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large number of applications in distributed (sensor or ad hoc) wireless networks is 
enabled by, or benefit from, the availability of a common time scale among the 

participating nodes. Examples range from the tracking of moving objects via sensor 
networks to coordinated medium access control (MAC) or cooperative transmis-
sion. Achieving and maintaining synchronization in such scenarios poses new

challenges in terms of scalability and energy efficiency and offers new opportunities through the
interplay with specific distributed estimation/detection applications. In this context, an interest-
ing solution, which is currently being investigated, is provided by distributed synchronization
schemes based on the exchange of local time information among neighboring nodes at the phys-
ical layer (e.g., via transmission of a train of common waveforms that follows the local clock).

This article presents a survey of current research on distributed synchronization for decen-
tralized wireless networks and illustrates the role of signal processing therein, with emphasis on
physical layer-based synchronization schemes. The topic is introduced by tracing its origin in the
parallel investigations carried out independently in mathematical biology and communication
theory. Available models are discussed and compared. Open problems, such as the trade-off of
complexity versus accuracy and fault tolerance, are outlined and some solutions are provided
using tools from signal processing and algebraic graph theory. Available analytical results are
also reported, along with numerical examples that corroborate the main conclusions, lending
evidence to some interesting phenomena, such as small-world effects on distributed synchro-
nization. The close relationship between distributed synchronization and distributed estima-
tion/detection applications is discussed as well, showing the synergy between these two
problems. Finally, synchronization of nonperiodic signals (chaos) is briefly touched upon for
completeness and for its (debated) applicability to point-to-point wireless systems.
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INTRODUCTION
Synchronization refers to the process of achieving and maintain-
ing coordination among independent local clocks via the
exchange of local time information. Different synchronization
schemes differ in the way such information is encoded,
exchanged, and processed by the clocks toward the end of over-
coming the unavoidable nuisance effects of inaccurate clocks and
propagation/processing delays. Wireless communications provide
the natural platform for the exchange of local time information
between synchronizing clocks. Conversely, synchronization of
local clocks enables a wealth of signal processing and communi-
cation applications in wireless networks. It is this mutual link
between synchronization and wireless networks, with emphasis
on decentralized structures such as ad hoc and sensor networks,
that constitutes the main subject of this article. 

A BRIEF HISTORY OF MUTUAL 
TIME SYNCHRONIZATION
By the end of the 19th century, synchronization of a distant clock
to a reference time, also referred to as unidirectional or master-
slave synchronization, became a standard engineering procedure
thanks, first, to the advances in telegraphy and, later, wireless
transmission. Railroad transportation, geodesy (measurement of
longitude), and localization were just a few of the applications
enabled by this pervasive new technology. Synchronization of a
pair of distant clocks easily qualifies as an early signal processing
problem in the context of wired or wireless communications: esti-
mate the time offset between two clocks from measurements
affected by propagation delays and random hardware (and human)
imperfections [1]. The idea of synchronized time spurred an
intense debate in physics and philosophy that eventually produced
Einstein’s theory of relativity [1]. In this regard, it is interesting to
quote H. Poincaré: “Simultaneously is a convention, nothing more
than the coordination of clocks by a cross exchange of electromag-
netic signals taking into account the transit time of the signal.”

In the years following these efforts, scientists wondered at
the evidence of synchronization among distributed periodic
events in a number of natural phenomena. As late as 1961, Joy
Adamson wrote in awe of the observation of the synchronous
flashing of fireflies [2]: 

a great belt of light, some ten feet wide, formed by thou-
sands upon thousands of fireflies . . . the fluorescent band
composed of these tiny organisms lights up and goes out
with a precision that is perfectly synchronized, and one is
left wondering what means of communications they pos-
sess which enables them to coordinated their shining as
though controlled by a mechanical device. 
Other typical examples of spontaneous synchrony are the

activity of individual fibers in heart muscles to produce the
heartbeat or the synchronous hand clapping in a concert hall
[2], [3]. Analytical modeling of the dynamic establishment of
synchrony, even in the simplest abstractions of such scenarios,
challenged mathematical biologists for decades and culminated
in the landmark work by Winfree in 1967 [4] and later
Kuramoto [5]. It was followed by more recent analyses of
Crawford (see [6] and [7] for reviews and references), Mirollo,
and Strogatz [8]. In parallel, the communications community
started developing a theory of distributed synchronization for
telecommunications networks in the 1960s in order to support
the deployment of digital switching in the telephone network.
This work led to the theory developed by Lindsey et al. [9].

DISTRIBUTED SYNCHRONIZATION 
IN WIRELESS NETWORKS
In the area of wireless networks, cellular telephony has monopo-
lized the attention of researchers and industry for many years. In
this traditional infrastructured scenario, synchronization of
mobile stations can be achieved by exploiting a master-slave
structure with the base station broadcasting a beacon or training
signal. Applications encompass scheduling at the MAC layer and

coherent transmission/reception at the
physical layer. Distributed synchroniza-
tion based on wireless communications
plays a minor role in this context and has
been considered for frame timing syn-
chronization among base stations in [10].

More recently, distributed wireless
network structures, such as ad hoc, sen-
sor, or vehicular networks, have started to
attract significant interest. In such sce-
narios, the availability of a common time
scale, or of synchronized local oscillators,
enables a number of unique functionali-
ties at different layers of the protocol
stack. Some representative examples are: 
■ signal processing applications: data
fusion of time-sensitive measurements in
distributed estimation and tracking for
monitoring or surveillance based on sen-
sor networks [11]

[FIG1] An application of synchronization in wireless networks: coordinated (synchronous)
medium access control improves spectral/energy efficiency with respect to asynchronous
solutions by avoiding collisions and idle periods.
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■ spectral and energy-efficient networking: coordinated
MAC schemes such as time division multiple access or vari-
ants, which overcome the shortcomings of collision-based
schemes in terms of bandwidth efficiency [12] (see Figure 1);
energy-efficient MAC that exploits sleep scheduling [13]
■ cooperative transmission: collaborative transmission
through space-time coding [14], which requires mutual time
synchronization (also referred to as distributed synchroniza-
tion throughout the article) or distributed beamforming,
which demands mutual carrier synchronization [15].
If a fixed or mobile access point is available whose transmis-

sion radius covers the entire network (e.g., a mobile fusion center
in sensor networks [17]), then network synchronization can be
achieved in principle by having the access point broadcast a bea-
con timing signal, as in cellular networks.
This possibility is, for instance, enabled in
the IEEE 802.15.4 standard for sensor
networks (and associated commercial
acticity in the ZigBee alliance) [12].
Moreover, in an outdoor environment
with loose constraints on the energy con-
sumption (such as vehicular networks),
satellite-based synchronization can be
employed. However, in this article we
focus on fully distributed scenarios where
no such possibilities exist, thus making
distributed synchronization (as opposed
to master-slave point-to-point synchro-
nization via a central node) the only avail-
able solution [16].

As in the problem of synchronizing
two distant clocks through electric sig-
nals tackled in the late 19th century,
mutual synchronization in distributed
wireless networks hinges on the
exchange of local time information
between pairs of nodes. Common com-
plications of both problems are: i) the
presence of random delays between
transmission and reception of a timing
signal, which depends not only on
propagation but also on the inevitable
processing latency at both sides of the
link, and ii) hardware and clock inaccu-
racies. However, distributed synchro-
nization in wireless networks provides
a unique set of challenges for both
design and analysis, which call for a
variety of tools from signal processing,
automatic control, and algebraic graph
theory, just to mention a few.

On the one hand, designing mutual
synchronization in wireless networks
requires to account for the following spe-
cific issues:

■ Energy efficiency: In the presence of battery-powered
nodes, the trade-off between energy consumption and network
performance becomes an essential merit criterion [12].
■ Scalability: Certain distributed networks, such as
microsensor networks, are envisaged to be composed of a
large number of nodes, in which case well-behaved scaling
performance of synchronization is a critical issue [18].
■ Application specificity: In sensor networks, performance is
defined in terms of application-specific criteria [19], thus ren-
dering the design of mutual synchronization and the given
signal processing functionality thoroughly intertwined
[20]–[22].
On the other hand, as discussed below, an analysis of the sys-

tem often requires consideration of the dynamic behavior of a

[FIG2] Clocks ti(n) for N = 3 nodes in the case of: (a) uncoupled nodes; (b) frequency-
synchronous nodes with common frequency 1/T; (c) fully synchronized nodes.
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possibly large set of coupled oscillators, which calls for the sta-
bility analysis of a system of coupled linear or nonlinear equa-
tions. This is generally an involved task, especially in the
presence of deterministic or random nuisance parameters.

