Lecture 8

Energy

Work and Kinetic Energy
Kinetic and Potential Energy
(HR&W, Chapters 7 and 8)

http://web.njit.edu/~sirenko/

Physics 105 Summer 2006

ENERGY

Energy is a property of the state of an object: hard to define precisely

Energy is a scalar quantity. It does not have a direction associated with it

Energy is conserved. It can be transferred from one object to another or change in form, but not created or destroyed.

Units: joule = kg·m²/s²

Kinetic Energy

Kinetic Energy = Energy of motion

\[K = \frac{1}{2}mv^2 \text{ for object moving with velocity } v \]

\[J = kg \frac{m^2}{s^2} \]
Kinetic Energy: Orders of Magnitude

\[K = \frac{1}{2}mv^2 \] for object moving with velocity \(v \)

- Earth orbiting sun: \(2 \times 10^{29} \) J
- Car at 60 mph: \(100,000 \) J
- Nolan Ryan pitch: \(300 \) J
- Professor walking: \(40 \) J
- Angry bee: \(0.005 \) J

Why \(K = \frac{1}{2}mv^2 \)?

Energy and Work

- Special case: Constant Acceleration
 - Remember result eliminating \(t \):
 \[v^2 - v_0^2 = 2a(x - x_0) \]
 - Multiply by \(\frac{1}{2} \) m:
 \[\frac{1}{2}mv^2 - \frac{1}{2}mv_0^2 = ma(x - x_0) \]
 - But \(F = ma \):
 \[\Delta \left(\frac{1}{2}mv^2 \right) = F\Delta x \]

Kinetic energy

\[K = \frac{1}{2}mv^2 \quad \left[J = \text{kg m}^2 \text{s}^{-2} \right] \]

Units of Work and Energy: Joule

Work done by a constant force

\[W = F \cdot d = Fd \cos \theta \]

Work-kinetic energy theorem

\[\Delta K = K_f - K_i = W \]
Work

Work \equiv \text{Energy transferred by a force}

Work done on an object is the energy transferred to/from it

W > 0 \rightarrow \text{energy added}
W < 0 \rightarrow \text{energy taken away}

W = \vec{F} \cdot \vec{r} \equiv \text{Work done on an object by a constant force } \vec{F} \text{ while moving through a displacement } \vec{r}

Dot Product: Physical Meaning

\vec{A} \cdot \vec{B} = AB \cos \theta = A_xB_x + A_yB_y + A_zB_z

\begin{align*}
\theta = 0 & \rightarrow \vec{A} \cdot \vec{B} = AB \\
\theta = 90^\circ & \rightarrow \vec{A} \cdot \vec{B} = 0
\end{align*}

Dot product measures how much vectors are along each other

What does \(W = \vec{F} \cdot \vec{r} \) mean?

\begin{align*}
W > 0 \text{ if } \theta < 90^\circ & \rightarrow \text{force is adding energy to object} \\
W < 0 \text{ if } \theta > 90^\circ & \rightarrow \text{force is reducing energy of object} \\
W = 0 \text{ if } \vec{r} = 0 \text{ or } \vec{F} = 0 \text{ or } \vec{F} \perp \vec{r} & \text{Work Examples}
\end{align*}

Work due to Gravity

A weightlifter does work when lifting a weight \(W = mgh \)

(h is the vertical drop)

Push on a wall

\(W = 0 \) since wall does not move (\(\vec{r} = 0 \))
Work Done by a Gravitational Force

Work done by gravitational force

\[W_g = mgd \cos \theta \]

Tomato thrown upward

\[W_g < 0 \quad W_g > 0 \]

Lifting/lowering an object

Change in kinetic energy:

\[\Delta K = K_f - K_i = W_a + W_g \]

Work Done by a Spring Force

Hooke’s law:

\[\vec{F} = -k \vec{d} \]

Work done by a spring force:

\[W_s = \frac{1}{2} kx_i^2 - \frac{1}{2} kx_f^2 \]

\[W_s = \sum F \Delta x \]

\[W_s = \int_{x_i}^{x_f} F \, dx \]

\[= \int_{x_i}^{x_f} -kx \, dx = -k \int_{x_i}^{x_f} x \, dx \]

\[= -\frac{1}{2} k \left[x^2 \right]_{x_i}^{x_f} \]

\[= \frac{1}{2} k (x_f^2 - x_i^2) = \frac{1}{2} kx_i^2 - \frac{1}{2} kx_f^2 \]
Sample Problem 7-8

A block of mass $m = 0.40 \text{ kg}$ slides across a horizontal frictionless counter with a speed of $v = 0.50 \text{ m/s}$. It runs into and compresses a spring of spring constant $k = 750 \text{ N/m}$. When the block is momentarily stopped by the spring, by what distance d is the spring compressed?

Work Done by a General Variable Force

Work: variable force

$W = \int_{x_i}^{x_f} F(x) \, dx$

- Calculus
- Divide area under curve
- Add increments of W (numerically)
- Analytical form?
- Integration!!!

