Metal-insulator transition in CuIr₂S₄: XAS results on the electronic structure

M. Croft, W. Caliebe, H. Woo, T. A. Tyson, D. Sills, Y. S. Hor, S-W. Cheong, V. Kiryukhin, and S-J. Oh

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854
Brookhaven National Laboratory, Upton, New York 11973
Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102

(Received 18 March 2003; published 20 May 2003)

S K and Ir L₃ x-ray absorption measurements across the temperature-induced metal (M) to insulator (I) transition in CuIr₂S₄ are presented. Dramatic S K-edge changes reflect the Ir d-electronic state redistribution across this transition. These changes, along with a detailed consideration of the I-phase structure, motivate a model in which the I-phase stabilization involves an interplay of charge and d-orbital orientation ordering along Ir chains, a quadrupling of the Ir-chain repeat unit, and correlated dimer spin-singlet formation.

DOI: 10.1103/PhysRevB.67.201102 PACS number(s): 71.30.+h, 78.70.Dm

Metal-insulator transitions involving transition metal (T) compounds have been of intense interest in recent years on both fundamental and technological grounds. This field has been dominated by 3d-row T-oxide compounds, by virtue of the renaissance in these materials that followed the discovery of high-T_c superconductivity. The subclass of mixed valent metallic compounds that "charge order" into an insulating state has been the focus of special recent interest. The compound CuIr₂S₄ stands out as unique in this subclass for a number of reasons.

The spinel structure CuIr₂S₄ compound has a paramagnetic, high-temperature, homogeneously mixed Ir⁴⁺/Ir³⁺, metallic (M) phase, which undergoes a first-order transition (near 230 K) to a low-temperature, charge-ordered, diamagnetic, insulating (I) phase. Recent definitive x-ray and neutron scattering measurements showed this I phase to involve a complex ordering of Ir⁴⁺-spin-singlet dimers and undimerized Ir³⁺ sites. This finding is novel, since such dimerization transitions have previously occurred almost exclusively in compounds with clearly defined quasi-one-dimensional (1D) chains, and certainly not in a complex three-dimensional (3D) type structure. Moreover, the complex pairwise ordering of Ir³⁺-Ir³⁺ nondimer and Ir⁴⁺-Ir⁴⁺ singlet-dimer moieties appears not to have been previously observed. In addition, the broadness of the 5d orbitals makes such M-I transitions rare in 5d-row compounds, and still rarer in a nonoxide (i.e., S) 5d compound. These properties, along with the previous dearth of precise structural or electronic information, have hindered the development of the outlines of a theory for the M-I transition in CuIr₂S₄. In this paper, we present S and Ir XAS results spanning the M-I transition in CuIr₂S₄. The S K-edge results, along with a careful review of the dimerized/charge-ordered chain character of the I phase, motivate a proposal for a specific electronic/structural basis from which to approach understanding of this novel I-M transition.

The sample preparation and characterization techniques were as discussed in Ref. 10. The S K and Ir L₃ XAS measurements were, respectively, performed on beamlines X19A and X18B at the Brookhaven National Synchrotron Light Source, using methods discussed in Refs. 12 and 13. The low-temperature XAS measurements on X19A utilizes a nitrogen cryostat (in the fluorescence mode), and those on X18B used a diplex refrigerator (using the transmission mode).

Previous photoemission spectroscopy measurements on CuIr₂S₄ showed a subtle loss of electronic states at 0.2 eV below the Fermi energy (E_F) in the I phase. These photoemission and I-phase inverse photoemission results manifested substantial departures from band-structure predictions on a wider energy scale. Thus the generic gap formation below E_F, and the absence of any information about above-E_F density-of-state (DOS) changes across this M-I transition, have provided little guidance to direct the theoretical attack on this interesting system.

XAS has been important in elucidating atomic/orbital-specific electronic structure in many classes of transition metal compounds. The combination of O K-edge (probing O p states) and Cu L₂,₃-edge (probing Cu d states) measurements emphasized the crucial importance of hybridized O p/Cu d hole states in the physics of high-T_c cuprates. Importantly, O K-edge measurements on VO₂ clarified the specific electronic structure changes behind its metal to dimerized-insulator transition. Systematic O K-edge measurements in T(3d)-O compounds have profiled (via their threshold structure) the important variations in their hybridized O p/T d empty states. 4d/5d-hole states have been studied extensively by T L₂,₃-edge spectroscopy in transition-metal compounds. Finally, T(3d) K-edge XAS has been used to chronicle the valence variations in manganeseates and the charge donation to Cu in electron-doped high-T_c materials. This background motivates our S K- and Ir L₃-edge studies across the M-I phase transition in CuIr₂S₄. Cu K-edge measurements in our laboratory, along with previous NMR and band-structure calculations, indicate a Cu¹⁺ state in CuIr₂S₄, allowing us to neglect Cu d state influences on the S states above E_F.