PACKET-COUPLING VERSUS PULSE-COUPLING FOR
MUTUAL SYNCHRONIZATION IN WIRELESS NETWORKS
For the time being, we focus the discussion on time synchroniza-
tion for its practicality and wide range of applications in distrib-
uted wireless networks, postponing the discussion on mutual
carrier synchronization and its technological challenges to a
later section. To illustrate the problem, we consider Figure 2 and
define ti(n) as the time of the nth tick (n = 0, 1, 2, . . . ) of the
ith clock (i = 1, 2, . . . , N, where N is the total number of
nodes). In Figure 2, the clock at each node is represented by a
periodic train of pulses corresponding to time instants ti(n). In
case nodes are uncoupled, i.e., no local timing information is
exchanged, the clocks remain asynchronous with generally dif-
ferent local periods ti(n) − ti(n − 1) = Ti , and phases ti(n)

[Figure 2(a)]. On the contrary, if we allow each node, such as the
ith, to gather information about the relative time offsets
tj(n) − ti(n) with respect to a subset of the other nodes ( j �= i),
a synchronized state might be eventually achieved [Figure 2(b)
and (c)]. Notice that the way this time offset information
tj(n) − ti(n) is exchanged and processed distinguishes different

synchronization techniques. We say that a condition of frequency
synchronization to a common frequency 1/ T is achieved if the
local periods ti(n) − ti(n − 1) = T are the same for all clocks
[Figure 2(b)], whereas full synchronization is attained if clocks
tick at the same times, i.e., ti(n) = tj(n), i �= j [Figure 2(c)]. In
the section “Clocks and Synchronization,” we further specify and
elaborate on these concepts.

Different approaches to mutual time synchronization are
classified according to the mechanism adopted for computing
and processing local time differences tj(n) − ti(n) within the
network. In particular, two main families of techniques have
been considered. Traditional methods based on packet coupling
prescribe the periodic exchange of packets carrying time stamps
that contain the local time tj(n) at the sender, through either
point-to-point or broadcast connections [16]. The main sources
of errors for packet-based techniques are the random delays asso-
ciated with the construction of a packet, queuing at the MAC
layer, propagation, and processing of the packet at the receiver
side. In fact, these delays imply that node i actually receives the
timing packet from a node j at time tj(n) + qij, where qij is the
random delay between the two nodes, thus making the time
information on tj(n) contained in the packet outdated. Different
techniques have been designed to mitigate the effects of these
random factors according to diverse principles, such as synchro-
nization between receivers of the same packet rather than

between transmitter and receiver. The
state of the art in packet-based tech-
niques reports synchronization accura-
cies of the order of milliseconds to
microseconds [16]. Moreover, the need
for exchanging of a large number of
packets is common to all packet-based
methods. This in turn entails large com-
putational complexity, energy expendi-
ture, and poor scalability. 

To obviate to the drawbacks of pack-
et-based solutions, more recently, there
has been interest in physical layer-based
schemes, where the local timing infor-
mation in encoded directly in the trans-
mission times of given waveforms g(t).
In particular, each node radiates a peri-
odic train of waveforms 

∑
n g(t − ti(n)),

according to its local clock, on either a
dedicated bandwidth or on an overlay
system such as ultra-wideband (UWB);
see Figure 3. The update of each local
clock is then carried out by processing
the received signal, which is a combina-
tion of waveforms transmitted by neigh-
boring nodes (see Figure 4). Possible
processing techniques include time-of-
arrival estimators but efficient synchro-
nization techniques can be devised that
do not need to explicitly perform such

[FIG3] A graphic illustration of the signal transmitted by N = 3 nodes for pulse-coupled
clocks: each node sends a train of waveforms g(t) (on a dedicated bandwidth or on an
overlay system) for every tick of the local clock.
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operation [23], [24]. Pulse-coupled synchronization is naturally
scalable, since the operations performed at each node are inde-
pendent of the number of nodes available in the network and
has limited complexity, requiring only simple processing at the
baseband level (see the section “Trading Accuracy for Bandwith
and Complexity”).

REMARK 1
The waveform g(t) can be a (possibly band-pass) pulse, as illus-
trated in Figure 3, but can also have a different shape, such as a
pseudorandom sequence or the odd waveform investigated in
[18] to study scalability of distributed synchronization. While
bearing this in mind, in order to comply with the current litera-
ture (see [18] and [25]), we will refer to physical layer-based syn-
chronization as pulse coupling (as opposed to packet coupling).

A landmark work in the area of pulse-coupled time synchro-
nization for wireless networks is [25] by Hong and Scaglione,
where the authors investigate a direct application of the model of
integrate-and-fire pulse-coupled oscillators studied in the context
of mathematical biology in [8]. The results of [25] have been
extended in [26] by considering the convergence analysis in pres-
ence of more realistic nearest neighbor communications.
Moreover, applications of pulse-coupled synchronization to sig-
nal processing problems have been discussed in [20] (change
detection) and [22] (data fusion). A different approach to pulse-
coupled synchronization is the use of linear processing at the
baseband level according to the mechanism of discrete-time,
phase-locked loops (PLLs). First-order, pulse-coupled linear dis-
crete-time PLLs with frequency-synchronous clocks (i.e., Ti = T
for each i = 1, . . . , N) have been proposed in [10] and then [23].
Moreover, [27] studies a mathematically equivalent method,
where time information is exchanged via packets. A general
model for pulse-coupled linear PLLs is proposed in [24] that can
be seen as the discrete time counterpart of the continuously cou-
pled (linearized) analog PLLs considered by Lindsey et al. [9].

REMARK 2
An important technological limitation is the half-duplex con-
straint imposed on wireless transceivers by the strong self-inter-
ference between transmit and receive paths (i.e., nodes cannot
transmit and receive simulaneously). Notice, however, that
there is some evidence that full-duplex transmission is techno-
logically feasible [28]. 

Two solutions can be devised to implement pulse-coupled
synchronization within such a constraint. The first approach
is to choose an impulsive waveform g(t) with a short dura-
tion and let nodes switch from transmit to receive mode
(and vice versa) before and after transmission of a pulse,
thus having a refractory time during transmission where
nodes are not able to receive (see the section “Trading
Accuracy for Bandwidth and Complexity” and [25] for fur-
ther details). A second solution is to select any waveform
with the desired resolution properties and to transmit a
train 

∑
n∈N ∗ g(t − ti(n)) where N ∗ is a (e.g., randomly

selected) subset of clock periods: accordingly, each node

transmits its synchronizing signal in some periods while in
other listens to the signal received by other nodes.

CLOCKS AND SYNCHRONIZATION
In this article, we are concerned with a population of N clocks
coupled through a wireless channel, as sketched in Figure 3.
According to Albert Einstein [1],

by clock we understand any thing characterized by a
phenomenon passing periodically through identical
phases so that we must assume, by virtue of the princi-
ple of sufficient reason, that all that happens in a
given period is identical with all that happened in an
arbitrary period.
A clock is then a time measurement device consisting of an

oscillator and an accumulator, as detailed below for both analog
and discrete time clocks. In this section, we first discuss the
baseline scenario of uncoupled clocks [recall Figure 2(a)] and
then introduce the basics of mutual synchronization via clock
coupling [Figure 2(b) and (c)]. 

UNCOUPLED CLOCKS
Here we illustrate the behavior of uncoupled clocks, accounting
for the reference case where each node runs its own local clock
without exchanging timing information with the others. 

ANALOG CLOCKS
An analog clock, such as the ith, is characterized by an oscillator

si (t) = cos �i (t), (1)

where �i(t) is the total instantaneous phase (accumulator),
which, in case of uncoupled nodes, evolve as

�i(t) = �i(0) + 2π

Ti
t + ζ(t), (2)

where i), the free-running oscillation period, reads
Ti = Tnom + �Ti, with Tnom being the nominal period and �Ti

a random offset from the nominal value (related to the frequen-
cy offset or skew), that depends on hardware imperfections; ii)
ζ(t) is a typically nonstationary random process modelling
phase noise [9]. Moreover, we have selected an arbitrary initial
time instant t = 0 for all the clocks and �i(0) is the initial
phase (�i (t) = 0 for t < 0). A more general model for (1) could
be considered that accounts for frequency drifts [9]. In this arti-
cle, for the sake of simplicity, we will not elaborate on this addi-
tional nuisance parameter.

