Lecture 3

Vectors
- Free Fall again
- Intro to the Motions in Two and Three Dimensions

http://web.njit.edu/~sirenko/

Physics 105, Fall 2009

Chapter 3: Vectors
- Vectors and Scalars
- Adding Vectors Geometrically
- Components of Vectors
- Unit Vectors
- Adding Vectors by Components
- Vectors and the Laws of Physics
- Multiplying Vectors
 - Scalar Product
 - Vector or Cross Product

Writing Vectors

We need to distinguish vectors from other quantities (scalars)

Common notation:
Bold face: \(\mathbf{c} \) or Arrow: \(\vec{c} \)
Vectors and Scalars

Displacement
Path length and Displacement

Components of Vectors:
- aligned along axis
- add to give vector
- are vectors

Length (Magnitude)

Trig Review

Unit Vectors and Coordinate Systems
2D (2 dimensions)
3D (3 dimensions)
Unit Vectors

Components of a vector are still vectors
\[\vec{D} = D_x \hat{i} + D_y \hat{j} \]

Vectors have units (i.e. m/s)
\[\hat{i} \rightarrow x \]
\[\hat{j} \rightarrow y \]
\[\hat{k} \rightarrow z \]

Unit vectors
Dimensionless
Used to specify direction

Magnitude + sign
Unit Vector

Laws of Vector Addition

\[\vec{a} + \vec{b} = \vec{b} + \vec{a} \]
\[\vec{d} = \vec{a} - \vec{b} = \vec{a} + (-\vec{b}) \]

Vector sum
Start
Finish

Example

\[\vec{A} = 12m \cdot \hat{i} + 5m \cdot \hat{j} \]
\[\vec{B} = 2m \cdot \hat{i} - 5m \cdot \hat{j} \]

\[\vec{C} = \vec{A} + \vec{B} \]
\[= (12m \cdot \hat{i} + 5m \cdot \hat{j}) + (2m \cdot \hat{i} - 5m \cdot \hat{j}) \]
\[= 14m \cdot \hat{i} \]
Vector Multiplication

Scalar product

\[\vec{A} \cdot \vec{B} = AB \cos \theta = A_x B_x + A_y B_y + A_z B_z \]

\(\theta\) is the angle between the vectors if you put their tails together

\[\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A} \]

since \(\cos(\theta) = \cos(-\theta)\)

Last Lecture:
Motion along the straight line + Vectors

One dimension (1D)

- Position: \(x(t) \text{ m}\)
- Velocity: \(v(t) \text{ m/s}\)
- Acceleration: \(a(t) \text{ m/s}^2\)

Three dimension (2D)

- Position: \(r(t) \text{ m}\)
- Velocity: \(v(t) \text{ m/s}\)
- Acceleration: \(a(t) \text{ m/s}^2\)

All are *vectors*: have direction and magnitude.

TABLE 2-1 Equations for Motion with Constant Acceleration

<table>
<thead>
<tr>
<th>Equation Number</th>
<th>Equation</th>
<th>Missing Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-11</td>
<td>(v = v_0 + at)</td>
<td>(x - x_0)</td>
</tr>
<tr>
<td>2-15</td>
<td>(x - x_0 = v_0 t + \frac{1}{2} at^2)</td>
<td>(v)</td>
</tr>
<tr>
<td>2-16</td>
<td>(v^2 = v_0^2 + 2a(x - x_0))</td>
<td>(a)</td>
</tr>
<tr>
<td>2-17</td>
<td>(x - x_0 = \frac{1}{2}(v_0 + v)t)</td>
<td>(a)</td>
</tr>
<tr>
<td>2-18</td>
<td>(x - x_0 = vt - \frac{1}{2} at^2)</td>
<td>(v_0)</td>
</tr>
</tbody>
</table>

*Make sure that the *acceleration* is indeed constant before using the equations in this table.*

Relative Motion/Reference Frames

\[\vec{r}_{PA} = \vec{r}_{PB} + \vec{r}_{BA} \]

\[\vec{v}_{PA} = \vec{v}_{PB} + \vec{v}_{BA} \text{ and } \vec{v}_{BA} = \text{const.} \]

\[\vec{a}_{PA} = \vec{a}_{PB} \]
Relative Motion/Reference Frames

Relative Velocity: Rowing a Boat
You can row a boat at $v_{\text{row}} = 3 \text{ m/s}$, and you want to go straight across a river which flows with $v_{\text{river}} = 2 \text{ m/s}$. At what angle should you row?

\[\vec{v}_{\text{boat}} = \vec{v}_{\text{row}} + \vec{v}_{\text{river}} \]

you want \vec{v}_{boat} in y-direction to go straight across

1. What is the length (or magnitude) of the vector C if $C = A + B$?
 \[|C| = \text{???} \]

2. What is the angle between vectors A and B?
 \[\theta = \text{???} \]

3. What is the scalar (dot) product of the same vectors A and B:
 \[(A \cdot B) = \text{???} \]

4. (huge extra credit) What is the magnitude of the vector (cross) product of the same vectors A and B:
 \[|A \times B| = \text{???} \]

 Hint: i and j are the unit vectors.