Lecture 2

Motion along a straight line

(HR&W, Chapter 2, Sections 1-8)

Physics 105; Spring 2005

1

01/27/2005 Andrei Sirenko, NJIT

Class Organization

Week n-1		Week n		Week n + 1	
Lecture	Recitation	Lecture	Recitation	Lecture	Recitation
□ Read Chapter <i>n</i>		☐ Introduction to Chapter <i>n</i> and <i>QZ</i>	☐ Discuss Chapter n ☐ Sample	□ Deadline for the homework for Chapter <i>n</i> (We. 9 am)	
		assignment for Chapter n	problems Chapter n		
01/27/	2005	Andrei Sirenko, NJIT			2

Motion along a straight line

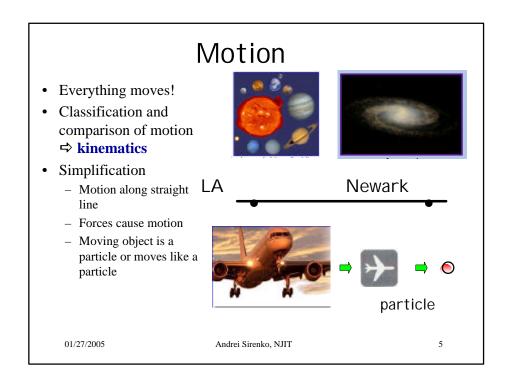
- > Motion
- Position and Displacement
- > Average velocity and average speed
- > Instantaneous velocity and speed
- Acceleration
- » Constant acceleration: A special case
- Free fall acceleration

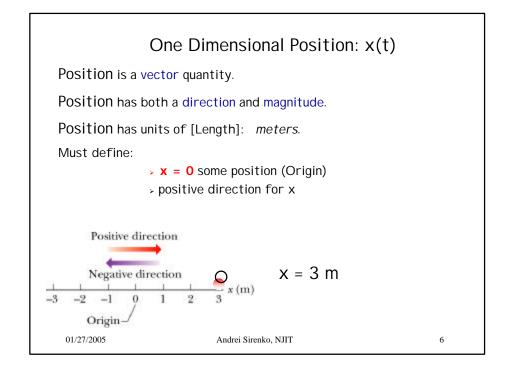
01/27/2005 Andrei Sirenko, NJIT

3

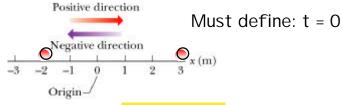
Motion along a straight line

- this is the simplest type of motion
- it lays the groundwork for more complex motion


Kinematic variables in one dimension


Position **x(t)** meters

Velocity v(t) meters/second
Acceleration a(t) meters/second ²


All depend on time

All are vectors: have direction and magnitude.

Displacement Along a Straight Line

Displacement:

$$\Delta x = x_2 - x_1$$

$$x_1 = 3 \text{ m}$$

 $x_2 = -2 \text{ m}$ Displacement is a change of position in time.

It is a vector quantity.

$$\Delta x = -5 \text{ m}$$

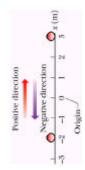
It has both a direction and magnitude.

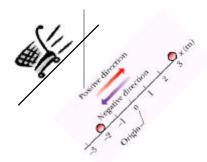
It has units of [Length]: meters.

01/27/2005 Andrei Sirenko, NJIT

Displacement Along a Straight Line

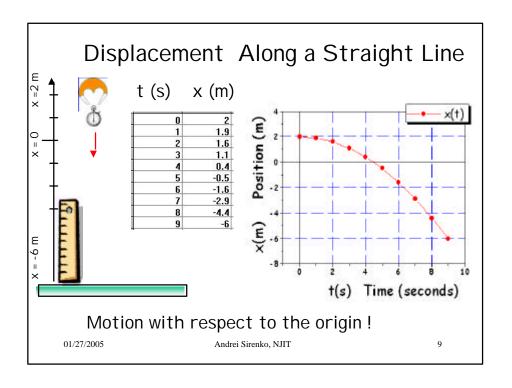
t=0; (start the clock)