DISCRETE-TIME CLOCKS
A discrete-time clock can be seen as a sequence ti(n) of signifi-
cant time instants of an analog clock (e.g., upward zero crossing
points: �i(ti(n)) = n · 2π) , where index n = 0, 1, 2, . . . runs
over the periods of the oscillator. In particular, from (2), an
uncoupled discrete time clock evolves as

ti(n) = ti(0) + nTi + υ(t), (3)
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where υ(t) is the additive noise term that accounts for phase
noise. As explained in the previous section, Figure 2(a) shows
the behavior of N uncoupled clocks {ti(n)}N

i=1, assuming for
simplicity no phase noise. It is apparent that the nodes, if iso-
lated, remain asynchronous.

COUPLED CLOCKS
The goal of a coupling mechanism among the clocks is to drive
the latter to synchronicity, possibly within a given tolerance.
Before further elaborating on the basic ideas behind (either pack-
et or pulse) clock coupling for analog and discrete time clocks,
we formalize the notions of synchronized states, intuitively intro-
duced through the discussion on Figure 2 in the previous sec-
tion. For analog clocks, we have two conditions of interest: 

■  Frequency synchronicity: for t sufficiently large, there exists
a common period of oscillation T for all the nodes so that 

�i(t) = �i(t + T ), i = 1, 2, . . . , N. (4)

■ Full (frequency and phase) synchronicity: for t sufficiently
large, we have 

�i (t) = � j (t) for each i �= j. (5)

Notice that for analog clocks, full synchronicity implies the
existence of a common time scale at all times. On the other hand,
for discrete time clocks, nodes are said to be synchronous if they
agree on the time instants ti(n) corresponding to the ticks of the
local clocks, which entails that a common notion of time does not
exist for the period elapsed between two ticks. More specifically,
for discrete time clocks, we have the following two conditions: 

■ Frequency synchronicity [Figure 2(b)]: for n sufficiently
large, there exists a common period of oscillation T for all the
nodes so that 

ti(n + 1) − ti(n) = T, i = 1, . . . , N . (6)

■ Full (frequency and phase) synchronicity [Figure 2(b)]:
for n sufficiently large, we have 

ti(n) = tj(n) for each i �= j. (7)

In this article, we focus on diffusion protocols for the
exchange of local time information. This class encompasses,
among the others, the packet-coupling method of [27], pulse
coupling (see [18], [25], and [26]), and the synchronization of
analog clocks according to the standard Kuramoto model
[5]–[7] or the analog PLLs in [9]. Moreover, as illustrated in the
section “Distributed Consensus for Multiagent Coordination,”
diffusion synchronization protocols have strong connections
with signal processing applications such as distributed estima-
tion [21], [29], detection [30], and consensus [31] problems. The
basic mechanism is as follows. Each node transmits (diffuses) its
local time [either phase � j (t) or clock tick tj (n)] to its neigh-
boring nodes, where the definition of neighbors usually identi-
fies those nodes that receive a sufficiently large power from the
sender. We recall that the timing information tj(n) can be
encoded either as a time stamp in a packet (packet coupling)
[27] or simply in the transmission time of a given waveform
g(t − tj (n)) (pulse coupling) in the case of discrete time clocks.
For analog clocks, a signal proportional to the local oscillator
sj (t) needs to be radiated by each node, as discussed in the sec-
tion “Continuously Coupled Analog Clocks.” The goal of each
recipient, such as the ith, is to measure the phase or time differ-
ences between the local clock and the clocks of neighboring
senders [� j(t) − �i (t) or tj(n) − ti(n), respectively], and to
correct the local clock accordingly, despite the nuisance term
due to propagation delays.

CONNECTIVITY GRAPH AND LAPLACIAN MATRIX
From the presentation above, it is clear that the achievement of
a synchronized state strictly depends on the topology of the con-
nections between clocks, since each node transmits its local
time information only to neighbors. The standard way to repre-
sent this relationship between nodes is by means of a connectiv-
ity graph G , as the one sketched in Figure 5 for N = 5. In
particular, node i receives the synchronization signal from j
(i.e., j is a neighbor of i ) if there exists an edge directed from i
to j. Moreover, this edge is weighted by a positive value αi j, that
represents the relative strength of the signal received by i from j
with respect to the other neighbors of i (we have the normaliza-
tion condition 

∑
j αi j = 1). For instance, a typical choice for

parameters αi j is the following [10], [23]: 

αi j = Pij∑
j∈Ii

Pij
, (8)

where Pij is the power received by the ith node from the jth and
Ii is the set of neighbors of i (Ii = { j : Pij > P0},with P0 being a
power threshold). Therefore, the edge weight αi j depends on the
distance between nodes i and j through path loss attenuation,

[FIG5] Example of a connectivity graph G: local time information
is exchanged along the edges of the graph weighted by the
coupling strengths αij. A key role in the analysis of distributed
synchronizaton is played by the Laplacian matrix L = I − A,

where A is the adjacency matrix of the connectivity graph G
([A]ij = αij for i �= j and [A]ii = 0).
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and on possibly random factors such as fading and shadowing.
Notice that the graph is typically directed (αi j �= α ji) and further-
more, it is bidirectional (i.e., αi j > 0 if and only if α ji > 0) unless
different nodes have different power constraints (so that, given a
pair of nodes, one node may be within the transmission radius of
the other but not vice versa).

As illustrated in the rest of the article, diffusion synchroniza-
tion protocols for both analog and discrete cases can be described
by linear dynamic systems (see (11) and (17) for a preview)
whose system matrix is linearly related to a key algebraic quanti-
ty that describes the connectivity graph G, namely the Laplacian
matrix L [32]. This is defined as L = I − A, where A is the adja-
cency matrix of the graph ([A]i j = αi j for i �= j and [A]ii = 0). It
is then clear that the performance of mutual synchronization
depends on the network topology (connectivity graph G) through
the eigenstructure of the Laplacian matrix L. As elaborated in the
following (and with some details in “Algebraic Graph Theory and
Distributed Synchronization”), of particular relevance is the null
space of matrix L, that is sometimes referred to as the synchro-
nization subspace. Specifically, the multiplicity of the zero-eigen-
value λ(L) = 0 determines whether a synchronized state is
eventually achieved or not, while the left eigenvector
v = [v1 · · · vN]T corresponding to λ(L) = 0 (vT L = 0) yields the
steady-state frequency and phases of the clocks (see (12), (14),
and (19) for a preview).

As a final remark, in the discussion above, we have limited
the scope to time-invarying and deterministic topologies, but
the analysis can be extended to both time-varying [31], [33]
and random [34] topologies. We will provide some comments
on these important cases in the following, and we point to ref-
erences for further details. 

REMARK 3
The (average) accuracy of different
clocks is sometimes measured in parts-
per-million (PPM) by calculating the
average (absolute value of) the clock
error after one second. There exists a
clear trade-off between accuracy and
power consumption. For instance, accu-
racies of typical clocks range between
around 10−4 and 10−11 PPM with cor-
responding power consumptions on the
order of 1μW and hundreds of
megawatts, respectively [12].

CONTINUOUSLY
COUPLED ANALOG CLOCKS
In this section, we study the problem of
distributed synchronization of coupled
analog clocks. The interest of such prob-
lem for wireless communications is relat-
ed to applications such as, e.g.,
cooperative beamforming or frequency
division multiple access in ad hoc net-

works. Moreover, it is historically the first studied model of dis-
tributed synchronization, and sets the ground for the discussion
on discrete-time clocks in the next section.

