Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2013 J. Opt. 15 055011

(http://iopscience.iop.org/2040-8986/15/5/055011)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 130.199.3.165
This content was downloaded on 11/06/2014 at 22:58

Please note that terms and conditions apply.
Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove

Yusheng Bian¹, Zheng Zheng¹, Xin Zhao¹, Lei Liu¹, Yalin Su¹, Jiansheng Liu¹, Jinsong Zhu² and Tao Zhou³

¹ School of Electronic and Information Engineering, Beihang University, Beijing 100191, People’s Republic of China
² National Center for Nanoscience and Technology, No.11 Zhongguancun Beiyitiao, Beijing 100190, People’s Republic of China
³ Department of Physics, New Jersey Institute of Technology, Newark, NJ 07102, USA

E-mail: zhengzheng@buaa.edu.cn

Received 25 December 2012, accepted for publication 22 March 2013
Published 17 April 2013
Online at stacks.iop.org/JOpt/15/055011

Abstract
Plasmonic waveguides consisting of metallic grooves filled with low- and high-index dielectrics are proposed and the optical properties of guided plasmonic modes are investigated at a wavelength of 1550 nm. Numerical simulations reveal that the quasi-TE-like fundamental hybrid plasmonic mode exhibits strong localization near the low-index dielectric gap, along with pronounced local field enhancement and relatively small mode area. Moderate propagation loss can be achieved as well, corresponding to a propagation distance of around tens to hundreds of microns. The proposed hybrid plasmonic structure is compatible with the fabrication techniques of traditional channel plasmon polariton waveguides, and these structures could be employed as interesting building blocks for highly integrated photonic circuits.

Keywords: surface plasmons, photonic integrated circuits, guided waves, hybrid waveguides

(Some figures may appear in colour only in the online journal)

1. Introduction

The ever-increasing demand for continuous miniaturization of high-density photonic integrated circuits has motivated research into novel guiding schemes capable of manipulating light at the subwavelength scale [1]. Surface plasmons (SPs), coherent oscillations of the electron density at the metal/dielectric surface, have been utilized as promising candidates for subwavelength light guiding, due to their unique capability of effectively overcoming the diffraction limit existing in conventional photonics technology [2]. Among the previously studied surface plasmon polariton (SPP) structures for subwavelength light confinement and guiding, triangular metallic grooves supporting the propagation of channel plasmon polaritons (CPPs) have been intensively investigated for their capability of simultaneously providing tight light confinement and long propagation distance [3–7]. Another merit is their ease of fabrication, which has enabled a number of experimental demonstrations [8–12].

Conventional CPP waveguides are based on a sharp-angled groove milled on a metallic surface (near-infinite [5, 8] or finite thickness [13, 14]). The grooves are either exposed directly to air [5, 8] or filled with some kind of dielectric material [15, 16]. The fundamental plasmonic mode supported by a near-infinite metal groove with an air cladding exhibits a quasi-TE-like behavior and becomes highly confined at the bottom corner of the channel at optical frequencies, while it shifts towards the groove opening with increased wavelength [17]. The propagation distance of the CPP mode can reach 100 µm; however, the
corresponding mode confinement is relatively weak, with the mode size approaching the wavelength scale. In this paper, in order to realize subwavelength mode confinement and low propagation loss simultaneously, we look into an alternative structure consisting of a metal groove waveguide filled with different materials, i.e. more than one material inside the grooves. It is found that the associated modal properties would be greatly modified due to the incorporation of the hybrid material. For a groove filled with two types of dielectric (with high-index contrast), the strong coupling between the triangular high-index dielectric core and the metallic wall results in a novel hybrid plasmonic mode featuring both strong confinement and long-range propagation length, similar to other hybrid plasmonic waveguides [18–27]. Besides, such a structure can be realized using fabrication techniques similar to those of conventional CPP [8] and wedge plasmon polariton (WPP) waveguides [28]. For example, one of the possible approaches to form a hybrid groove is based on the conventional CPP structure, which can be implemented by first milling a V-shaped groove onto a metal substrate, followed by subsequent deposition of the low-index and high-index materials. Another feasible method is by employing totally reversed steps. After formation of a low-index dielectric coated high-index dielectric ridge, the metal cladding is deposited onto the whole structure. In the following discussion, the present hybrid structure is denoted as a channel hybrid plasmonic waveguide for convenience. Detailed investigation of the properties of the fundamental hybrid plasmonic modes with changes of key geometric parameters is carried out at the telecom wavelength.