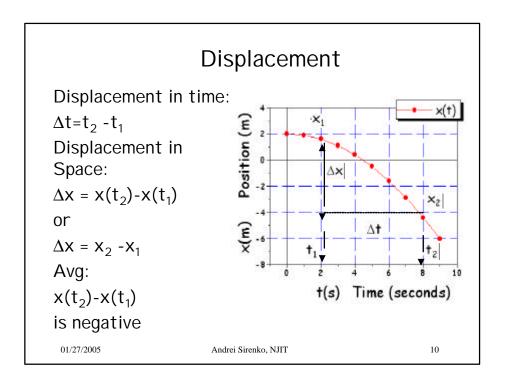

x = 0; (origin)

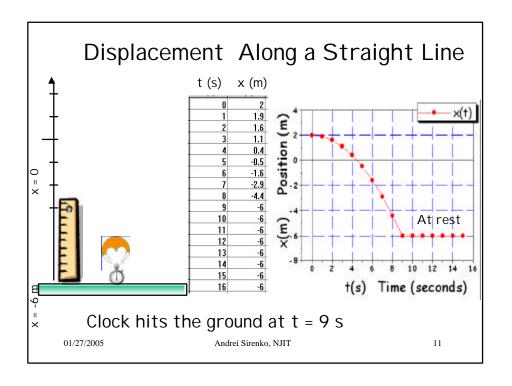

x(t=0) does not have to be 0

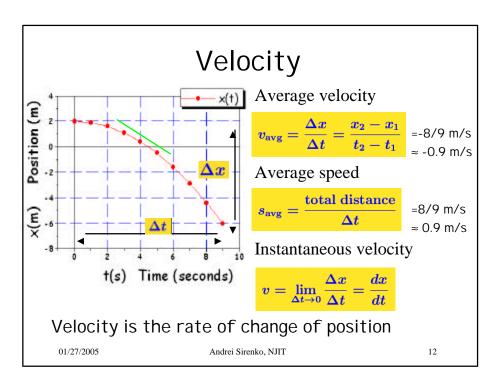
Straight line can be oriented

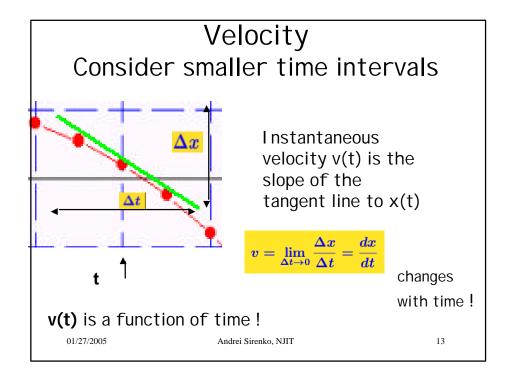
Horizontal, vertical, or at some angle

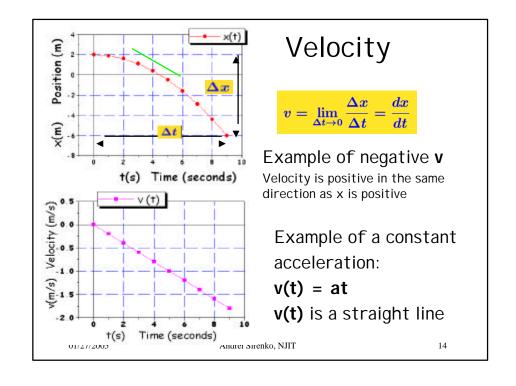


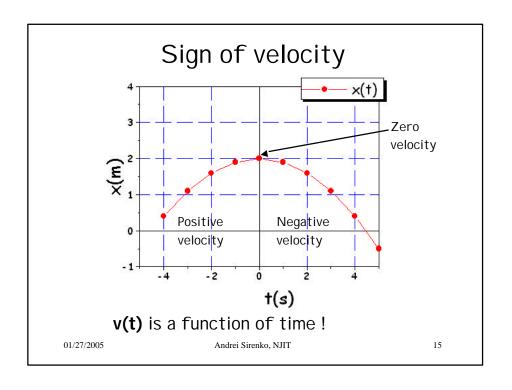


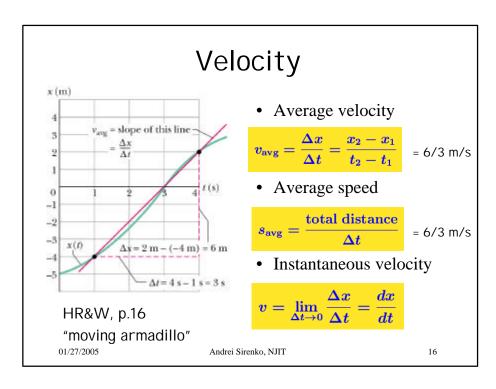

01/27/2005


Andrei Sirenko, NJIT


8







Kinematic Variables

Position is a function of time: x = x(t)

Velocity is the rate of change of the position

Acceleration is the rate of change of the velocity

$$v(t) = \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{dx}{dt}$$
Position Velocity

$$a(t) = \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt}$$

$$\frac{d}{dt}$$
Acceleration

01/27/2005

Andrei Sirenko, NJIT

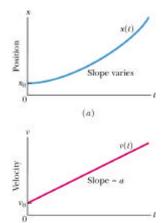
17

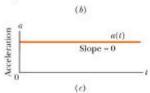
Acceleration

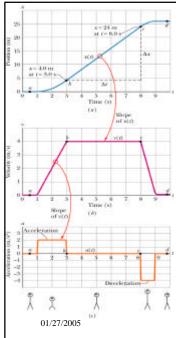