With coupled analog clocks, each node transmits a signal
proportional to its local oscillator si (t) in (1) and updates the
instantaneous phase �i(t) based on the signal received from
other nodes. Notice that this procedure assumes that each node
is able to transmit and receive continuously and at the same
time (full duplex, see Remark 2). The basic mechanism of con-
tinuously coupled clocks is phase locking (see Figure 6). Each
node, say the ith, measures through its phase detector (PD) the
convex combination of phase differences

��i (t) =
N∑

j=1, j �=i

αi j · f(�j(t) − �i (t)), (9)

where � j(t) − �i(t) is the phase difference with respect to
node j, and f(·) and αi j are phase detector-specific features,
namely a nonlinear function and convex combination weights
(i.e., 

∑ N
j=1 αi j = 1 and αi j ≥ 0),respectively (recall the discus-

sion in the previous section). Notice that the choice of a convex
combination in (9) ensures that the output of the phase detector
��i (t) takes values in the range between the minimum and the
maximum of phase differences f (�j(t) − �i (t)). Finally, the
difference ��i(t) (9) is fed to a loop filter ε(s), whose output
drives the voltage controlled oscillator (VCO), which updates the
local phase as

�̇i(t) = 2π

Ti
+ ε0

N∑
j=1, j �=i

αi j · f(�j (t) − �i(t)), (10)

[FIG6] Block diagram of N = 3 continuously coupled oscillators (PD: phase detector; VCO:
voltage controlled oscillator).
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where we have considered for simplicity a simple loop filter
ε(s) = ε0. Moreover, in our presentation above, we have
assumed absence of phase noise [see (2)], instantaneous cou-
pling among the clocks (i.e., irrelevant propagation delays:
qij = 0) and time-invariant network topology (constant coeffi-
cient αi j). These assumptions will be assumed throughout the
paper unless otherwise stated (see the section “Signal
Processing Aspects of Distributed Time Synchronization” for a
discussion on more general and realistic models). 

KURAMOTO’S MODEL
The first model of coupled analog oscillators was proposed by
Kuramoto in the context of mathematical biology [5] and has
attracted considerable attention since its definition because of
the many challenges it poses to mathematicians (see the survey
papers [6] and [7]). The basic Kuramoto model corresponds to
the general system (10) with a sinusoidal phase detector
f(x) = sin (x) , all-to-all connectivity, i.e., αi j = 1/N for
i, j = 1, . . . , N (fully meshed connectivity graph), and a simple
loop filter ε(s) = ε0 (first-order PLLs). The analysis in [5] is
concerned with the assessment of the steady state (equilibrium
point) of the system. In particular, the author discovered that
(assuming unimodal local frequency distribution) there exists a
critical value of the loop gain ε0, say ε∗

0 , such that if ε0 > ε∗
0 the

population of clocks attains a state of partial (frequency and
phase) synchronization in which part of the oscillators is phase
locked and part is out of synchrony (full synchronization is
eventually achieved for ε0 → ∞), whereas if ε0 < ε∗

0 the clocks
remain in an incoherent state. A thorough understanding of the
stability properties of the system has proved to be elusive for
many years and a few questions are still open, see [6] for a
recent review. As final remarks, we refer the reader to [3] for an
application of Kuramoto’s model to the study of the dynamics of
hand clapping in a concert hall.

Kuramoto’s model is hardly directly applicable to wireless
networks, for two main reasons: i) the assumption of continu-
ous coupling among the clocks, which requires full-duplex
transceivers (see discussion above) and ii) the assumption on
all-to-all (mesh) connectivity (but see [7] for extensions of the
basic Kuramoto model to more general scenarios).

CONTINUOUSLY COUPLED LINEAR PLLS

In the context of synchronization for (wired) telecommunica-
tion networks, Lindsey et al. [9] studied the general model of
coupled analog clocks (10) for linear phase detectors
( f(x) = x), arbitrary connections αi j (under the constraint of
convexity), and loop filters ε(s) = ε0/(1 − s/μ) (second-order
PLLs). Notice that other types of second-order PLLs that
include also a zero in the loop filter (e.g., proportional-plus-
integral loop filters) are possible and may bring significant
benefits, especially in terms of stability (see [35]). The model
in [9] then alleviates the problem ii) mentioned above by
allowing arbitrary connectivity, while simplifying the analysis
through linearization. Linearization allows to readily use tools
from algebraic graph theory in order to study convergence,

and makes the analysis flexible enough to enable assessment of
the effects of nuisance parameters such as possible communi-
cations delays and clock imperfections.

To elaborate on this point, let us focus on the case of contin-
uously coupled linear PLLs with ε(s) = ε0 (first-order PLLs).
Then, the set of PLLs (10) can be cast as a vector linear time-
invariant differential equation

�̇��(t) = ωωω − ε0 · L���(t), (11)

where we have defined the vectors Φ(t ) = [�1(t ) · · ·�N(t )]T ,
ω = [2π/T1 · · · 2π/TN ]T and matrix L is the graph Laplacian
associated with the connectivity graph that describes the net-
work (recall the section “Connectivity Graph and Laplacian
Matrix” and Figure 5). As detailed in “Algebraic Graph Theory
and Distributed Synchronization,” the convergence (synchro-
nization) properties of system (11) depend on the network
topology (connectivity graph) through the eigenvalues of the
Laplacian matrix L. In particular, a sufficient condition for
convergence (asymptotic stability) is that the connectivity
graph is strongly connected (i.e., there exists at least one path
between every pair of nodes).

Under the condition that (11) is asymptotically stable, [9]
finds that the steady-state solution of (11) is characterized by
frequency synchronization (4) with common frequency given by
the weighted combination

1
T

=
N∑

i =1

vi
1
Ti

, (12)

where vector v = [v1 · · · vN]T plays a central role and is the
normalized left eigenvector of L corresponding to the zero
eigenvalue: LTv = 0 and 

∑N
i =1 vi = 1 (recall the section

“Connectivity Graph and Laplacian Matrix”). Even if the  for-
malism of the algebraic graph theory was not employed in [9],
reinterpreting the results of [9] in this light allows a unified
presentation of diffusion-based synchronization schemes,
including synchronization discrete-time clocks (see the sec-
tion “Pulse-Coupled Discrete-Time Clocks”) and distributed
estimation/detection and consensus (see the section
“Distributed Consensus for Multiagent Coordination”). Notice
that the entries of vector v are real and positive if the graph is
strongly connected by virtue of the Perron-Frobenius theo-
rem (see also “Algebraic Graph Theory and Distributed
Synchronization”), so that the common frequency 1/ T (12) is
a convex combination of all the local frequencies {1/ Ti}N

i =1.
While frequency synchronization is attained, full frequency
and phase synchronization (5) is generally not achieved, and
the steady-state phases are mismatched by an amount related
to the deviations between local and common frequency
���ωωω = ωωω − 2π/T · 1,where 1 = [1 1 · · · 1]T

���(t) → 1 · 2π

T
t + 1 · vT

(
���(0) − L†���ωωω

ε0

)
+ L†���ωωω

ε0
. (13 )
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Notice that the second term in the right hand side of (13) is a
phase common to all clocks and the third represents the phase
mismatch (see “Algebraic Graph Theory and Distributed
Synchronization” for details). As a special case of these results, if
no deviation among local frequency exists (Ti = Tnom), then
from (12) the common frequency is 1/T = 1/Tnom, and, from
(13), full frequency and phase synchronization is achieved with
(recall that ���ωωω = 0)

�i (t) → 2π

T
t +

N∑
j=1

vj � j (0). (14)

The results summarized above are extended in [9] to more
complex scenarios with loop filters ε(s) = ε0/(1 − s/μ), delays
and phase noise. In particular, similarly to conventional PLLs, it
is shown that adding a pole μ in the loop filter ε(s) (second-
order PLLs) reduces the steady-state phase error [see (13)] but,
at the same time, reduces the stability margin. These results can
be seen as the natural extension of known conclusions in the
context of classical (master-slave point-to-point) PLLs [35].
Moreover, propagation delays are shown to cause steady-state
phase mismatch. Further discussion on the latter topic is pro-
vided in the section “The Impact of Propagation and Processing
Delays and Phase Noise” for the case of discrete time PLLs.