2. Analysis of the channel hybrid plasmonic waveguide

Figure 1 shows a schematic of the proposed channel hybrid plasmonic waveguide, where a triangular upside-down high-index dielectric wedge is incorporated inside the metal groove, with a homogeneously thick low-index dielectric filling the gap between the groove and the wedge. The bottom angle of the metal groove is \(\theta \), which is the same as that of the high-index wedge. The depth of the metal groove is \(h \) while the top width of the dielectric wedge is \(w \). The low-index dielectric layer has a uniform thickness \(t \), which also dictates the gap width. The bottom corner of the wedge has a 10 nm curvature while the corresponding metal groove corner has a radius of \((10 + t)\) nm in order to maintain a constant gap width. Thus, the depth of the dielectric wedge equals \((h - t)\). The modal characteristics of the proposed waveguide are investigated at \(\lambda = 1550 \text{ nm} \) by the finite-element method (FEM) using COMSOLTM. The 2D eigenmode solver is used with the scattering boundary condition. Fine meshes with a maximum mesh size of around 2 nm are adopted in the low-index gap region, and 5 nm for the high-index wedge. Convergence tests are performed to ensure that the numerical boundaries and meshing do not interfere with the solutions. The cladding and the gap are made of silica (SiO\textsubscript{2}), while the metal substrate is assumed to be silver (Ag) and the dielectric wedge is made of silicon (Si). The permittivities of Si, SiO\textsubscript{2} and Ag are \(\varepsilon_{d} = 12.25 \), \(\varepsilon_{c} = 2.25 \) and \(\varepsilon_{m} = -129 + 3.3i \) [18], respectively.

The electric field distribution of the fundamental quasi-TE hybrid plasmonic mode is shown in figure 2, where the groove angle is set at \(25^\circ \), with \(h = 500 \text{ nm} \) and \(t = 20 \text{ nm} \). From the 2D field panel, it is seen that the mode is tightly localized near the gap and the silicon ridge. Besides, pronounced local field enhancement is observable in the low-index silica gap, as shown in the cross-sectional field plots, along with reasonable modal overlap in the high-index silicon wedge, which is beneficial for potential applications in active components such as nanolasers. It is also seen that the enhancements are much more obvious in the upper part of the groove than in the bottom region, due to the stronger interaction between the upper silicon wedge and the metallic sidewalls.

Figures 3(a)–(c) demonstrate the dependence of the calculated modal properties of the fundamental quasi-TE hybrid mode on the groove depth \(h \) for different gap widths \((t = 10 \text{ nm}, 20 \text{ nm}, 40 \text{ nm})\), where the groove angle is fixed at \(25^\circ \). In the figures, \(n_{\text{eff}} \) is the real part of the modal effective index \(N_{\text{eff}} \). The propagation distance is obtained by \(L = \lambda/[(4\pi \text{Im}(N_{\text{eff}})) \] , whereas the effective mode area is calculated using

\[
A_{\text{eff}} = \left(\int \int |W(r)\,dA|^{2} \right) / \left(\int \int |W(r)|^{2} \,dA \right) \tag{1}
\]

where, to accurately account for the energy in the metal region, the electromagnetic energy density \(W(r) \) is defined as [18]

\[
W(r) = \frac{1}{2} \text{Re} \left\{ \frac{d[E(r)]}{d\omega} \right\} |E(r)|^{2} + \frac{1}{2} \mu_{0} |H(r)|^{2}. \tag{2}
\]

In equation (2), \(E(r) \) and \(H(r) \) are the electric and magnetic fields, \(\varepsilon(r) \) is the electric permittivity and \(\mu_{0} \) is the

Figure 1. Schematic of the studied channel hybrid waveguide.
Figure 2. Electric field distribution of the fundamental quasi-TE plasmonic mode supported by the channel hybrid plasmonic waveguide ($\theta = 25^\circ$, $h = 500$ nm, $t = 20$ nm). Normalized fields along the dashed lines in the 2D panel are also depicted to better illustrate the field enhancements in the silica gap.

Figure 3. Dependence of the modal properties of the hybrid plasmonic mode on the groove depth ($\theta = 25^\circ$): (a) modal effective index (n_{eff}); (b) propagation distance (L); (c) normalized mode area (A_{eff}/A_0). Red curve: $t = 40$ nm; blue curve: $t = 20$ nm; green curve: $t = 10$ nm. The dashed line in (a) corresponds to the refractive index of the silica cladding, i.e. 1.5. The insets plot the corresponding electric field distributions of the hybrid mode. In (b), from left to right: $h = 150$ nm, $t = 10$ nm; $h = 190$ nm, $t = 20$ nm; $h = 250$ nm, $t = 40$ nm. In (c), from left to right: $h = 160$ nm, $t = 10$ nm; $h = 250$ nm, $t = 20$ nm; $h = 300$ nm, $t = 40$ nm.