Average acceleration

$$a_{ ext{avg}} = rac{v_2 - v_1}{t_2 - t_1} = rac{\Delta v}{\Delta t}$$

• Instantaneous acceleration


$$a=rac{dv}{dt}$$


• Constant acceleration


$$egin{aligned} v &= v_0 + at \ & & \ x - x_0 &= v_0 t + rac{1}{2} a t^2 \end{aligned}$$

01/27/2005

Andrei Sirenko, NJIT

Sample Problem II-2

An elevator is initially stationary, then moves upward (which we take the positive direction of x), and then stops. Plot V as a function of time.

- (a) x(t) curve for an upward moving elevator
- (b) v(t) curve for the cab. Note v = dx/dt!
- (c) a(t) curve for the cab. Note a = dv/dt!

http://webphysics.ph.msstate.edu/

19 Andrei Sirenko, NJIT

Another Look at Constant Acceleration

- · Integration of acceleration
- Indefinite integral
- Constant of integration

01/27/2005

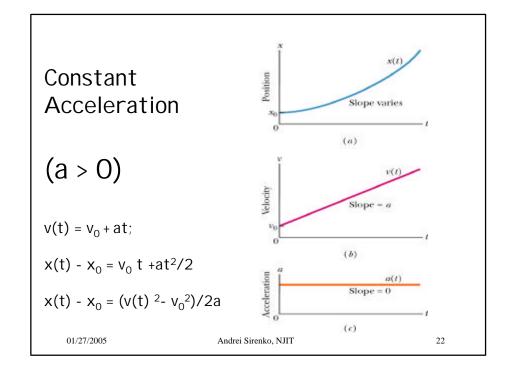
$$egin{array}{lll} dv &=& a\,dt \ \int dv &=& \int a\,dt \ \ \int dv &=& a\int dt \ v &=& at+C \ v_0 &=& (a)(0)+C=C \end{array}$$