PULSE-COUPLED DISCRETE TIME CLOCKS
In this section, we review the two approaches proposed for pulse-
coupled discrete time clocks (Figure 3): integrate-and-fire oscil-
lators [8], [25], and distributed discrete time PLLs [10], [23], [24]
(see also [27]). As in the previous section, in order to simplify the
presentation, we focus on a scenario with absence of phase noise
and delays (qij = 0). Moreover, we limit the scope to infinite-res-
olution time detectors: that is, we assume that each
node is able to detect the time of arrival tj (n) of any
pulse received from its neighboring nodes. Clearly, in
practice, there exists a trade-off between resolution on
one hand, and bandwidth and complexity on the other.
More general models with phase noise, delays, and
finite-resolution time detectors will be discussed in the
section “Signal Processing Aspects of Distributed Time
Synchronization.” 

PULSE-COUPLED
INTEGRATE-AND-FIRE OSCILLATORS
This model was first studied in the context of math-
ematical biology in [8] and then applied by [25] to
wireless networks. In order to enable the analysis, it
is assumed that no frequency mismatch among dif-
ferent nodes is present (Ti = Tnom). The impact of a
frequency mismatch has been investigated via
numerical simulations in [25]. Moreover, according
to the model, each node is equipped with an inte-
grate-and-fire oscillator, as sketched in Figure 7(a).
Adapting the notation of [8] to fit our overview, this
oscillator is described, when isolated, by a state vari-

able xi (t) = g(�i (t)), where g(·) is a periodic function (with
period 2π) such that in each period it is smooth, monotoni-
cally increasing from zero to one, and concave. As before, the
ticks ti (n) of the clock correspond to the time instants when
the phase returns, after one period, to 2π, or equivalently
when the state variables charges up to its maximum value
xi (ti (n)) = 1 and then returns to zero.

The model of integrate-and-fire oscillators prescribes the
following coupling mechanism among clocks, illustrated in
Figure 7(b). Upon detection of the pulse sent by any node j at
time tj(n) (propagation delays are neglected in this model),
the i th clock modifies the state function by adding a value ε
towards the goal of selecting a firing instant that is closer to
that of clock j

xi(tj (n)+) =
{

xi(tj (n)−) + ε if xi (tj (n)−) + ε < 1
0 otherwise

and adjusts the phase �i (t) accordingly.
Convergence of pulse-coupled integrate-and-fire clocks

can be evaluated for arbitrary connections αi j by casting the
problem as the study of asymptotic stability of a system of dif-
ferential equations [26]. Using Lyapunov stability theory, con-
vergence is shown to depend on the properties of the graph
Laplacian L (see the section “Coupled Clocks” and “Algebraic
Graph Theory and Distributed Synchronization,”) similarly to
the case of analog oscillators.

The main drawbacks of the model of integrate-and-fire
oscillators when applied to wireless networks are: i) it is hard
to extend the analysis to realistic and complex scenarios with
inaccurate clocks, propagation delays, or time-varying
channels; ii) the system design is not flexible enough to grant

[FIG7] Pulse-coupled integrate-and-fire clocks: (a) State function xi(t )

for isolated clocks; (b) State function xi(t ) behavior in presence of a
received pulse.
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degrees of freedom for the achievement of additional relevant
goals, such as trading complexity for accuracy, security, etc.

PULSE-COUPLED DISCRETE-TIME PLLs
An alternative model for pulse-coupled clocks was proposed in
[10], [23], and [24] based on distributed discrete-time PLLs.
The approach can be seen as the discrete counterpart of the
system of coupled analog PLLs illustrated in the section
“Continuously Coupled Linear PLLs.” From its analog prede-
cessor, the system of pulse-coupled discrete time PLLs inher-
its the linear nature that enables analysis and flexible system
design using standard tools from algebraic graph theory and
signal processing (see also the section “Signal Processing
Aspects of Distributed Time Synchronization”). 

A system of pulse-coupled discrete-time PLLs is exemplified
by Figure 8. Similarly to the analog case (see Figure 6), based
on the received signal, each node calculates a convex combina-
tion of the time differences (time difference detector)

�ti (n) =
N∑

j=1,i �= j

αi j · (tj(n) − ti (n)), (15)

that is fed to a loop filter ε(z). Considering for simplicity loop
filters ε(z) = ε0 (first-order PLLs), we have

ti (n + 1) = ti (n) + Ti + ε0 ·
N∑

j=1, i�= j

αi j · (tj (n) − ti (n)).

(16)

To further analyze the system, let us cast the system (16) as a
vector time invariant difference equation

t(n + 1) − t(n) = T − ε0L · t(n), (17)

where we defined the vectors t(n) = [t1(n) · · · tN(n)] and
T = [T1 · · · TN]T (notice that the case of PLLs with frequency-
synchronous clocks studied in [10], [23], and [27] corre-
sponds to (16) with T = 0). From comparison of (17) and
(11), it is apparent that the same tools and results derived in
the continuous case can be applied to the pulse-coupled dis-
crete time case. In particular, convergence is guaranteed
under the same conditions (see “Algebraic Graph Theory and
Distributed Synchronization”), and the steady-state solutions
are characterized by frequency synchronization (6) with com-
mon frequency given by the weighted combination of local
frequencies (12), but generally mismatched phases [i.e.,
absence of full synchrony (7)] with 

t(n) → nT · 1 + 1 · vT
(

t(0) − L†���T
ε0

)
+ L†���T

ε0
, (18 )

where ���T = T − T · 1 [similar to (13)]. As previously dis-
cussed, an important special case of these results occurs
when there is no frequency mismatch between the clocks
(Ti = Tnom), in which case the common frequency equals
the nominal local frequency 1/ T = 1/ Tnom, and, from (18),
full frequency and phase synchronization is achieved [simi-
larly to (14)] 

ti (n) → nT+
N∑

j=1

vj tj (0). (19)

Moreover, adding a pole μ in the loop
filter ε(z) = ε0/(1 − μz−1) (second-
order PLLs) can be shown to reduce the
steady-state phase error in (18) (by a
factor 1 − μ) at the expenses of a
reduced stability margin [24], while full
synchronization can be in principle
achieved with proportional-plus-inte-
gral loop filters (see [35]).

Here we consider a simple numeri-
cal example for the network of N = 4
nodes illustrated in the box of Figure
9. We assume the weights (8) (with
P0 = 0), a path loss model Pij = 1/d 3

i j
(dij is the distance between node i
and j ), and frequency synchronous
clocks with T = 1, and plot the evolu-
t ion of  the phases  ti(n) − nT for
ε0 = 0.3 and μ = 0. After a brief tran-
sient where the nodes tend to syn-
chronize in pairs between neighbors,
the system reaches the steady state to
the condition (19), where v = 1/4 · 1
for this specific topology.

[FIG8] Block diagram of N = 3 pulse-coupled discrete time clocks (TD: time difference
detector; VCC:  voltage controlled clock).
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REMARK 4
For both analog (section “Continuously Coupled Analog Clocks”)
and discrete-time (section “Pulse-Coupled Discrete-Time PLLs”)
coupled clocks, we have assumed a homogeneous scenario where
all the nodes use identical loop filters. Extension of the analysis
to a heterogeneous setup calls for substitution of the loop gains
ε(s), and ε(z ), with diagonal matrices containing the local loop
filters at the N nodes. This model requires further study.

IMPACT OF TOPOLOGY AND
SMALL-WORLD EFFECTS OF SHADOWING
The convergence properties of distributed synchronization
depend on the topology of the network, which is in turn defined
by the weighting factors αi j (recall the section “Connectivity
Graph and Laplacian Matrix” and Figure 5). Here we illustrate
the performance of pulse-coupled PLLs for a network of ran-
domly located nodes with weights αi j (8) (P0 = 4) and log-nor-
mal shadowing. More specifically, the power received over
distance dij is Pij = 10

ν
10 /d3

i j, where ν a zero-mean Gaussian
random with standard deviation σ. As a performance measure,
we evaluate the standard deviation ξ(n) of the clocks, where 

ξ2(n) = 1
N

·
N∑

i =1

(
ti(n) − 1

N

N∑
k=1

tk(n)

)2

, (20)

versus time n, averaged over random location of nodes and shad-
owing. The initial phases t(0) are selected randomly in the set
(0, 1) (and t(n) = 0 for n < 0), while the local free-oscillation
periods are selected independently in the interval 1 ± 0.01. The
dashed lines in Figure 10 are obtained from the asymptotic result
(18). It can be seen that increasing the
amount of shadowing in the model (i.e.,
the standard deviation σ) improves both
the convergence speed and the asymptot-
ic phase error of the system of distributed
PLLs. The beneficial impact of shadowing
can be interpreted as an instance of the
fact, reported in [2] and [36], that distrib-
uted agreement on a graph improves if
the graph has the features of a small-
world network. A small-world network is
characterized by the existence of paths
made of a small number of edges
between any two nodes. In fact, shadow-
ing breaks a few close connections and,
due to the long tails of the log-normal
distribution, creates a few long links,
thus enhancing the small-world proper-
ties of the connectivity graph [2]. 