The elemental S K edge in Fig. 1(a) is dominated by an intense "white line" (WL) feature, due to dipole transitions into empty 3p states. In transition-metal sulfide compounds, one typically observes a diminution of the WL intensity due to T to S charge transfer and the appearance of prominent threshold features, shifted down by 0–5 eV from the elemental-S WL, due to hybridized S p/T d states. The S K threshold features probe the T(d) DOS (weighted by transi-
tion matrix element effects) in sulfides in the same sense as O K threshold features do in oxides. The S K-edge spectra for the spinel compounds CuT₂S₄ (T = Cr, Co, and Ir) in Fig. 1(a) illustrate this for the octahedral ligand field case, where the d orbitals are split into a lower t₂g sextet and an upper e₃g quartet. For the isoelectronic 3d Co and 5d Ir compounds, the empty states are t₂g and e₃g for the Cr compound, and the Cr compound they are t₂g and e₃g. The a and a’ features in the S K spectra are associated with the empty S p states, hybridized with the empty t₂g and e₃g states, respectively. Consistent with band calculations,⁹ the ligand field splitting for T = Ir is large (yielding a resolved a’-a splitting) and smaller for the more localized Co d orbitals (yielding an unresolved a’ shoulder on the a feature). The Cr case, the broader d bands and larger number of t₂g holes broaden the threshold features and enhance the a’-feature intensity. Finally, although not germane to this work, it should be noted that a full treatment of such threshold features should include exchange and multiplet effects, particularly for the Cr compound.

Figure 1(b) compares the S K- and Ir L₃-edge spectra on the same (albeit displaced) energy scale for the I and M phases of CuIr₂S₄. The Ir L₃ edge also manifests an intense WL feature due to the 5d states above E_F. The A feature, at the Ir L₃ edge of CuIr₂S₄, involves the four empty e₃g states per Ir, and the aligned S K a peak is associated with the transitions to S p/Ir d(e₃g) hybridized states. The ½ t₂g hole per Ir makes a weak unresolved contribution to the Ir L₃ WL near the A’ energy range; however, the S K a’ feature, involving

FIG. 1. (a) The S K edges of elemental S and CuT₂S₄, with T = Cr, Co, and Ir. The a’- and a-threshold features are, respectively, associated with T d t₂g and e₃g state hybridization. (b) The S K edges of CuIr₂S₄, at temperatures T = 195 K (in the I phase) and 300 K (in the M phase). (c) The Ir L₃ edges of elemental Ir, IrO₂, CuIr₂Se₄, and CuIr₂S₄. The intensity in the A and A’ positions are associated with Ir d t₂g and e₃g final states, respectively.

S p/Ir d(t₂g) hybridized states, defines these t₂g states much more sharply. The alignment of the Ir L₃ B feature and S K b feature for the CuIr₂S₄ suggests S-Ir hybridization effects at these higher energies.¹²

For comparison, the Ir L₃ edges of IrO₂, CuIr₂Se₄, and Ir metal are also shown in Fig. 1(c). The higher WL intensity and chemical shift of the IrO₂ spectrum reflect its higher valence relative to CuIr₂S₄. The Ir L₃ spectrum of CuIr₂Se₄ shows a greater Ir d DOS near E_F, relative to CuIr₂S₄, consistent with a higher density of overlapping states near E_F in the always-metallic Se isomorph.⁶ The combination of monochromator resolution, core hole broadening, and core-hole/d-electron interactions make the Ir L₃ WL feature essentially identical in the M and I phases of CuIr₂S₄.

S K-edge spectra were taken as the sample slowly warmed through the I-M transition (with temperature measurements being ±5 K) and the details of the discontinuous spectral change can be seen by comparing the T~225 K I-phase and T~239 K M-phase spectra in Fig. 2 (top). The difference between these spectra, shown in Fig. 2 (bottom) provides a direct estimate of the detailed Ir d/S-p state redistribution occurring at the transition. Here we will focus only on the central element of this redistribution, the dramatic shift of the a’ (t₂g) feature to higher energy in the I phase. A proper theoretical treatment of this transition should also replicate the state redistribution on the low energy side of the a feature.