To further illustrate the mode confinement in different dielectric regions during variation of the waveguiding geometry, we now calculate the normalized optical powers (NOPs) in the silica gap and the silicon wedge. Here, NOP is defined as the ratio of the power inside the corresponding region to the total power of the waveguide. All the geometric parameters are chosen the same as those in figure 3. From
figure 4(a), it can be seen that, for each gap width, there exists an optimized NOP_{gap} with respect to the groove depth, which corresponds to the largest power ratio confined in the gap. This critical h shifts toward a larger value when the gap width increases, similarly to the change of the groove depth for minimal L and λ_{eff} at different t (see figures 3(b) and (c)). A close comparison between figures 3 and 4 also reveals the fact that, for a specific gap width, the occurrence of minimal L (also λ_{eff}) and maximal NOP_{gap} cannot be achieved simultaneously, i.e. the critical groove depths for the two conditions are different. Such a deviation may be caused by the geometrical changes in both the silicon wedge and the metal groove during the increase of h, which result in a more complicated coupling between the dielectric and plasmonic modes. Compared to the waveguide studied here, the hybridization of modes for the conventional hybrid plasmonic structure in [18] is relatively simple. As only the high-index dielectric varies its width during the geometric optimization, while the flat metallic surface remains unchanged, the variation of the coupling strength between the two modes can thus be attributed only to the change of the dielectric mode. From figure 4, it is also seen that when h is relatively small, the power located in the gap is not that large due to spreading of the field into the cladding. On the other hand, when h exceeds a certain value, NOP_{gap} drops gradually, with increased optical power concentrated in the high-index silicon wedge, as indicated in the curves of figure 4(b) and the corresponding field plot. In such cases, the hybrid mode behaves more like a dielectric mode, manifesting relatively low loss and large modal area. Such a power ratio could be further increased by adopting an even smaller gap width, which may be useful to facilitate gain when leveraged in active plasmonic devices. It is also worth mentioning that quasi-TM hybrid modes and other higher-order modes could also be supported by the structure at larger groove depth due to the hybridization between different plasmonic and dielectric modes.

Numerical simulations also reveal that the propagation loss of the quasi-TE hybrid plasmonic mode could be further reduced by increasing the curvature of the bottom corner of the Si wedge. For instance, considering a typical structure with a groove depth of 500 nm and a gap width of 20 nm, the propagation length is 32.6 μm for a Si wedge with a 10 nm curvature, while it increases to 64.7 μm when the curvature of the wedge reaches 100 nm. Furthermore, it is also shown that owing to the existence of the high-index silicon wedge near the metallic groove, the studied hybrid plasmonic mode could be supported by the proposed waveguide configuration within a much wider range of groove angles than the standard CPP waveguide case, similarly to the previously reported hybrid groove structures [29].

3. Comparisons between the channel hybrid waveguide and a CPP waveguide

To further benchmark the properties of the channel hybrid waveguide presented here, we make a quantitative comparison between the optical performance of the channel hybrid structure and a standard CPP waveguide. Here, the physical dimensions of the channel hybrid waveguide are set to be the same as those in the first set of simulations in figure 3. The CPP waveguide is also assumed to be made of silver for a fair comparison. The top and bottom corners of the groove are rounded with 100 nm and 10 nm curvatures, respectively [30]. In order to ensure the existence of a standard CPP mode, the groove depth is set at 1500 nm, with the groove angles chosen as 16° and 25°. 2D parameter plots of the normalized mode area (A_{eff}/A_0) versus the normalized propagation distance (L/λ) are introduced to allow for direct comparison of different properties. Here, for the proposed channel hybrid waveguide, by directly adopting the data from figures 3(b) and (c), we are able to show the relationship between the mode area and the propagation distance for different groove depths. It is illustrated in figure 5 that the standard CPP mode typically has a low transmission loss. For instance, its propagation distance can be more than 100 μm at 16° while exceeding 200 μm at 25°. However, the corresponding effective mode area is relatively large. By contrast, the presented channel hybrid waveguide is able to achieve a much smaller mode area, while still retaining a reasonable propagation distance,
which makes it a better candidate for light guiding at the subwavelength scale.

Considering the excitation strategy, the guided mode of the channel hybrid waveguide can also be directly excited by using tapered optical fibers such as those applied in standard CPP structures, although its non-uniform field distribution might offer some challenges in achieving a relatively high launching efficiency. Besides, the hybrid mode could be launched by other dielectric modes as well. For instance, the proposed hybrid waveguide could be integrated with a standard silicon-on-insulator waveguide before connecting with an input fiber, similarly to approaches that are widely employed in experimental studies of many other silicon based plasmonic structures [26, 31].

Since tight optical confinement and significant local field enhancement can be achieved in the low-index gap of the channel hybrid waveguide, it offers interesting potential for various applications. However, there is a limitation of this structure when employed for sensing applications. As the metal groove has been completely filled, most of its mode field cannot be easily accessed. For this application, standard CPP structures would be better candidates than channel hybrid waveguides as their open grooves make them naturally behave as plasmonic sensors.

4. Conclusions

We have presented a novel plasmonic waveguide to provide tight confinement of light in the low-index gap region with long-range propagation length, simply by incorporating high-index contrast dielectric into the V-shaped metal grooves. The structure is also compatible with standard fabrication processes and could enable the realization of various plasmonic devices and photonic circuits.

Acknowledgments

This work was supported by 973 Program (2009CB930701), NSFC (61221061/61077064), National Key Scientific Instruments and Equipment Development Special Fund Management (2011YQ0301240502) and a Scholarship Award for Excellent Doctoral Student granted by the Ministry of Education at Beihang University.

References

[16] Srivastava T and Kumar A 2009 Propagation characteristics of channel plasmon polaritons supported by a dielectric filled trench in a real metal J. Appl. Phys. 106 044310