SIGNAL PROCESSING
ASPECTS OF DISTRIBUTED
TIME SYNCHRONIZATION
In the previous sections, we have shown
that basic analysis of distributed synchro-

nization relies on linear algebraic, and more specifically graph
algebraic, concepts (namely, on the eigenstructure of the
Laplacian matrix associated with the connectivity graph G). In
this section, we elaborate on various further aspects of the analy-
sis and design of distributed time synchronization, where signal
processing tools play a major role. We focus on pulse-coupled
discrete-time PLLs for their practical relevance in wireless net-
works. At first, we remove the assumption of infinite-resolution
time error detectors in the section “Trading Accuracy for
Bandwidth and Complexity.” Next, we address the issue of fault
tolerance and security. Finally, we discuss the impact of propaga-
tion and processing delays and phase noise.

TRADING ACCURACY FOR
BANDWIDTH AND COMPLEXITY
In this section, we remove the assumption made in the previous
section of infinite resolution of the time difference detectors for
discrete-time PLLs. The main goal of the section is to illustrate
the trade-offs available in the system design between accuracy and
complexity of the receiver (which in turns translates into power
consumption). To start, we recall that any ith node receives, in an
interval of duration Ti around its local clock tick ti(n) a combina-
tion of the waveforms transmitted by other nodes, as sketched in
Figure 4. Based on this signal, the node needs to estimate the
time differences tj (n) − ti (n) in order to correct the local clock
[i.e., to decide the next clock tick ti (n + 1)] according to the PLL
mechanism of Figure 8.

A first approach to evaluate the time differences
tj(n) − ti(n) would be to perform an estimation of time-of-
arrivals tj (n) (recall that we are neglecting the delays qij at this
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[FIG9] Phases of the N = 4 pulse-coupled discrete-time clocks shown in the box versus
period n (Ti = T, ε0 = 0.3, μ = 0 and t (0) = [0.8 0.6 0.4 0]T ).
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stage) based on the knowledge of the transmitted waveform
g(t). However, this choice would entail a large computation
complexity. A more efficient approach that avoids explicit esti-
mate of the time of arrival is the center of mass time-detector
proposed in [23]. Let us assume a square root Nyquist wave-
forms g(t) with given roll-off. According to the proposal in
[23], the receiver performs baseband filtering matched to the

transmitted waveform g(t) (or an approximation thereof) and
then samples the received signal at some multiple L ≥ 1 of
1/ Ts, where Ts is the peak-to-first-zero time for the autocorre-
lation of g(t). Based on the samples (indexed by m) received in
the nth observation window, {yi(n, m)}, the ith node does not
explicitly calculates the single time differences tj (n) − ti (n).
Instead, it directly estimates the convex combination of time

differences �ti (n) (15), using the definition (8)
for the convex weights αi j, as the center of mass
of the received signal

�ti(n) =
∑
m∈I

α̃im · mTs

L
, (21)

α̃im = |yi(n, m)|2∑
k∈I |yi(n, k)|2 , (22)

where set I excludes the samples in the possible
refractory period around the firing time ti(n)

due to the half-duplex constraint (recall Remark
2). Notice that this method does not require
knowledge of the received powers, and that its
complexity (i.e., number of operations) is inde-
pendent of the number of nodes in the network.

From the discussion above, we have identified
three degrees of freedom in the system design for
trading accuracy with complexity: 

1) the finite switching time from transmit to
receive mode that defines the refractory time inter-
val, which depends on the RF hardware employed
2) the oversampling factor L, which can be
increased at the expense of computational and
hardware complexity at the baseband level
3) the possible presence of a loop filter with
pole μ, which increases the number of oper-
ations to be performed and thus the compu-
tational complexity (see the section
“Pulse-Coupled Discrete-Time PLLs”). 
Here we evaluate the impact of these param-

eters on the performance (accuracy) of the syn-
chronization scheme. Let us consider the simple
network with N = 4 nodes shown in the box in
Figure 11. Figure 11 shows the standard devia-
tion ξ(n) (20) of the timing vector t(n) versus n
averaged with respect to noise at the receiver
side. It can be seen that the finite resolution of
the system produces a performance floor for
increasing n, that can be lowered by increasing
the oversampling factor L. In any case, an upper
bound on the synchronization accuracy is set by
the refractory period. This bound is reached for
n and L sufficiently large. Adding a pole in the
loop can increase the convergence speed as
shown in Figure 11 for μ = 0.2, 0.4, 0.6.

Finally, Figure 11 shows that an upper bound on

[FIG10] Small-world effects of shadowing: standard deviation of the clocks for
discrete-time PLLs versus time n for different values of the standard deviation of
shadowing σ . Dashed lines correspond to the analytical result (18) (ε0 = 0.6,

μ = 0.4).
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[FIG11] Trade-off accuracy versus complexity: Standard deviation of the clocks (20)
versus time n for different values of the oversampling factor L and of the pole μ.

Also shown for reference is the ideal case of infinite-resolution time difference
detectors (Ti = T for i = 1, . . . , N, ε0 = 0.9, Ts = 0.01 and refractory time due to
the half-duplex constraint equal to Ts).
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the performance of the practical implementation discussed
here is set by the performance of the ideal system with infinite
resolution studied in the previous sections [see (17)]. 

FAULT-TOLERANCE AND SECURITY
Distributed wireless networks, such as ad hoc and sensor, are
often designed under the assumption that all the nodes in the
network are benign and well functioning, and thus comply with
the preestablished behavior envisaged by the network designer.
However, in many applications, such an assumption is easily too
optimistic, and robust design has to account for the possible
activity of either faulty or malicious nodes. Here we discuss how
simple signal processing techniques can enhance resilience of
distributed synchronization to such phenomena.

A simple approach to secure mutual synchronization follows
the idea of [37]. In a basic discrete-time PLL, the time difference
detector evaluates the convex combination �ti(n) (15) of the
clock errors tj (n) − ti (n). Using only this measure, it is not
possible for the nodes to recognize outliers that may disrupt the
synchronization process. This goal calls for robust approaches
that evaluate the dispersion of the clock errors tj (n) − ti (n)

around the weighted average �ti(n), by, e.g., computing the
variance σ 2

i (n) = ∑N
j=1, j �=i αi j · (tj (n) − ti (n) − �ti (n))2,and

then update the local clock by considering only the set of clock
differences tj (n) − ti (n) that are within a given fraction βσi(n)

from the average �ti(n).

An example of the performance of such a scheme is shown
in Figure 12. Consider a network of N = 20 randomly distrib-
uted nodes in a square region of unit area with frequency-syn-
chronous clocks  (Ti = Tnom = T ), out of which four nodes are
malfunctioning or malicious, having clocks
running as ti(n) = nT+ θi(n), where phas-
es θi(n) are selected independently and uni-
formly distributed in the set (0, 1). The
dashed line corresponds to the performance
of the system with no malicious nodes,
which, as expected, leads to an asymptotical-
ly vanishing error ξ(n). On the contrary, in a
scenario with malicious nodes, the timing
error of the basic scheme (evaluated only on
the sixteen nonmalicious nodes) increases
linearly, thus showing that the network is
not able to reach even frequency synchro-
nization. However, the secure scheme, for
threshold β small enough, manages to
maintain a constant error ξ(n) over n, thus
showing that it is able to approximately
achieve full synchronization within a limited
(here 5%) timing error.

THE IMPACT OF PROPAGATION
AND PROCESSING DELAYS
AND PHASE NOISE
In this section, we remove two further
assumptions that have been made through-

out the article, namely negligible propagation delays and
absence of phase noise (see the section “Clocks and
Synchronization”). In order to simplify the analysis, we tackle
the two problems separately.

