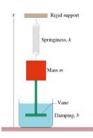
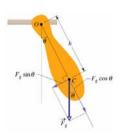


Lecture 12-13

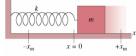
Physics 106 Spring 2006





·Physical Pendulum ·Oscillations

HW&R



http://web.njit.edu/~sirenko/

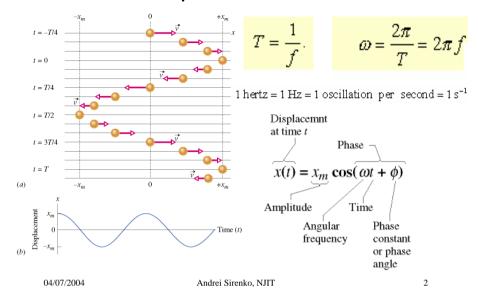
04/07/2004

04/07/2004

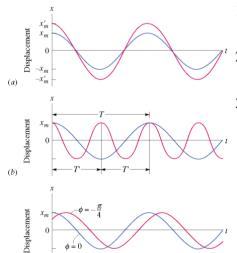
Andrei Sirenko, NJIT

Andrei Sirenko, NJIT

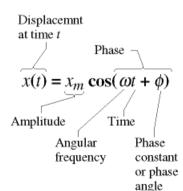
Simple Harmonic Motion



Simple Harmonic Motion (SHM)



- 1. Amplitude is different
- 2. Period (or frequency) is different.
- 3. Phase is different.



Displacement, Velocity, and Acceleration of SHM

$$x(t) = x_m \cos(\omega t + \phi)$$
 (displacement).

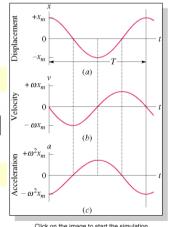
$$v(t) = \frac{dx(t)}{dt} = \frac{d}{dt} \left[x_m \cos(\omega t + \phi) \right]$$

$$v(t) = -\omega x_* \sin(\omega t + \phi)$$
 (velocity).

$$a(t) = \frac{dv(t)}{dt} = \frac{d}{dt} \left[-\omega x_m \sin(\omega t + \phi) \right]$$

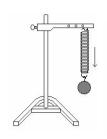
$$a(t) = -\omega^2 x_m \cos(\omega t + \phi)$$
 (acceleration).

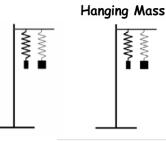
$$a(t) = -\omega^2 x(t)$$
 Andrei Sirenko, NJIT



Click on the image to start the simulation

Examples of SHM





- 1. Pendulum
- 2. Spring+weight

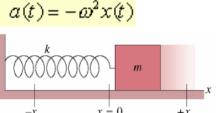
$$a(t) = -\omega^2 x(t)$$

Which parameters of the system are important?

04/07/2004 Andrei Sirenko, NJIT

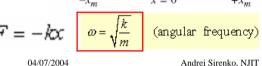
Displacement, Velocity, and Acceleration of Simple Harmonic Motion

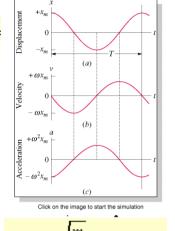
$$x(t) = x_m \cos(\omega t + \phi)$$
 (displacement).
 $v(t) = -\omega x_m \sin(\omega t + \phi)$ (velocity).
 $a(t) = -\omega^2 x_m \cos(\omega t + \phi)$ (acceleration).



U(t)

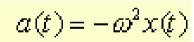
U(x) + K(x)





$$T = 2\pi \sqrt{\frac{m}{k}}$$
 (period)

The Force Law for SHM

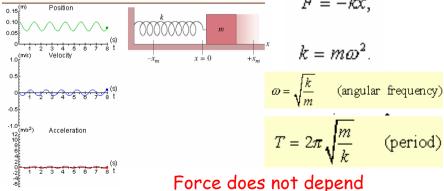


04/07/2004

Force is proportional to displacement with a negative constant of proportionality

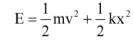
$$F = ma = -(m\omega^2)x.$$

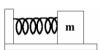
$$F = -kx$$
.

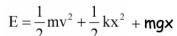


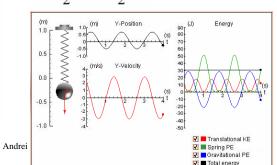
on the amplitude

Energy of SHM







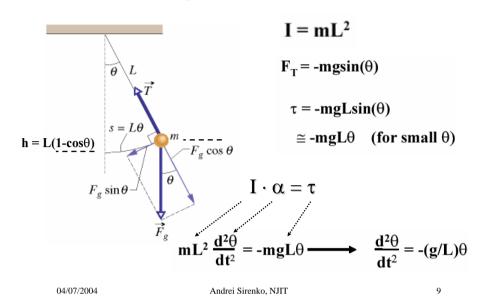


04/07/2004

U(t) + K(t)