We tacitly assume the S K threshold features are dominated by electronic structure effects in analogy to all past O K-edge threshold measurements.¹⁴–¹⁶ The close quantitative similarity of our I-phase S K threshold spectra to the I-phase inverse photoemission results strongly supports this assumption.

We will pattern our proposals for understanding CuIr₂S₄ after those of the Abbate et al.¹⁵ reformulation of Goodenough’s ideas for the paramagnetic-metal-to-dimerized-insulator transition in VO₂. These authors developed a simple molecular orbital (MO) theory for VO₂, motivated by

FIG. 2. Comparison of the S K edges of CuIr₂S₄ just across the I-phase (225 K) to M-phase (239 K) transition. The difference (bottom) between the I- and M-phase spectra is shown to highlight the full details of the M to I electronic state changes.
The appearance of a prominent $O \, K$ threshold feature in the I-phase. The model was based on a strong hybridization-induced splitting of dimer $V \, d$ states (d_{ij} sites) oriented along the chains of edge-sharing VO$_6$ octahedra in the rutile structure.\cite{15,18} Abbate et al.\cite{15} noted, and Sommers et al.\cite{19} emphasized, that Mott-Heitler-London electron correlation effects also contribute to the d_{ij} splitting.

The spinel structure of CuIr$_2$S$_4$ is decidedly three dimensional, however, as Fig. 3(a) illustrates, it also contains criss-crossing Ir chains with an Ir-Ir spacing of $h = 3.48 \, \AA = a\sqrt{2}/4$, where a is the lattice parameter. The chains cross in adjacent planes $a/2$ apart, and cross-linking chains create three-fold chain intersections at the Ir sites (see the cube center). The cell edge-to-edge chain has a length of $4h = 13.92 \, \AA$ and contains four Ir atoms in the cubic cell. In the metallic phase the Ir$^{3+}$ atoms, with a configuration of $t^3_2g^3$, can be thought of as $[t^2_2](t^1_{2g})$, where the former bracket constitutes two filled d orbitals and the latter a $\frac{1}{2}$-filled band for the highest-lying $d_{(2g)}$ orbital.

Space limitations preclude detailed discussion of the complex triclinic $(a = 11.95 \, \AA, \quad b = 6.98 \, \AA, \quad c = 11.93 \, \AA, \quad \alpha = 91.05^\circ, \quad \beta = 108.47^\circ, \quad \gamma = 91.03^\circ)$ I-phase structure;\cite{10} however, several crucial points should be noted [see Fig. 3(b)]. All Ir atoms are members of charge-ordered \cdotsIr$^{3+}$-Ir$^{4+}$-Ir$^{4+}$-Ir$^{3+}$, with dimerized Ir$^{4+}$-Ir$^{4+}$ pairs. There are two closely related types of chains (I and II) having unit repeat distances of $\sim 4h$, and extending along approximately orthogonal triclinic cell edge-to-edge directions. Planes of chains in these two directions alternate in the third direction. At staggered chain crossing regions, adjacent Ir$^{3+}$-Ir$^{4+}$ atoms are still close (in the 3.43–3.56 $\, \AA$ range); however, the orientation of the crucial near-E_F, d-orbital charge lobes, within our model, should be along the chains. This should produce minimal overlap between the filled-shell t^6_2 Ir$^{3+}$ on one chain, and the transverse d lobe on the Ir$^{4+}$ on the adjacent chain, leading to near-E_F d bands with quasi-1D character (within a 3D geometrical structure).

The four atom repeat unit in the I-phase chains is composed of a t^2_2-t^5_2 dimer, bounded by two filled-orbital t^5_2 sites. After Abbate et al.,\cite{15} we denote the last filled d orbital along the chain as d_i, and note that the I-phase chain sequence would be $d^2_i \!d^1_i \!d^1_i \!d^2_i$. In the extended-zone scheme, the dispersion curve for the d_{ij} band would now have new gaps at $\pi/4h$, $\pi/2h$, and $3 \pi/4h$. The $3 \pi/4h$ gap falls in the range of the Fermi energy of the $\frac{1}{2}$ filled d_{ij} band, and the removal of nested states near E_F should play some role in the M to I transition. Sommers et al.\cite{19} emphasized that electron repulsion/correlation effects were important in VO$_2$, along with direct d overlap effects. We believe the correlated singlet dimerization energy is crucial here also, and while the direct d overlap effects should be enhanced and the correlation effects reduced in this 5d Ir compound, both are anticipated.

