b. The perturbation function is $p(u) = (1 - u)^3$ with $domp = \mathbb{R}$. We thus have $p^* = 1$, while $d^* = -\infty$, with $x^* = 1$ (the value of d^* can of course also double checked by solving the dual problem).

P3. a. The problem is convex and Slater’s condition is satisfied.
b. The perturbation function is $p(u) = (1 - u)^3$ for $u \leq 1$ and $p(u) = 0$ for $u > 1$. We thus have $p^* = 1$, while $d^* = 1$, with $x^* = 1$ and $\lambda^* = -dp(0)/du = 3$.

P4. a. The problem is not convex.
b. The perturbation function is $p(u) = -2 - u$ with $domp = \{u : u \geq -1\}$. We thus have $p^* = d^* = -2$, with $x^* = -2$ and $\lambda^* = 1$.

2. (2 points) Consider the following problem

$$\begin{align*}
\text{minimize } & \|Ax - b\|_2^2 \\
\text{s.t. } & Gx = h
\end{align*}$$

with $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{m \times n}$ with $\text{rank}(A) = n$ and $G \in \mathbb{R}^{p \times n}$ with $\text{rank}(G) = p$.

a. Calculate the dual function.
b. Write the KKT conditions. Do you expect to be able to find a solution?
c. Find the optimal multiplier vector and the optimal solution as a function of the optimal multiplier.
a. The Lagrangian function is
\[\mathcal{L}(x, \nu) = \|Ax - b\|^2 + \nu^T(Gx - h) \]
\[= xA^TAx + (G^T\nu - 2A^Tb)^T x - \nu^Th, \]
and the dual function is thus obtained by minimizing the above strictly convex function, obtaining
\[g(\nu) = -\frac{1}{4}(G^T\nu - 2A^Tb)^T(A^TA)^{-1}(G^T\nu - 2A^Tb) - \nu^Th. \]
b. The KKT conditions are
\[2A^T(Ax^* - b) + G^T\nu^* = 0 \]
\[Gx^* = h. \]
Since the problem is convex and satisfies Slater’s conditions (it is feasible), an optimal point exists if and only if the KKT have a solution. From Weierstrass theorem, an optimal solution exists, and therefore the KKT must have a solution.
c. From the first KKT condition, we calculate
\[x^* = (A^TA)^{-1}(A^Tb - (1/2)G^T\nu^*), \]
which gives us from the second equation:
\[\nu^* = -2(G(A^TA)^{-1}G^T)^{-1}(h - G(A^TA)^{-1}A^Tb). \]

3. (2 points) Consider a convex problem characterized by cost function \(f_o(x) \), inequality constraints \(f_i(x) \leq 0, \ i = 1, \ldots, m \) and equality constraints \(h_i(x) = 0, \ i = 1, \ldots, p \). Prove that the perturbation function \(p(u, v) = \inf f_o(x) \), where the infimum is taken under the constraints \(f_i(x) \leq u_i \) and \(h_i(x) = v_i \ (u = (u_1, \ldots, u_m), \ v = (v_1, \ldots, v_p)) \), is a convex function. Recall that you have to prove also that the domain is a convex set.

Sol: Consider the following function
\[g(x, u, v) = \begin{cases} \tilde{f}_o(x) & \text{if } f_i(x) \leq u_i \\
\infty & \text{and } h_i(x) = v_i \\
\infty & \text{otherwise} \end{cases} \]
where \(\tilde{f}_o(x) \) is the extended value extension of \(f_o(x) \). The function \(g(x, u, v) \) is convex in \(x, u, v \), as it can be shown from the definition of convex function. To see this, define \(y = (x, u, v) \). Now consider any \(y_1, y_2 \) and a convex combination \(y = \theta y_1 + (1 - \theta) y_2 \ (0 \leq \theta \leq 1) \). We need to show that
\[g(y) \leq \theta g(y_1) + (1 - \theta) g(y_2). \]
There are two cases. 1) If \(g(y) = \infty \), then necessarily we must have \(g(y_1) = \infty \) and/or \(g(y_2) = \infty \). In fact, if \(g(y_1) \) and \(g(y_2) \) were finite, then, by the convexity of \(\tilde{f}_o(x) \) and \(f_i(x) \) and the fact that \(h_i(x) \) is affine, \(g(y) \) would be finite too. 2) If \(g(y) \) is finite, then we have
two subcases. 2.a) \(g(y_1) = \infty \) and/or \(g(y_2) = \infty \): in this case, the inequality is apparent; 2.b) \(g(y_1) \) and \(g(y_2) \) are finite: in this case, we have

\[
g(y) = f_o(x) \leq \theta f_o(x_1) + (1 - \theta)f_o(x_2) = \theta g(y_1) + (1 - \theta)g(y_2),
\]

which concludes the proof.

