## Lecture 6

#### Forces & three Newton's Laws Friction Force, Centripetal Force. Problem-Solving Tactics

http://web.njit.edu/~sirenko/

Physics 105; Fall 2009

Lecture 6 Andrei Sirenko, NJIT

#### Newton's Laws

- I. If no net force acts on a body, then the body's *velocity* cannot change.
- II. The net force on a body is equal to the product of the body's mass and acceleration.
- III. When two bodies interact, the force on the bodies from each other are always equal in magnitude and opposite in direction.







Lecture 6

Andrei Sirenko, NJIT

2

## Forces:



$$\vec{\mathsf{F}}_g = \vec{\mathsf{m}}g$$

down to the ground

>Tension Force:



along the string



»Normal Force:

Ň

perpendicular to the support

#### >Friction Force

- > Static; maximum value  $\mathbf{f}_s$  =  $\mu_{st} \mathbf{N}$  opposite to the component of other forces parallel to the support





## Net Force (or Total Force)



$$\vec{F}_{net} = \vec{F}_1 + \vec{F}_2$$

$$\vec{F}_{net} = \mathbf{ma}$$

#### Static and Kinetic Friction



Static frictional force

$$f_{s, ext{max}} = \mu_s N$$

Kinetic frictional force

$$f_{k, ext{max}} = \mu_k N$$

Lecture 6 Andrei Sirenko, NJIT

## Kinetic Friction Force

Skid marks are 290 m long!  $\mu_k = 0.6$  and a = const. How fast was the car going when the wheels became locked?



Lecture 6 Andrei Sirenko, NJIT 6

## Kinetic Friction

Skid marks are 290 m long!  $\mu_k = 0.6$  and a = const. How fast was the car going when the wheels became locked?

$$v^2 = v_0^2 + 2a(x - x_0)$$
  
 $-f_k = ma$   
 $a = F/m = -\mu mg/m = -\mu g$ 

Lecture 6

 $a = F/m = -\mu mg/m = -\mu g$  $v_0 = (2\mu g(x-x_0))^{\frac{1}{2}}$ ; v = 58 m/s = 210 km/h = 130 ml/h Gravitational Force

| But | But | Gravitational Force | Gravitati

Andrei Sirenko, NJIT

#### **Drag Force** and Terminal Speed



Drag coefficient C, air density  $\rho$ , and effective cross-section A.

Lecture 6

Andrei Sirenko, NJIT

## Uniform Circular Motion Centripetal Force



#### EXAMPLES of Free Body Diagrams



#### Problem-Solving Tactics:

> Identify the body / bodies

Examples: block, puck, sphere, knot, pulley, penguin, etc.

> Make a choice for the coordinate system (x-y) Recommended:

x - along the plane of support and

y - perpendicular to the plane of support

> Identify the masses of the bodies:  $m_1 = 5 \text{ kg}$ ,  $m_2 = 10 \text{ kg}$ , etc Make a sketch to visualize the Problem x - horizontal y - vertical, or

Andrei Sirenko, NJIT Lecture 6

12

#### Problem-Solving Tactics (CONT.):

> Identify the conditions of the body (moving or at rest)

at rest means  $\vec{F}_{net} = 0$ 





if moving, then

- > moving with a constant velocity  $F_{net} = 0$
- > accelerating
- $\vec{F}_{net} \neq 0$   $\vec{F}_{net} = \vec{ma}$



Lecture 6

Andrei Sirenko, NJIT

#### Problem-Solving Tactics (CONT.):

> Identify all Forces and their directions:

mg down to the ground (always)

Ŧ along the string (if any)

perpendicular to the support (if any)

(only for the max value of the force)

friction force (if any)

- >Static Friction; maximum value  $F_{fr} = \mu_{st}N$ opposite to the component of other forces parallel to the support
- > Kinetic Friction; value

 $F_{fr} = \mu_{kin}N$ 

opposite to the velocity, parallel to the support





Lecture 6

14

16

## Problem-Solving Tactics (CONT.):

Andrei Sirenko, NJIT

> Do the calculations using FBD



For X:  $F_{net} = mg \sin \theta$ ;  $a = g \sin \theta$ For Y:  $F_{net} = N - mg \cos \theta = 0$ 

Lecture 6



For X:  $F_{net} = mg \sin \theta - T = 0$ ma = 0

For Y:  $F_{net} = N - mg \cos \theta = 0$ 

15

## Problem-Solving Tactics (CONT.):

Andrei Sirenko, NJIT

> Plug the numbers in the formulas:



For X:  $F_{net} = mg \sin \theta$ ;  $a = g \sin \theta$  $F_{net} = N - mg \cos \theta = 0$  $a = q \sin \theta$ 

For  $\theta$  = 30°, a = 9.8/2 m/s<sup>2</sup> = 4.9 m/s<sup>2</sup>



 $F_{net}$  = mg sin  $\theta$  - T = 0 $F_{net} = N - mg \cos \theta = 0$  $N = mq \cos \theta$ ;  $T = mq \sin \theta$ 



a

17









#### Problem #1

two masses are at equilibrium ( no acceleration, no friction)  $m_1 = 5 \text{ kg}, m_2 = 7 \text{ kg}; \theta_2 = 30^{\circ}$ 



#### Problem #1

two masses are at equilibrium (no acceleration, no friction)  $m_1 = 5 \text{ kg}, m_2 = 7 \text{ kg}; \theta_2 = 30^\circ$ 