In Fig. 4(a) we show a schematic representation of the dimer-containing chain repeat cell indicating the filled d_{ij} sites with circles, and the oriented d^5_{xy}-type charge cloud\cite{10} at the d^1_{ij} sites. The intersite direct $d^1_{ij} \cdot d^1_{ij}$ overlap of the dimer, across the shared octahedral edge, is emphasized.

In the M phase of CuIr$_2$S$_4$, the itinerant d holes are hopping on and off Ir sites along three-fold cross-linked chains, with the spatial orientation of the d_{ij} charge lobes also fluctuating. The transition to the I phase involves several components: a Ir$^{4+}$-Ir$^{4+}$-Ir$^{4+}$ charge ordering with a concomitant quadrupling of the chain cell to $\sim 4h$, an orbital ordering of the charge lobes at each site into one chain and across the shared edge of an Ir$^{4+}$-Ir$^{4+}$ dimer, and finally, $d^1_{ij} \cdot d^1_{ij}$ hybridization into a spin singlet dimer with correlation effects.
In Fig. 4(b) the MO proposal for the M phase of CuIr$_2$S$_4$ is shown. The bonding (σ)–antibonding (σ^*) orbitals involve Ir $d(e_g)$ states that point toward the S sites, and induce strongly split hybrid states. The less split bonding (π)–antibonding (π^*) orbitals involve Ir d states that point between the S sites, and hybridize more weakly. The highest-lying Ir $d(t_{2g})$ orbital [labeled in Fig. 4(b)] is partially filled at E_F.

In the I phase there will be two differing MO combinations, one for the d_{xy}^1–d_{yz}^1 dimer and one for the d_{xy}^2 sites which are shown in Fig. 4(c). At the dimer site, the splitting of the d states into a bonding $d_{\|}$ and antibonding d_{\perp}^* pair is dramatic. The fact that both the $d_{\|}^*$ and d_{\perp} states carry hybridized S-p states with them, away from E_F, has been emphasized in Fig. 4(c) by the additional broader box accompanying these states. At the Ir$^{3+}$ d_{xy}^2 site, the closed d_{xy}^2 orbital falls below E_F. Thus in this MO model the M–I transition involves; the redistribution of the near-E_F states in the M phase, into the I-phase dimer site bonding/antibonding $(d_{\|}/d_{\perp})$ states, and into the filled t_{2g} states at the Ir$^{3+}$ site.

Referring back to our S K-edge results in Fig. 2, in the M phase we associate the high-lying MO σ^* states and the near-E_F MO π^* d states with the S $K\alpha$ and α' features, respectively. In the I phase, the α feature and σ^* states persist relatively unchanged in both the S-K edge results and MO model. The shift of the α' feature to higher energy in the I phase is associated with the splitting of the MO antibonding d_{\perp}^* states to above E_F at the dimer sites. The bonding $d_{\|}$ states at the dimer sites, and the filled t_{2g} states at the Ir$^{3+}$ sites, are both pulled below E_F and do not contribute to the S K edge. Thus, this simple starting-point model involves the I phase arising from orbital ordering of the d-orbital charge lobes into in-chain $d_{\|}$ states, and intrachain charge ordering into Ir$^{4+}$–Ir$^{4+}$ (d_{xy}^1–d_{xy}^1) correlated singlet dimers bounded by Ir$^{3+}$ filled d_{\perp}^2 orbital sites.

More generally, the underlying electronic origin of the M–I transition in this system appears, at present, unique among 5d row compounds. Besides explaining our XAS results, the proposed MO picture appears to explain the photo-emission gap formation below E_F. Interestingly, the fact that the band structure calculation predicts a metallic state, even in a tetragonally distorted phase (Ref. 9), strongly suggests that the electrons in the I phase have localized character, despite the common belief that 5d electrons form broad bands. Hence, the MI transition would appear to involve electron localization due to correlation effects.

ACKNOWLEDGMENTS

This work was supported by the DOE under NSLS Contract No. DE-AC02-98CH10886, the NSF under Grants No. DMR-0093143 and No. DMR-0103858, and the Korean Science and Engineering Foundation through CSCMR.

*Permanent address: Department of Physics and Center for Strongly Correlated Materials Research, Seoul National University, Seoul 151-742 Korea.

1M. Imada, Rev. Mod. Phys. 70, 1039 (1998).
2M. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).
3J. Bednorz and K. Muller, Rev. Mod. Phys. 60, 585 (1988).