Lecture 13

Momentum Conservation And Collisions

http://web.njit.edu/~sirenko/

Physics 105 Fall 2009

Lecture 13 Andrei Sirenko, NJIT

Linear Momentum

New fundamental quantity (like force, energy,..)

Particle:

$$\vec{p} = m\vec{v}$$

System of Particles:

$$\vec{P}$$
 =m₁ \vec{v}_1 +m₂ \vec{v}_2 +...

Extended objects:

$$ec{P} = M ec{v}_{
m com}$$

Relation to Force: $\vec{F}_{tot} = m\vec{a}$

$$ec{F}_{
m net} = rac{dec{p}}{dt}$$

$$ec{F}_{
m net} = rac{dec{P}}{dt}$$

3

Lecture 13 Andrei Sirenko, NJIT

Center of Mass for a system of particles

Lecture 13 Andrei Sirenko, NJIT 2

Collision of two particle-like bodies

Lecture 13 Andrei Sirenko, NJIT

4

Elastic Collisions in 1D

change, but the total kinetic energy of the system does not change

Stationary Target

Projectile Target

After

Moving Target

In an elastic collision, the kinetic energy of each colliding body may

Elastic Collisions in 1D

Andrei Sirenko, NJIT Lecture 13

6

Elastic Collisions in 1D

x Andrei Sirenko, NJIT

Inelastic Collisions in 1D

Cannot solve based only on the information about the state before the collision

Lecture 13 Andrei Sirenko, NJIT Lecture 13 Andrei Sirenko, NJIT

Completely Inelastic Collision Collisions in 1D

Conservation of Linear Momentum works!

$$ec{p}_{1i} + ec{p}_{2i} = ec{p}_{1f} + ec{p}_{2f}$$

$$egin{array}{lcl} m_1 v_{1i} &=& (m_1 + m_2) V \ V &=& rac{m_1}{m_1 + m_2} v_{1i} \end{array}$$

Example: Two equal objects, one initially at rest

$$mv_i = 2mv_f \longrightarrow v_f = v_i/2$$

Final Kinetic Energy =
$$\frac{1}{2}(2m)(v_i/2)^2$$
 Half the original Kinetic Energy

Lecture 13 = $\frac{1}{4}m(v_i)^2$

Who wins?

Andrei Sirenko, NJIT 10 Lecture 13

How can we reach another star?

Combination of

- >Regular rocket
- >Ion-drive engine
- >And Solar sail

$$\Delta p = \frac{2\Delta U}{c}$$
 (total reflection back along path)

 $p_r = \frac{I}{c}$ (total absorption)

 $p_r = \frac{2I}{c}$ (total reflection back along path)

Lecture 13

Andrei Sirenko, NJIT

12

Photons bounce off

Black Sail

Photons adsorbed

What color/material is the best for the Light Sail?

A) Black; B) Mirror-type; C) Blue; D) any

Lecture 13

Andrei Sirenko, NJIT

13

Sample Problem

Ballistic Pendulum. A bullet is fired into the block (M = 5 kg, m = 10 g). The block/bullet is then swinging upward, their center of mass rising h = 6 cm. What is the speed of the bullet just prior to the collision?

- a) Linear Momentum is conserved at the collision
- b) After collision the Energy is conserved

Lecture 13 Andrei Sirenko, NJIT 14

QZ#13 Linear Momentum

The figure shows a **2.0 kg** toy car before and after taking a turn on a track. Its speed is **0.30 km/s** before the turn and **0.40 km/s** after the turn. The turn takes **0.33** seconds.

- (a) What is the change ΔP in the linear momentum of the car due to the turn?
- (b) What is the **average force** of friction between the car and the road during the turn?

Elastic Collisions in 2D

Lecture 13 Andrei Sirenko, NJIT 15 Lecture 13 Andrei Sirenko, NJIT 16

Elastic Collisions in 2D

Lecture 13 Andrei Sirenko, NJIT 17

Conservation of Linear Momentum

$$\vec{P} = {
m const.} \quad \Rightarrow \quad \vec{P_i} = \vec{P_f}$$

A firecracker placed inside a coconut of mass M, initially at rest on a frictionless floor, blows the coconut into three pieces that slide across the floor. An overhead view is shown. Piece C, with mass 0.30 M, has final speed $v_{fC} = 5.0 m/s$.

- (a) What is the speed of piece B, with mass 0.2 M?
- (b) (b) What is the speed of piece A?

Lecture 13 Andrei Sirenko, NJIT 18