T/2

Simple Pendulum



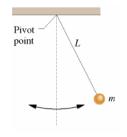
Simple Pendulum

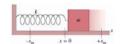
Simple pendulum follows SHM

$$\frac{d^2\theta}{dt^2} = -(g/L)\theta \qquad \text{Looks like spring} \qquad \frac{d^2x}{dt^2} = -(k/m)x$$

Solution by analogy

Spring	Pendulum
$x = x_{\rm m} \cos(\omega t + \phi)$	$\theta = \theta_{\rm m} \cos(\omega t + \phi)$
$\omega = \sqrt{\frac{k}{m}}$	$\omega = \sqrt{\frac{g}{L}}$
$T = 2\pi \int \frac{m}{k}$	$T = 2\pi \int \frac{L}{g}$





10

04/07/2004 Andrei Sirenko, NJIT

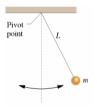
Simple Pendulum: Questions

Q1. If we double θ_{m} the energy:

- a) is half as large b) Stays the same
- c) is twice as large d) is 4 times greater
- e) is 16 times greater

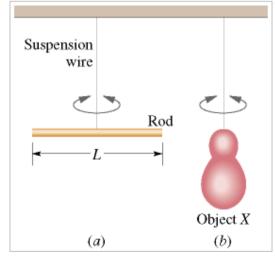
Q2. If we double θ_m the period:

- a) is half as large b) Stays the same
- c) is twice as large d) is 4 times greater
- e) is 16 times greater



11

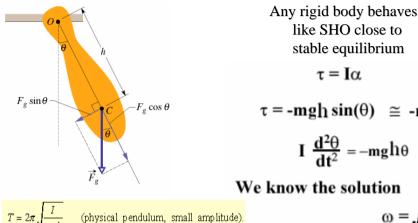
An Angular Simple Harmonic Oscillator



 $T = 2\pi \sqrt{\frac{I}{\kappa}}$

04/07/2004 Andrei Sirenko, NJIT

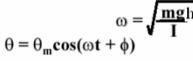
The Physical Pendulum



stable equilibrium $\tau = I\alpha$ $\tau = -mgh \sin(\theta) \cong -mgh \theta$

$$I \ \frac{d^2\theta}{dt^2} = -mgh\theta$$

We know the solution

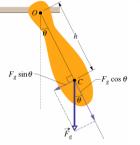


Compare to: for SHO

Andrei Sirenko, NJIT

13

The Physical Pendulum



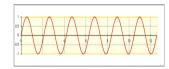
(physical pendulum, small amplitude).

Three physical pendulums, of masses m_0 , $2m_0$, and $3m_0$, have the same shape and size and are suspended at the same point. Rank the masses according to the periods of the pendulums, greatest period first.

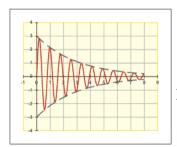
Hint: use the formula for the period and think about I (rotational inertia). Since the exact shape is not given to us in the text of the problem, then we can try to check a couple of different shapes; point mass $I = mL^2$ solid rod $I = 1/3 mL^2$

04/07/2004 Andrei Sirenko, NJIT

Damping of harmonic oscillations

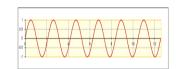


Simple Harmonic Motion is an Idealization Energy is constant → Motion never decays



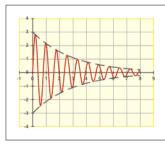
In real life the motion eventually stops Friction Air Resistance Mechanical Energy $\rightarrow 0$ $F_d = -bv$ Air resistance, etc. Direction opposite to motion Magnitude proportional to velocity

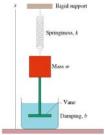
Damping of harmonic oscillations



$$x = x_0 \cos(\omega t)$$
 $v = -x_0 \omega \sin(\omega t)$

$$E = \frac{1}{2} m v^2 + \frac{1}{2} k x^2 = \frac{1}{2} k x_m^2$$





Damping Force

$$F_{d} = -bv$$

$$-bv - kx = ma$$

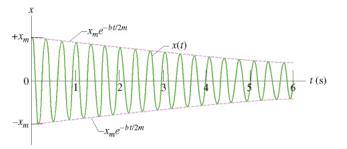
$$m\frac{d^{2}x}{dt^{2}} + b\frac{dx}{dt} + kx = 0$$

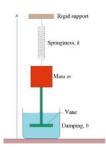
16

$$x(t) = x_m e^{-\delta t/2m} \cos(\omega t + \phi)$$

$$\varpi^{\dagger} = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}.$$

Damping of harmonic oscillations





$$x(t) = x_m e^{-\delta t/2m} \cos(\omega t + \phi)$$

$$\omega^{\dagger} = \sqrt{\frac{k}{m} - \frac{b^2}{4m^2}}.$$

$$E(t) \approx \frac{1}{2}kx_m^2 e^{-bt/m}$$

Conclusion:

Amplitude X(t) and Mechanical energy E(t) decrease with

04/07/2004

Andrei Sirenko, NJIT

time exponentially