Power

Work doesn’t depend on the time interval

Work to climb a flight of stairs $\approx 3000 \text{ J}$
- 10 s
- 1 min
- 1 hour

Power is work done per unit time

Average Power $P_{\text{avg}} = \frac{W}{\Delta t}$

Instantaneous Power $P = \frac{dW}{dt} = F \frac{dx}{dt} = Fv$

Units

$\text{Work/time} = \frac{1 \text{ J}}{1 \text{ s}} = 1 \text{ Watt}$

$1 \text{ hp} = 746 \text{ W}$

$P = \frac{1}{2} \times 60\text{kg} \times (5\text{m/s})^2$

Sample Problem 7-10: Two constant forces F_1 and F_2 acting on a box as the box slides rightward across a frictionless floor. Force F_1 is horizontal, with magnitude 2.0 N, force F_2 is angled upward by 60° to the floor and has a magnitude of 4.0 N. The speed v of the box at a certain instant is 3.0 m/s.

a) What is the power due to each force acting on the box? Is the net power changing at that instant?

b) If the magnitude F_2 is, instead, 6.0 N, what is now the net power, and is it changing?
Potential Energy and Conservation of Energy

- Conservative Forces
- Gravitational and Elastic Potential Energy
- Conservation of (Mechanical) Energy
- Potential Energy Curve
- External and Internal Forces

Work and Potential Energy

Potential Energy

\[\Delta U = -W \]

General Form:

\[W = \int_{x_i}^{x_f} F(x) \, dx \]
\[\Delta U = -\int_{x_i}^{x_f} F(x) \, dx \]

Gravitational Potential Energy

\[U = mgy \]

Elastic Potential Energy

\[U = \frac{1}{2} kx^2 \]

Path Independence of Conservative Forces

- The work done by a conservative force on a particle moving between two points does not depend on the path taken by the particle.
- The net work done by a conservative force on a particle moving around every closed path is zero.

Sample Problem 8-1: A 2.0 kg block slides along a frictionless track from point \(a \) to point \(b \). The block travels through a total distance of 2.0 m, and a net vertical distance of 0.8 m. How much work is done on the block by the gravitational force?
Conservation of Mechanical Energy

Mechanical Energy

\[E_{\text{mec}} = K + U \]

Conservation of Mechanical Energy

\[K_2 + U_2 = K_1 + U_1 \]

In an isolated system where only conservative forces cause energy changes, the kinetic and potential energy can change, but their sum, the mechanical energy \(E_{\text{mec}} \) of the system, cannot change.

Kinetic Energy:

\[K = \frac{1}{2}mv^2 \]

Potential Energy:

\[\Delta U = -W \]

- Gravitation:
 \[U = mgy \]

- Elastic (due to spring force):
 \[U = \frac{1}{2}kx^2 \]

\[E_{\text{mec}} = K + U \]

\[K_2 + U_2 = K_1 + U_1 \]

QZ#8

Name, ID#, Section #

NYC - SF by train. On a regular schedule.
It takes 4 days for 1 way trip.
One train per day; starts at 1 pm in NYC
and arrives in 4 days at 1 pm to SF.

(a) Calculate the work of the engine when the train of the mass 10,000 kg accelerates to \(v = 72 \text{ km/h} \) from zero at the departure from NYC.

(b) Calculate the work done by the breaks (friction force) when the train slows down from \(v = 72 \text{ km/h} \) to \(v = 0 \) arriving to SF.

(c) How many other trains will our train meet during one way trip?
Conservation of Energy

Thermal Energy/Friction

\[\Delta E_{th} = f_{h}d \]

- The total energy of a system can change only by amounts of energy that are transferred to or from the system.
- The total energy \(E \) of an isolated system cannot change.

\[W = \Delta E = \Delta E_{\text{mec}} + \Delta E_{th} + \Delta E_{\text{int}} \]

Potential Energy Curve

1D Motion

\[F(x) = -\frac{dU(x)}{dx} \]

- Turning Points
- Equilibrium Points
 - Neutral Equilibrium
 - Unstable Equilibrium
 - Stable Equilibrium

A plot of \(U(x) \), the potential energy function of a system containing a particle confined to move along the x axis. There is no friction, so mechanical energy is conserved.

Sample Problem 8-4

A 61.0 kg bungee-cord jumper is on a 45.0 m bridge above a river. The elastic bungee cord has a relaxed length of \(L = 25.0 \) m. Assume that the cord obeys Hooke’s law, with a spring constant of 160 N/m. If the jumper stops before reaching the water, what is the height \(h \) of her feet above the water at her lowest point?

Sample Problem 8-8

A circus beagle of mass \(m = 6.0 \) kg runs onto the left end of a curved ramp with speed \(v_0 = 7.8 \) m/s at height \(y_0 = 8.5 \) m above the floor. It then slides to the right and comes to a momentary stop when it reaches a height \(y = 11.1 \) m from the floor. The ramp is not frictionless. What is the increase \(\Delta E_{th} \) in the thermal energy of the beagle and the ramp because of the sliding?
Sample Problem 7-2

Two industrial spies sliding an initially stationary 225 kg floor safe a displacement \(d \) of magnitude 8.50 m, straight toward their truck. The push \(F_1 \) of spy 001 is 12.0 N, directed at an angle of 30° downward from the horizontal; the pull \(F_2 \) of spy 002 is 10.0 N, directed at 40° above the horizontal. The magnitudes and directions of these forces do not change as the safe moves, and the floor and safe make frictionless contact.

a) What is the net work done on the safe by the forces \(F_1 \) and \(F_2 \) during the displacement \(d \)?

b) During the displacement, what is the work \(W_g \) done on the safe by the gravitational force \(F_g \) and what is the work done on the safe by the normal force \(N \) from the floor?

c) The safe is initially stationary. What is its speed \(v_f \) at the end of the 8.50 m displacement?