PROPAGATION AND PROCESSING DELAYS
Here we study the impact of delays on the performance of pulse-
coupled PLLs but similar conclusions hold also for the continu-
ous case as shown in [9]. Assume (for simplicity) a frequency
synchronous network with common local frequency 1/ T and
first-order PLLs. Moreover, let qij be the (finite) propagation
delay between the ith and the jth node (by symmetry, we have
qij = qji). The time at which the nth pulse emitted by node j [at
time tj (n)] is recorded by the ith is tj (n) + qij, so that the tim-
ing detection error of the ith PLL 

N∑
j=1, j�=i

αi j · (tj (n) + qij − ti (n)) = �ti (n) +
N∑

j=1, j�=i

αi jqij ,

(23)

contains an additive term to the timing error �ti(n) defined
in (15). Now, introducing the effective local frequency 1/ Ti as 

Ti = T+ ε0

N∑
j=1, j �=i

αi jqij, (24)

it turns out that the model that account for propagation
delays boils down to the frequency-asynchronous model (17).
In other words, propagation delays have the effect of introduc-
ing an equivalent frequency offset between the local clocks,

[FIG12] Security in distributed synchronization: Standard deviation of the clocks (20)
versus time n for the basic and secure scheme in case we have four malfunctioning or
malicious nodes out of a total number of N = 20 nodes (ε0 = 0.6 and μ = 0).

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

= 1β

Basic Scheme

β = 0.1

Robust Scheme

No Malfunctioning or Malicious Nodes 

n

ξ
(n

)

IEEE SIGNAL PROCESSING MAGAZINE [93] SEPTEMBER 2008



which eventually leads to the static phase error discussed in
the section “Distributed Consensus for Multiagent
Coordination” [see (18)], [9]. Precompensation is clearly pos-
sible if the propagation delays, or if an estimate of the aggre-
gate measure 

∑N
j=1, j �=i αi jqij, is available locally (see [10] for

a discussion on this point). 

PHASE NOISE
Adding phase noise, the basic model (17) reduces to the stochas-
tic difference equation

t(n + 1) − t(n) = T − ε0L · t(n) + υυυ(n), (25)

where υ(n) models phase noise, and is assumed here to be a
vector random process with independent identically distributed
components along the dimensions of nodes and time, with zero
mean and given variance. The expectation E [t(n)] behaves as
the deterministic (phase noise-free) model discussed in the sec-
tion “Pulse-Coupled Discrete-Time PLLs” since it satisfies the
difference equation E [t(n + 1)] − E [t(n)] = T − ε0L·E [t(n)],
which coincides with (17). To get further insight, let us assume
that the clocks are frequency-synchronous (T =T1) and that
the the Laplacian L is symmetric, where the latter condition
requires a regular topology such as the one considered in
Figures 9 and 11. Under these assumptions, model (25) has been
investigated, after the change of variable t̃(n) = t(n) − nT · 1,

in the context of consensus problems in [38] (see next sections
for further details on consensus). It is therein proved that, while
the clocks t(n) do not converge in any useful sense, the average
of their relative deviation (20) E [ξ2(t)] indeed converges to a
finite steady-state values that is a function of the network topol-
ogy through the graph Laplacian L.

DISTRIBUTED SYNCHRONIZATION-BASED SIGNAL
PROCESSING AND CONTROL APPLICATIONS 
The basic concepts and mathematical framework of mutual syn-
chronization have recently found application in the literature on
distributed processing and control for networks of multiple
wireless nodes, or more generally defined agents. In this section,
we briefly review two such applications: distributed consensus
and distributed estimation/detection.

DISTRIBUTED CONSENSUS FOR 
MULTIAGENT COORDINATION
Multiagent systems consist of nodes, such as mobile robots or
unmanned air vehicles, that need to coordinate their behavior
towards the achievement of some collective goal. This task is
accomplished via the exchange of messages along the edges of
the connectivity graph G that describes the links (wireless or
of other nature) among the agents. One of the basic problems
in multiagent coordination is achieving consensus or agree-
ment on a given quantity, e.g., to yield a common decision.
This problem was at first studied in computer science [44]
and is now an active area of research in control [31].

Both continuous-time or discrete-time models for message
passing among the agents have been considered. Let us denote

as vectors Φ(t ) (continuous time) and t(n) (discrete time) the
instantaneous values of the quantity different agents are trying
to achieve consensus on. It turns out that the basic models for
multiagent consensus coincide with (11) and (17), respectively,
having set zero frequencies ωωω = 0 and T = 0 [31].

We concentrate here on the discrete-time case, since similar
results are straightforwardly extended to the continuous-time
case. From the discussion above, recalling the section “Pulse-
Coupled Discrete-Time PLLs,” the basic signal model for multia-
gent consensus reads

t(n + 1) = (I − ε0L) · t(n), (26)

and the steady-state solution depends on the initial conditions
as ti (n) → ∑N

j=1 vjtj (0), where we recall that v is the normal-
ized left eigenvector of the graph Laplacian L. The common
value on which the agents achieve consensus is then a convex
combination of the initial values t(0) with weights given by v
(we are assuming a strictly connected graph, so as to be able to
apply Perron-Frobenius theorem). Controlling the weights αi j

allows to obtain appropriate desirable convex combination of the
initial values, e.g., average or maximum likelihood estimate of a
given parameter. This possibility is discussed in the next section.

DISTRIBUTED ESTIMATION/DETECTION
IN WIRELESS SENSOR NETWORKS
Consider a wireless sensor networks without a fusion center,
whose goal is to achieve a global estimation/detection task
through localized processing so that the final estimation/
decision value is available to each node. This approach is
being strongly advocated for its robustness and ease of imple-
mentation. Typical examples of applications are monitoring,
tracking, and localization. In many of these cases, a basic
operation performed by the network is the calculation of the
global (convex) weighted average of some (possibly vector-val-
ued) local measurements [45]. For instance, calculation of
distributed plain averages (i.e., with equal weights v = 1/N )

is used in [29] in order to perform distributed Kalman filter-
ing and in [30] as a means to achieve distributed hypothesis
testing through exchange of belief information. This approach
is usually referred to as average consensus. Weighted sums
are instead considered in [46] towards to goal of achieving
localization through energy measurements and in [21] for
distributed maximum-likelihood estimators.

According to our discussion in the previous sections, global
averages can be computed through local message passing on the
connectivity graph. Moreover, controlling the coefficients αi j

enables the choice of the vector of weights v. For instance, it can
be easily proved that, in the case of average consensus, vector v
equals the desired v = 1/N if and only if the graph is balanced,
i.e., if we have 

∑N
i =1 αi j = 1 for any j [47]. In [47], the remaining

degrees of freedom in the choice of coefficients αi j are leveraged
to maximize the convergence rate by formulating an appropriate
optimization problem. Moreover, two distinct approaches can be
followed to obtain global averaging of local measures:
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1)  Similarly to the consensus problem discussed in the previ-
ous section, local measurements are mapped into the initial
values (�i(0) or ti(0)) of local oscillators (11) or (17), respec-
tively, with zero frequencies (ωi = 0 or Ti = 0). The final
outcome is given at each node by the steady-state value of the
phase of the local oscillator (�i(t) in (14) or ti (n) in (19)).
2)  Alternatively, one could map the local measurement into
the free-running frequencies ωi or Ti of the local oscillators
(11) or (17), using the fact that the frequencies eventually
synchronize to the common value (12), which is exactly the
desired convex sum [21]. Notice that [21] considers a general
nonlinear model as in (10) with f(·) being continuously dif-
ferentiable, odd, and increasing.
As a final remark, we notice that distributed estimation

based on consensus has been studied in [48] as the solution
of a decentralized optimization problem through decomposi-
tion techniques.