Finally, by infimizing over \(x \) we thus obtain a convex function.

4. (2 points) Consider the multiobjective optimization problem (with respect to cone \(\mathbb{R}^2_+ \)) with objective function \(f_o(x) = [F_1(x) F_2(x)]^T \) where \(F_1(x) = x_1^2 + x_2^2 \) and \(F_2(x) = (2x_1 + 3)^2 \).

a. Evaluate all the Pareto optimal values and points via scalarization (give explicit expressions for both values and points). I

b. Solve the scalarization problems with either weight equal to zero. For both cases, are the solutions of the scalar problem also Pareto optimal?

Sol.: Since the problem is convex, we know that all Pareto optimal points can be obtained via scalarization with some weight vector \(\lambda \succeq 0 \). We now fix some \(\lambda \succ 0 \) and solve the problem

\[
\text{minimize } \lambda_1(x_1^2 + x_2^2) + \lambda_2(2x_1 + 3)^2,
\]

which is equivalent to

\[
\text{minimize } (\lambda_1 + 4\lambda_2)x_1^2 + \lambda_1x_2^2 + 12\lambda_2x_1 + 9\lambda_2.
\]

Any solution to this problem will give us a Pareto optimal point and value. Since the cost function is strictly convex, the corresponding Pareto optimal point is given as

\[
x^*(\lambda_1, \lambda_2) = \left[\frac{-6\lambda_2}{\lambda_1 + 4\lambda_2} \right],
\]

which can be also restated in terms of \(\mu = \lambda_2/\lambda_1 \) as

\[
x^*(\mu) = \left[\frac{-6\mu}{1 + 4\mu} \right],
\]

and the value is obtained by substituting the above into \(f_o(x) \), which yields

\[
F_1^*(\mu) = \left(\frac{-6\mu}{1 + 4\mu} \right)^2,
\]

\[
F_2^*(\mu) = \left(\frac{-12\mu}{1 + 4\mu} + 3 \right)^2.
\]

To calculate the remaining Pareto optimal points and values, we need to let \(\mu \to 0 \) and \(\mu \to \infty \). With \(\mu \to 0 \), we obtain \(x^* = 0 \) and \(f_o^* = (0, 9) \), which corresponds to minimization of the norm only. This point can also be obtained with \(\lambda_2 = 0 \) and \(\lambda_1 = 1 \). With \(\mu \to \infty \), we obtain \(x^* = (-3/2, 0)^T \) and \(f_o^* = (9/4, 0) \), which corresponds to minimizing the error with the solution with minimum norm. Note that if we solved the scalarization problem with \(\lambda_2 = 1 \) and \(\lambda_1 = 0 \), any point with \(x_1 = -3/2 \) is a solution, but is not necessarily a Pareto optimal point.
5. (2 points) Consider the game described by the payoff matrix below

\[
\begin{array}{cc}
1 & 2 \\
0 & 1 \\
2 & 1 \\
1 & 0 \\
\end{array}
\]

a. Identify the Pareto optimal points, and the Nash equilibria in pure strategies.

b. Calculate all Nash equilibria in mixed strategies.

Sol.

a. Pareto optimal values are (1,2) and (2,1), and the Nash equilibrium in pure strategy is (2,1).

b. Considering mixed strategies, the average utilities are

\[
\bar{U}_1(p_1, p_2) = p_1 p_2 + (1 - p_1)(2p_2 + (1 - p_2))
\]

\[
= p_1 p_2 + (1 - p_1)(p_2 + 1)
\]

\[
= -p_1 + (p_2 + 1)
\]

\[
\bar{U}_2(p_1, p_2) = p_2(2p_1 + (1 - p_1)) + (1 - p_2)p_1
\]

\[
= p_2(p_1 + 1) + (1 - p_2)p_1
\]

\[
= p_2 + p_1.
\]

This shows that player 1 always chooses \(p_1 = 0 \), irrespective of the action of player 2, and player 2 chooses always action \(p_2 = 1 \) irrespective of the action of player 1. This is also clear from the payoff matrix. Therefore, there are no mixed strategy equilibria, but only pure strategy equilibria.