Lecture 5

- > Force and Motion.
- > Mass and Weight,
- > Free Body Diagrams

http://web.njit.edu/~sirenko/

Physics 105; Fall 2009

Lecture 5 Andrei Sirenko, NJIT

Last Lecture: Projectile Motion

Horizontal motion

 $a_{x} = 0$

Vertical motion

$$a_y = -g$$

In both directions the acceleration is constant

$$v_x = v_{0x} \equiv constant$$

 $x = x_0 + v_{0x}t$

$$\begin{array}{rcl} x-x_0 & = & v_{0x}t \\ & = & (v_0\cos\theta_0)t \end{array}$$

Lecture 5 Andrei Sirenko, NJIT

 $v_y = v_{0y} - gt$ $y = y_0 + v_{0y}t - \frac{1}{2}gt^2$

$$egin{array}{lll} y-y_0 &=& v_{0y}t-rac{1}{2}gt^2 \ &=& (v_0\sin heta_0)t-rac{1}{2}gt^2 \ \ &v_y &=& v_0\sin heta_0-gt \end{array}$$

 $v_y^2 = (v_0 \sin \theta_0)^2 - 2g(y - y_0)$

Projectile Motion; General Case Trajectory and horizontal range

$$y=(an heta_0)x-rac{gx^2}{2(v_0\cos heta_0)^2}$$

$$R=rac{v_0^2}{g}\sin 2 heta_0$$

3

Newton's

Laws

- I. If no net force acts on a body, then the body's velocity cannot change.
- II. The net force on a body is equal to the product of the body's mass and acceleration.
- III. When two bodies interact, the force on the bodies from each other are always equal in magnitude and opposite in direction.

Objectives

- · By the end of Week we should be able to
 - Formulate Newton's laws in our own words
 - Draw free-body-diagrams (FBDs) for a given problem
 - Explain the difference between static and kinetic frictional force
 - List a few reference frames where Newton's laws do not apply

Andrei Sirenko, NJIT Lecture 5

Forces:

Gravitational Force:

F = mq

»Archimedes Force

»Friction Force:

Lecture 5

>Tension Force

Force is a vector. Units: [Newton] $1 N = 1 kg \bullet 1 m/s^2$ Force has direction and magnitude Mass connects Force and Acceleration

Mass is a measure of inertia.

$$\vec{F}_{tot} = 0 \Leftrightarrow \vec{a} = 0$$
 (constant velocity)

$$\overrightarrow{F}_{tot}$$
 = mat for any object

$$F_{tot,x} = ma_x$$
 $F_{tot,y} = ma_y$

$$F_{tot,z} = ma_z$$

Forces:

Gravitational Force:

F = mg

»Archimedes Force

»Friction Force:

>Tension Force

>Spring Force

> Normal Force

Andrei Sirenko, NJIT

Newton's 3rd Law

When object A exerts a force \overrightarrow{F} on object B, then object B exerts force $\overrightarrow{-F}$ on object A

Lecture 5

Andrei Sirenko, NJIT

10

Gravitational Force:

F = mg; $g = 9.8 \text{ m/s}^2$

$$\left| \overrightarrow{F} \right| = \gamma \frac{M \cdot m}{R^2}$$

 $|\overrightarrow{g}| = \gamma \frac{M}{R^2} = 9.8 \frac{m}{s^2}$

11

Tension: T

A taut rope exerts forces on whatever holds its ends

Tension in rope = Force on ends

$$\left| \vec{F}_{\text{on A}} \right| = T = \left| \vec{F}_{\text{on B}} \right|$$

Frictional Forces: \overrightarrow{F}_f

Force from surface or from surrounding fluid which oppose motion

In direction opposite velocity if moving

In direction opposite vector sum of other forces if stationary

Lecture 5 Andrei Sirenko, NJIT 13

Normal Force: \overrightarrow{N}

Force from a solid surface which keeps objects from falling through

Lecture 5 Andrei Sirenko, NJIT 14

Net Force

A free body diagram is used to calculate the net force on <u>one</u> object.

$$\overset{
ightharpoonup}{\mathop{
m F}}_{
m net}=$$
 ma

The two equal forces in Newton's Third Law are on *different* objects.

They don't appear on the same free body diagram.

EXAMPLES of Free Body Diagrams

Lecture 5 Andrei Sirenko, NJIT

15

Dealing with Multiple Forces

If multiple forces are acting on the same object, the <u>net force</u> determines the acceleration.

$$\overrightarrow{F}_{net} = \overrightarrow{F}_1 + \overrightarrow{F}$$

$$\overrightarrow{F}_{net} = \overrightarrow{ma}$$

Use a free body diagram to keep track of the forces on *one object*.

Lecture 5 Andrei Sirenko, NJIT

17

EXAMPLE

Lecture 5 Andrei Sirenko, NJIT 18

Normal Force

We don't fall through the floor

This is a constraint \longrightarrow Normal Force (F_N)

Lecture 5 Andrei Sirenko, NJIT 20

How do we jump?

A standing person

A jumping person

Lecture 5 Andrei Sirenko, NJIT

Static and Kinetic Friction

Static frictional force

$$f_{s, ext{max}} = \mu_s N$$

Kinetic frictional force

$$f_{k, ext{max}} = \mu_k N$$

Andrei Sirenko, NJIT 22 Lecture 5

Kinetic Friction

Kinetic frictional force:

Skid marks are 290 m long! $\mu_k = 0.6$ and a = const. Howfast was the car going when the wheels became locked?

Uniform Circular Motion

Centripetal acceleration

Period

Centripetal force : F = ma

$$F=m\frac{v^2}{r}$$

24

21

QZ #5

Name, ID #, Section

Problem 1:

What is the **acceleration** (in unit vectors notation) of a particle with **m** = 2 kg due to a combination of two forces:

 F_1 = (2N)i+(2N)j-(3N)k and F_2 = (-2N)i+(2N)j+(6N)k.

Problem 2:

What is the magnitude of the acceleration vector?

Problem 3:

What is the magnitude of the Net Force?

Lecture 5 Andrei Sirenko, NJIT 25