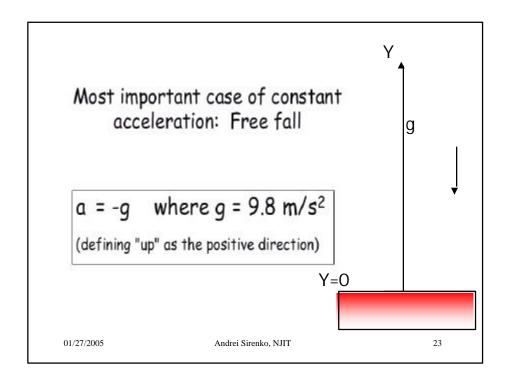
 $\int dx = \int v dt$

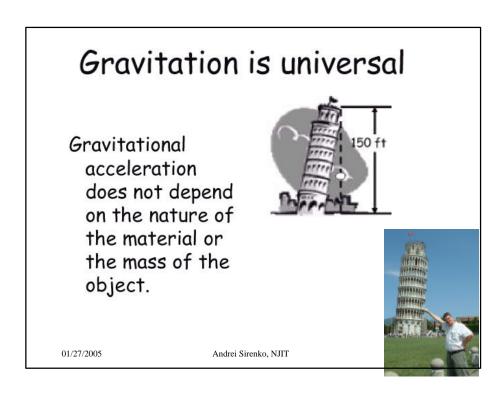
 $\int dx = \int (v_0 + at) dt$

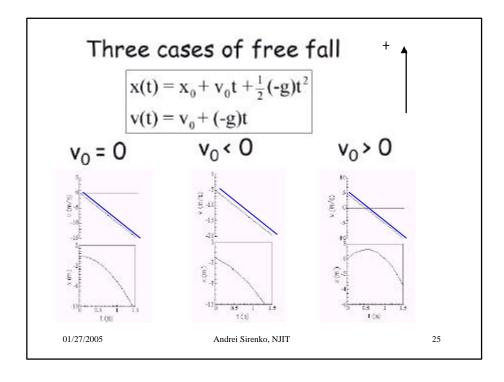
 $\int\limits_{-\infty}^{\infty}dx = v_0\int\limits_{-\infty}^{\infty}dt + a\int\limits_{-\infty}^{\infty}t\,dt$ $x = v_0t + rac{1}{2}at^2 + C'$

 $x_0 = (v_0)(0) + \frac{1}{2}(a)(0)^2 + C' = C'$


You will learn more about this in integral calculus!


Andrei Sirenko, NJIT


20


What does zero mean?

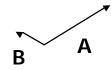
- > t = 0 beginning of the process
- x = 0 is arbitrary; can set where you want it
- > $x_0 = x(t=0)$; position at t=0; do not mix with the origin
- v(t) = 0 x does not change $x(t) x_0 = 0$
- $v_0 = 0$ v(t) = at; $x(t) x_0 = at^2/2$
- \Rightarrow a = 0 v(t) = v₀; x(t) x₀ = v₀ t
- $a \neq 0$ $v(t) = v_0 + at;$ $x(t) x_0 = v_0 t + at^2/2$
- help: $t = (v v_0)/a$ $x x_0 = \frac{1}{2}(v^2 v_0^2)/a$ $a = (v - v_0)/t$ $x - x_0 = \frac{1}{2}(v + v_0)t$
- Acceleration and velocity are positive in the same direction as displacement is positive

Conclusions: Motion along a straight line

- the simplest type of motion
- the groundwork for more complex motion

Kinematical variables in one dimension

Position: **x(t)** meters


Velocity: v(t) meters/second
Acceleration: a(t) meters/second ²

All depend on time

All are vectors: have direction and magnitude.

Lecture QZ2

1. What is the length of the vector \mathbf{C} if $\mathbf{C} = \mathbf{A} + \mathbf{B}$ $\mathbf{A} = (5m) \cdot \mathbf{i} + (3m) \cdot \mathbf{j}$ and $\mathbf{B} = (-2m) \cdot \mathbf{i} + (1m) \cdot \mathbf{j}$? *Hint:* \mathbf{i} and \mathbf{j} are the unit vectors.

2. A stone is dropped from the height of 150 ft with no initial velocity. What is the rock's speed after the first 2 seconds. (Neglect the air resistance).

Hint: The free fall acceleration $g = 9.8 \text{ m/s}^2$

Homework

Utexas Second HW