## Instructor:

## Welcome to

Physics 105
Summer 2006

- 105 Physics;
- Course information and Introduction
- Introduction and Measurements - (HR\&W, Chapter 1)


## Prof. Andrei Sirenko

http://web.njit.edu/~sirenko

423E Tiernan
Office hours: After the classes M. - R or by appointment 973-596-5342

## Course Elements:

, Textbook

- Lectures
, Recitations
, Homework Utexas (class 11611)
, Exams (3 Common QZs, Final Exam)

Do not forget about the Lab !!!

## Textbook:

Halliday, Resnick, and Walker Fundamentals of Physics, 7th edition Chapters 1-9th (Part 1)
$7^{\text {th }}$ edition:

ecture
Andrei Sirenko, NJIT
(HR\&W)
n


## Web Page:



III https://hw.utexas.edu/roster.html

Register yourself in the Homework Computer
Se the tab keyto Jump between boxes. When you have completed entering the information, olick the OK button at the bottom to submit the report Please have patience atter you press the ok button; the system may take one to two minutes to process your intormation.

## https://hw.utexas.edu/

## See instructions at

http://web.njit.edu/~sirenko/
Lectures and Recitations: (TIER 106 )

- Presentation of the concepts and techniques of Physics.
- Demonstrations of Physics in action.
, Lecture quiz at the end of every lecture
- Lectures are not a substitute for reading the text!

Text chapters are listed on the lecture schedule.
Read ahead; you'll get more from lecture

- Slides will be posted on the course web.

Use these as a study guide/note taking aid.

- Recitations provide an opportunity to do a group activity relevant to the topic being studied, and to ask homework questions.
- The scenarios presented in the recitation group activities will be on the exams.

Write your login name and your password down . . Nowl firies for losing your password.

## Grade Components

- Common Exams 45\% total (15\% each)
- Lecture Quizzes 10\%
- Homework 15\%

A $80+$
$\mathrm{B}+75-79$
B 70-74
C+ 65-69
C 55-64
D 50-54
$\begin{array}{ll}\mathrm{F} & 50-50\end{array}$

- Keep up!
- Do the homework carefully and understand the reason for each step.
- Form a study group to discuss homework problems.
- Do plenty of extra problems and examples.
- The material gets more difficult through the term. Don't slack off if you are doing well!


## Recitations

- Recitations provide an opportunity to do a group activity relevant to the topic being studied, and to ask homework questions.
, The scenarios presented in the recitation group activities will be on the exams.


## What is Physics?

Physics (n.) - The branch of science that deals with the nature and properties of matter and energy.
» Mechanics (n.) - The branch of physics that deals with the motion and equilibrium of material bodies and the action of forces.

## Classical Mechanics

Classical Mechanics is a theory that predicts the results of experiments for objects that are not too:

- Small (Quantum Mechanics)

Atoms and subatomic particles

- Fast (Special Relativity)

Objects moving near the speed of light

- Dense (General Relativity)

Black holes and similar objects; the early Universe

## Physics is an Experimental Science

## Theory (n.)

A system of thoughts or statements explaining something.

## Experiment (n.)

An action undertaken to make a discovery or test a hypothesis.
, Measuring Things
> International System of Units (SI System)
, Conversion of Units
> Length
, Time
, Mass

## Measurement and Units

In order to have sensible discussion about experiments, we need to agree on a system of measurement.

This is so important for Science, Engineering, and Commerce that it is done by governments and controlled by international agreements.

Andrei Sirenko, NJIT

## Systems of Units

Many choices are possible for three basic units of LENGTH, MASS, TIME:
Metric (SI, Système Internationale) since 1971 meter, kilogram, second (human scale)


## Types of Quantities

Many things can be measured:
Position, velocity, energy, time, forces...
These are related to one another
(e.g. velocity $=$ distance $/$ time)

Choose three basic quantities:
LENGTH, MASS, TIME
Define other units in terms of these.

