Lecture 7
Physics 106
Fall 2006
Intro to Equilibrium

http://web.njit.edu/~sirenko/

How does it fly?
anti-torque tail rotor

Who is this person?
a) Von Zeppelin
b) One of the Wright brothers
c) Igor Sikorsky

10/17/2006 Andrei Sirenko, NJIT
Igor Sikorsky (1889-1972)
First experiment: 1909
Since 1920’s: Stratford, CO

FORWARD

TAKEOFF AND HOVER

BACKWARD

Main rotor

(1931 – 1942)
In WWII: combat rescue and Medevac missions

10/17/2006 Andrei Sirenko, NJIT

Equilibrium

Balance of Forces:
\[\bar{F}_{\text{net}} = \frac{d\bar{F}}{dt} = 0 \]

Balance of Torques:
\[\bar{\tau}_{\text{net}} = \frac{d\bar{L}}{dt} = 0 \]

1. The vector sum of all the external forces that act on the body must be zero.
2. The vector sum of all the external torques that act on the body, measured about any possible point, must be zero.
3. The linear momentum \(\bar{P} \) of the body must be zero.
4. The gravitational force \(\bar{F}_g \) on a body effectively acts on a single point, called the center of gravity (cog) of the body. If \(g \) is the same for all elements of the body, then the body’s cog is coincident with the body’s center of mass.

10/17/2006 Andrei Sirenko, NJIT

Equilibrium

Stable vs. Unstable Static Equilibrium

An equilibrium point is stable if small changes in the position lead to restoring forces back to equilibrium.

If it moves away from the equilibrium point when displaced slightly, it is unstable.

10/17/2006 Andrei Sirenko, NJIT
Equilibrium

Balance of Forces:

\[\bar{F}_{\text{net}} = \frac{d\bar{F}}{dt} = 0 \]

Balance of Torques:

\[\tau_{\text{net}} = \frac{d\tau}{dt} = 0 \]

Sample Problem XIII – 1

A uniform beam of length \(L \) and mass \(m = 1.8 \) kg is at rest with its ends on two scales. A uniform block with mass \(M = 2.7 \) kg is at rest on the beam, with its center a distance \(L/4 \) from the beam’s left end. What do the scales read?

Sample Problem XIII – 3

A safe of mass \(M = 430 \) kg is hanging by a rope from a boom with dimensions \(a = 1.9 \) m and \(b = 2.5 \) m. The boom consists of a hinged beam and a horizontal cable that connects the beam to a wall. The uniform beam has a mass \(m = 85 \) kg. The masses of the cable and the rope are negligible.

a) What are the tension \(T_c \) in the cable? In other words, what is the magnitude of the force \(T_c \) on the beam from the cable?

b) Find the magnitude \(F \) of the net force on the beam from the hinge.