SYNCHRONIZATION OF NONPERIODIC SIGNALS (CHAOS)
Since the early 1990s, there has been evidence that synchro-
nization can be achieved not only among periodic signals
(clocks),  which is also referred to as limit-cycle oscillator in
the jargon of nonlinear dynamics [39], as discussed through-
out the article, but also among nonperiodic (chaotic) systems.
Envisaged applications to wireless communications are spread
spectrum modulation and secure transmission. In this sec-
tion, we provide a glimpse of this complex subject and refer
the reader to [39]–[41] and references therein for further
information. We focus on  unidirectional (master-slave) syn-
chronization of two chaotic systems, both for its simplicity
and because it is the model of interest for the above men-
tioned applications to wireless communications (mutual syn-
chronization does not seem to have found significant
applications to this field so far [40]). Consider, for instance,
two Lorenz chaotic systems, indexed by i = 1, 2 and described
in a three-dimensional phase space by trajectories
xi (t) = [x(1)

i (t) x(2)
i (t) x(3)

i (t)]T, satisfying the non-linear
system ẋi= f(xi

(1), x(2)
i , x(3)

i ) (we drop the temporal depend-
ence for the sake of a simpler notation) [39], [41]: 

ẋ(1)
i = a

(
x(2)

i − x(1)
i

)
ẋ(2)

i = bx(1)
i − x(2)

i − x(1)
i x(3)

i

ẋ(3)
i = x(1)

i x(2)
i − bx(3)

i , (27)

where a, b, c > 0 are parameters. According to their chaotic
behavior, if the two systems x1(t) and x2(t) are initialized with
even slightly different initial conditions, they eventually diverge
from one another (even though they still retain the same
attractor pattern). However, surprisingly, it is possible to lock
the two system in synchrony by appropriate coupling. In partic-
ular, exchange one signal from, say, the first system (x(1)

1 ) to
the second by setting x(1)

2 = x(1)
1 . The system of resulting five

differential equation (six from the Lorenz systems minus the
constraint imposed by coupling) can be proved to converge to

x(2)
1 = x(2)

2 and x(3)
1 = x(3)

2 for any initial condition. Through
coupling via transmission of one message from the master (first
system) to the slave (the second system), we are then able to
obtain synchronization of chaotic systems. Extensions of this
basic model to mutual synchronization of multiple chaotic sys-
tems coupled through a connectivity graph have been consid-
ered, showing that the convergence properties strictly depend
on the algebraic graph characteristics of the network, similarly
to the cases studied in this article [40].

CONCLUSIONS
This article has explored history, recent advances, and chal-
lenges in distributed synchronization for distributed wireless
systems. We have focused on synchronization schemes based on
exchange of signals at the physical layer and corresponding
baseband processing, wherein analysis and design can be per-
formed using known tools from signal processing. Emphasis has
also been given on the synergy between distributed synchroniza-
tion and distributed estimation/detection problems. Finally, we
have touched upon synchronization of nonperiodic (chaotic)
signals. Overall, we hope to have conveyed the relevance of the
subject and to have provided insight on the open issues and
available analytical tools that could inspire further research
within the signal processing community.
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Asymptotic stability of mutual synchronization strictly depends
on the topology of the graph G describing the connections
among the local oscillators (see Figure 5). The graph 
G= (V, E,AAA) is generally weighted and directed, with the N ver-
tices V corresponding to the nodes of the network and edges
E ⊆ V × V describing the coupling between different nodes as
defined by the N × N adjacency matrix AAA. The Laplacian matrix
LLL = III − AAA of the graph has the following basic properties: 

i) existence of a zero eigenvalue, λ1(LLL) = 0 (follows from the
fact that LLL has zero row sums, i.e., L1L1L1 = 0)

ii) all the eigenvalues λk(LLL) satisfy the condition |λk(LLL) − 1| ≤ 1
(follows from the Gershgorin theorem [49])  
iii) if the weights are symmetric, i.e., αij = αji, matrix LLL is sym-
metric and positive semidefinite so that λk(LLL) are real and sat-
isfy 0 ≤ λk(LLL) ≤ 2 (in this case, we can order the eigenvaluesas
0 = λ1(LLL) ≤ λ2(LLL) ≤ · · · ≤ λN(LLL)). 

Conditions for Mutual Synchronization
Here we limit the treatment to continuously coupled or pulse-
coupled first-order (linear) PLLs studied in the sections
“Continuously Coupled Linear PLLs” [see (11)] and “Pulse-
Coupled Discrete-Time PLLs” [see (17)], respectively, referring
the reader to appropriate references for more general scenar-
ios, where similar synchronization conditions can be derived. It
can be easily shown that for continuously coupled first-order
PLLs, synchronization occurs if and only if Re{λk (LLL)} > 0 for
k �= 1, while for pulse-coupled first-order discrete-time PLLs,
the condition is |λk (LLL)| > 0 for k �= 1 (as another example, in
the case of nonlinearly coupled oscillators with symmetric
weights, as in [21], the loop gain ε0 necessary to reach conver-
gence is inversely proportional to the largest nonzero eigenval-
ue λ2(LLL), and similar conditions can be found for chaotic
sysems [40]). Notice that both conditions, given property ii),
amount to requiring that the multiplicity of the unitary eigen-
value λ1(LLL) = 0 is one (simple eigenvalue). Moreover, it can be
shown that the exponential rate of convergence of the syn-
chronization depend on the “smallest” (in terms of real part
for the continuous case and absolute value for the discrete)
nonzero eigenvalue: the “smaller” the eigenvalue the slower
the convergence. This particular eigenvalue is generally
referred to as algebraic connectivity (see [40] for the exact ana-
lytical expression of the algebraic connectivity for some simple
network topologies and general bounds).

A first sufficient condition for synchronization follows directly
from the well-known Perron-Frobenius theorem [49] and states
that, if the graph is strongly connected, i.e., if there exist a (direct-
ed) path (possibly composed of multiple edges) between any pair
of nodes, then the multiplicity of λ1(LLL) = 0 is one, and thus syn-
chronization is achieved (see, e.g., [42] and [24]). This conclusion
complies with the intuition that synchronization is achieved if
every node sees, possibly through the intermediation of other
nodes, the time of all the clocks in the network. Notice, however,
that a fully meshed configuration in which we have direct

exchange of time between all pairs of nodes is not necessary. A
second, more recent, result proves that a necessary and sufficient
condition for synchronization is the existence of a spanning tree
directed tree on the graph obtained from G by reversing the
direction of all the links [31], [43]. This second conclusion shows
that strong connectivity is not necessary; what is necessary is that
there exists at least one clock that is heard by all the nodes, possi-
bly not directly heard, but through the intermediation of other
nodes (see also [51]).

Remark 5
The discussion throughout the article assumes a time-invariant
topology, i.e., the coefficient αij does not depend on time.
Distributed synchronization (consensus) in presence of time-vary-
ing connections has been studied in the literature following two
main approaches. One is to exploit the linearity of the consid-
ered model by using known properties of infinite product of
matrices [50], while the other leverages nonlinear tools, such as
Lyapunov theory, in order to exploit the contractive properties
of the models at hand [33].

Steady-State Analysis
Here we present a brief derivation of the steady-state solution
for the case of continuously coupled first-order (linear) PLLs (11)
treated in the section “Continuously Coupled Analog Clocks.”
Results for the discrete-time counterpart covered in the section
“Pulse-Coupled Discrete-Time PLLs” follow using the same argu-
ments. To start, let us write the phases ���(t ) of the N clocks in
terms of a possible common frequency 1/T (to be determined)
and of corresponding instantaneous phases θθθ(t ) as 

���(t ) = 2π

T
t · 111 + θθθ(t ). (28)

With this change of variables in (11), we are interested in finding
the steady-state equilibrium (if any) of phases θθθ(t ) say θθθ∗,  and
the value of the common frequency 1/T (if any). Plugging (28)
in (11), we easily get

θ̇θθ(t ) = −ε0LLL · θθθ(t ) + ���ωωω, (29)

where we recall that ���ωωω = ωωω−2π/T · 111. Solving for the equilibri-
um point θθθ∗, we set θ̇θθ(t ) = 0, obtaining the condition 

LLL θθθ∗ = ���ωωω

ε0
. (30)

Since by definition of vector vvv (see the section “Continuously
Coupled Analog Clocks”), we have vvvT LLL = 000, it follows that
vvvT ���ωωω = 000, from which the value of the common frequency (12)
easily follows. Moreover, through the further change of variables
ϕϕϕ(t )= θθθ (t ) − LLL†���ωωω/ε0 in (29), we obtain ϕ̇ϕϕ(t ) = −ε0LLL·ϕ(t ).

Under the condition that λ1(LLL) = 0 is a simple eigenvalue of
LLL we have that ϕϕϕ(t ) →1v1v1v Tϕϕϕ(0) (see [31]), which finally leads
to (13).
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