How can we measure time?





## Meter, Second, Kilogram

Meter - distance traveled by light (in vacuum) during the time of 1/299 792458 second

Second - time taken 9192631770 oscillations of the light (of a specific wavelength) emitted by a cesium-133 atom; (atomic clock).

Kilogram - mass of a platinum-iridium cylinder. US kilogram standard is at NIST $1 / 12$ Carbon atom $=1.660540210^{-27} \mathrm{~kg}$
http://www.nist.gov


21
 1792


Lecture 1

Systems of Units
1 meter $=|X Y| / 10,000,000$

## 

## English

foot, slug (not pound!), second
We will use SI units in this course, but it is useful to know conversions between systems for making estimates from your everyday knowledge.

Andrei Sirenko, NJIT
22


12 months, no weeks but decades


Other Systems of Units:
English: foot, slug (not pound!), second
0.0254 m = 1 inch English System of Units

1 meter $=39.37$ inches in the United States ( 0.02540005 m )
( survey foot)
$0.0246 \mathrm{~m}=1$ Prussian inch
1 mile $=1609$ meters; $\quad$ The nautical mile is 1852 meters
Andrei Sirenko, NJIT


## Funny units of Length:

- "it is $\mathbf{2}$ hours North from here"
- "water is three handkerchiefs to the sunrise across this desert valley"
- "four light years from our planet"




| Length | meter | m |
| :--- | :--- | :--- |
| Mass | kilogram | kg |
| Time | second | s |
| Electric current | ampere | A |
| Thermodynamic temperature | kelvin | K |
| Luminous intensity | candela | cd |
| Amount of substance | mole | mol |

Lecture 1

## SI Units (serious ones)

Meter, Second, Kilogram

| TABLE $1-3$ Some Approximate Lengths |  |
| :--- | :---: |
| Measurement | Length in Meters |
| Distance to to first galaxies formed | $2 \times 10^{26}$ |
| Distance to the Andromeda galaxy | $2 \times 10^{22}$ |
| Distance to the nearest star (Proxima Centauri) | $4 \times 10^{16}$ |
| Distance to Pluto | $6 \times 10^{12}$ |
| Radius of Earth | $6 \times 10^{6}$ |
| Height of M. Everest | $9 \times 10^{3}$ |
| Thickness of this page | $1 \times 10^{-4}$ |
| Length of a typical virus | $1 \times 10^{-8}$ |
| Radius of a hydrogen atom | $5 \times 10^{-11}$ |
| Radius of a proton | $1 \times 10^{-15}$ |

TABLE 1-4 Some Approximate Time Intervals

| Measurement | Time Interval in Seconds |
| :---: | :---: |
| Lifetime of the proton (predicted) | $1 \times 10^{39}$ |
| Age of the universe | $5 \times 10^{17}$ |
| Age of the pyramid of Cheops | $1 \times 10^{11}$ |
| Human life expectancy | $2 \times 10^{9}$ |
| Length of a day | $9 \times 10^{4}$ |
| Tine between human heartbeats | $8 \times 10^{-1}$ |
| Lifetime of the muon | $2 \times 10^{-6}$ |
| Shortest lab light pulse | $6 \times 10^{-15}$ |
| Lifetime of the most unstable particle | $1 \times 10^{-23}$ |
| The Planck time ${ }^{\text {a }}$ | $1 \times 10^{-43}$ |

## The value of a physical quantity

is the quantitative expression of a particular physical quantity as the product of a number and a unit, the number being its numerical value. Thus, the numerical value of a particular physical quantity depends on the unit in which it is expressed.

For example, the value of the height $h_{w}$ of the Washington Monument is $h_{w}=169 \mathrm{~m}=555 \mathrm{ft}$. Here $\mathrm{h}_{\mathrm{w}}$ is the physical quantity, its value expressed in the unit "meter," unit symbol m , is 169 m , and its numerical value when expressed in meters is 169 . However, the value of $\mathrm{h}_{\mathrm{w}}$ expressed in the unit "foot," symbol ft , is 555 ft , and its numerical value when expressed in feet is 555 .