Lecture 6

19

#### Problem #1



For X1: 
$$F_{net} = -m_1 g \sin \theta_1 + T_1 = 0$$
  
For Y1:  $F_{net} = N_1 - m_1 g \cos \theta_1 = 0$   
 $m_1 \alpha = 0$ ;  
 $N_1 = m_1 g \cos \theta_1$ ;  $T_1 = m_1 g \sin \theta_1$ 

For X2: 
$$F_{net} = m_2 g \sin \theta_2 - T_2 = 0$$
  
For Y2:  $F_{net} = N_2 - m_2 g \cos \theta_2 = 0$   
 $m_2 a = 0$ ;  
 $N_2 = m_2 g \cos \theta_2$ ;  $T_2 = m_2 g \sin \theta_2$ 

$$T_1 = T_2 \Rightarrow m_1 g \sin \theta_1 = m_2 g \sin \theta_2$$

$$m_1/m_2 = \sin \theta_2 / \sin \theta_1$$
  
 $\sin \theta_1 = m_2 \sin \theta_2 / m_1 = 7 \text{ kg * } \sin(30^\circ)/5 \text{ kg = 0.7};$ 

Andrei Sirenko, NJIT Lecture 6

21

23

# Problem #1

m<sub>2</sub>g

$$L_1 = h / \sin \theta_1$$

$$L_2 = h / \sin \theta_2$$

$$m_1/m_2 = \sin \theta_2 / \sin \theta_1 = (h / \sin \theta_2) / (h / \sin \theta_1)$$
  
 $m_1/m_2 = L_1 / L_2$ 

Is the chain going to move ???

Andrei Sirenko, NJIT Lecture 6

22

## Sample Problem



A coin of mass *m* rests on a book that has been tilted at an angle  $\theta$  with the horizontal. When  $\theta$  is increased to 13°, the coin is on the verge of sliding down the book. What is the coefficient of static friction  $\mu_{\rm s}$  between the coin and the book?

#### Sample Problem



#### $f_{s, ext{max}} = \mu_s N$

For X:  $F_{net} = 0 = -mg \sin \theta + f_s$ For Y:  $F_{net} = 0 = N - mg \cos \theta$  $N = mq \cos \theta$ ;

mg!



 $0 = -q \left( \sin \theta - \mu_s \cos \theta \right)$  $\sin \theta - \mu_s \cos \theta = 0$  $\tan \theta = \mu_s$  $\mu_s$  = tan (13  $^{\circ}$  ) = <u>0.23</u>

drei Sirenko, NJIT

24

#### Sample Problem (cont.)



 $\theta$  is increased to 20° (the max angle is 13°), the coefficient of static friction  $\mu_s = 0.23$ the coefficient of kinetic friction  $\mu_k = 0.15$ What is the coin acceleration?



<u>ma ≠ 0 :</u>

For X:  $F_{net} = ma = -mg \sin \theta + f_k$ For Y:  $F_{net} = N - mg \cos \theta = 0$ 

N = mg cos  $\theta$ ; ma = - mg sin  $\theta$  + f<sub>k</sub> = - mg sin  $\theta$  +  $\mu_k$  N = = - mg sin  $\theta$  +  $\mu_k$  mg cos  $\theta$  = = - mg (sin  $\theta$  -  $\mu_k$  cos  $\theta$ ); a = -g (sin  $\theta$  -  $\mu_k$  cos  $\theta$ ); a = -9.8\*(sin 20° - 0.15\* cos 20°) m/s² = = -9.8\*(0.34-0.14) m/s² = -2 m/s²

Lecture 6

Andrei Sirenko, NJIT

#### Sample Problem (cont.)



 $\theta$  is decreased to stop the coin.

At what angle it will <u>move with a constant speed</u>? the coefficient of static friction  $\mu_s = 0.23$  the coefficient of kinetic friction  $\mu_k = 0.15$ 



 $\frac{\text{ma} = 0:}{\text{a} = -g \left( \sin \theta - \mu_k \cos \theta \right)}$   $\sin \theta - \mu_k \cos \theta = 0$   $\tan \theta = \mu_k$   $\theta = \tan^{-1} (\mu_k) = \tan^{-1} (0.15) = 8.5^{\circ}$ 

Note the difference: 13° and 8.5°

Lecture 6 Andrei Sirenko, NJIT

26



QZ #6

25

 $\text{m}_{\text{1}}/\text{m}_{\text{2}}$  = sin  $\theta_{\text{2}}$  / sin  $\theta_{\text{1}}$ 

 $m_2 = 7 \text{ kg}$ ;  $\theta_2 = 30^\circ$  and we can vary  $m_1$  and  $\theta_1$ ; Neglect friction

1. What is the  $\underline{\text{smallest}}$  mass  $\underline{m}_1$  which can balance

 $m_2 = 7 \text{ kg}; \theta_2 = 30^\circ$   $m_1 = ???$ 

2. At what angle the  $\underline{smallest}$  mass  $\underline{m_1}$  can balance

 $m_2 = 7 \text{ kg}; \ \theta_2 = 30^\circ$   $\theta_1 = ???$ 

3. If we cut the string, which object (#1 with the mass  $m_1$  at the angle  $\theta_1$  or object #2 with  $m_2$  = 7 kg;  $\theta_2$  = 30°) will have a bigger magnitude of acceleration ??? (note that  $\alpha = g \sin \theta$ ),

4. Make a sketch and show the direction of  $a_{\rm 1}$  and  $a_{\rm 2}$ 

Lecture 6 Andrei Sirenko, NJIT 27