Why should we care about SI units?


November 10, 1999 MCO Failure Board Releases Report
Releases Rep
Wide-ranging
managerial and
technical actions are
underway at NASA's Jet Propulsion
Laboratory, Pasadena, CA, in response to
initial findings of the mission failure
investigation board. Full Story
SEPTEMBER 30, 1999
Likely Cause Of Orbiter Loss Found
The peer review preliminary findings
indicate that one team used English units
(e.g., inches, feet and pounds) while the
other used metric units for a key spacecraft
operation. Full Story
http://mars.jpl.nasa.gov/msp98/orbiter

## Prefixes for SI Units

| $10^{\mathrm{x}}$ | Prefix | Symbol |  |
| ---: | :--- | :--- | :--- |
| $\mathrm{x}=18$ | exa | E |  |
| 15 | peta | P |  |
| 12 | tera | T |  |
| 9 | giga | G | GPascal |
| 6 | mega | M | MVolt |
| 3 | kilo | k | kWatt |
| 2 | hecto | h |  |
| 1 | deca | da |  |

Lecture
Andrei Sirenko, NJIT

## Prefixes for SI Units

| $10^{\mathrm{x}}$ | Prefix | Symbol |  |
| ---: | :--- | :--- | :--- |
| $\mathrm{x}=-1$ | deci | d |  |
| -2 | centi | c | cm |
| -3 | milli | m | mm |
| -6 | micro | $\mu$ | $\mu \mathrm{A}$ |
| -9 | nano | n | nm |
| -12 | pico | p | pm |
| -15 | femto | f | fm |
| -18 | atto | a |  |

## Useful conversions:

1 inch $=0.0254$ meters (exactly)
1 meter $=39.37$ inches
1 foot = 1200/3937 meter (1959).
(ft-international foot)

1 kg corresponds to ~2.2 lbs. weight
1 lb . weight corresponds to
about 0.454 kg
(this is called an 'improper conversion')
http://physics.nist.gov/Pubs/SP811/appenB.html

## Unit Conversions

```
Multiply quantities
    and units:
\(60 \frac{\mathrm{ht}}{\mathrm{hr}} \cdot 5280 \frac{\mathrm{Ft}}{\mathrm{mit}} \cdot 12 \frac{\mathrm{Ht}}{\mathrm{mt}} \cdot 0.0254 \frac{\mathrm{~m}}{\mathrm{mt}} \cdot \frac{1}{3600} \frac{\mathrm{hr}}{\mathrm{s}}\)
\(26.8 \frac{\mathrm{~m}}{\mathrm{~s}}\)
```


## Precision

- Measurements
- Uncertainties
- Absolute
- Percent
- Calculation
- Result can not be better than data
- Use scientific notation to show significant figures
- Examples
- 3.14 micron +0.5 micron $=3.6$ micron (physics)
- 3.14 micron +0.50 micron $=3.64$ micron $\quad$ (physics)
- $123,400,000 \mathrm{~km}=1.234 \times 10^{8} \mathrm{~km}$
- $0.003 \mathrm{~m}=3 \times 10^{-3} \mathrm{~m}$


## Dimensional Analysis

Basic Quantities Derived Quantities

| Length $[L]$ | Velocity $\quad[L] /[T]$ |
| :--- | :--- | ---: |
| Time $[T]$ | Acceleration $[L] /[T]^{2}$ |
| Mass $[M]$ | Density $[M] /[L]]^{3}$ |
|  | Energy $[M][L]^{2} /[T]^{2}$ |

QZ1
write your name, ID\#, Section \#
What is the volume of the book in $\mathrm{cm}^{3}$.
(hint: 1 inch $=2.54 \mathrm{~cm}$ )

2 inch


5 inch

