Lecture 9(+10) Physics 106

Spring 2006
Gravitation
HW\&R
http://web.njit.edu/~sirenko/

Newton's Law of Gravitation (known since 1665)

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

- On Earth: the Earth gravitation dominates
($\mathrm{F}=\mathrm{mg}$)

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

- In the Solar System: attraction to the Sun is the main effect
- In the Galaxy (Milky Way): Attraction to the center of the Galaxy determines everything.
- At the edge of the Universe: the conceptual problems begin ... Accelerating expansion of the visible Universe is known since 1998. From that tim this problem became one of the frontiers of the modern Physics

The Andromeda galaxy. Located 2.310^{6} light-years from us

Measuring the Gravitational constant G using the Cavendish method

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

QZ9:

(a)

(b)

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

$$
G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

Sample Problem from HW\&R:
$m_{1}=6 \mathrm{~kg}, \quad m_{2}=m_{3}=4 \mathrm{~kg}, d_{12}=a$, and $\mathrm{d}_{13}=2 a$. What is the net gravitational force F_{1} that acts on the particle " 1 " due to the other particles? Use $a=0.1 \mathrm{~m}$.

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

A uniform spherical shell of matter attracts a particles that is outside the shell as if all the shell's mass is concentrated at its center!
Solid sphere is a combination of spherical shells:

Andrei Sirenko, NJIT

Gravitation Near Earth's Surface

1. Earth is not uniform.
2. Earth is not a sphere.
3. Earth is rotating.

Mean Earth surface ($0 \mathrm{~km}, 9.83 \mathrm{~m} / \mathrm{s}^{2}$), Mt. Everest ($8.8 \mathrm{~km}, 9.80 \mathrm{~m} / \mathrm{s}^{2}$), highest manned balloon ($36.6 \mathrm{~km}, 9.71 \mathrm{~m} / \mathrm{s}^{2}$), Space Shuttle orbit ($400 \mathrm{~km}, 8.70 \mathrm{~m} / \mathrm{s}^{2}$), and communications satellite ($35,700 \mathrm{~km}, 0.225 \mathrm{~m} / \mathrm{s}^{2}$)
"Alice in Wonderland"
Gravitational Train

Planets and Satellites: Kepler's Laws

THE LAW OF ORBITS: All planets mowe in elliptical orbits, with the Sun at one focus.

(a) Will this train move at all?
(b) What is the total force on the train in the middle of the tunnel ?
Where will the train stop?
LA or in the middle of the tunnel
(c) What is the speed of the train in the middle of the tunnel ?

Answers:

(a) $v \approx 6000 \mathrm{~m} / \mathrm{s}$
(b) $v \approx 600 \mathrm{~m} / \mathrm{s}$
(c) $v \approx 60 \mathrm{~m} / \mathrm{s}$
(d) $v \approx 6 \mathrm{~m} / \mathrm{s}$
(e) $\mathbf{v} \approx 0$

A planet of mass m moving in an elliptical orbit around the Sun. The Sun, of mass M, is at one focus F of the ellipse. The other focus is F^{\prime}, which is located in empty space. Each focus is a distance ea from the ellipse's center, with e being the eccentricity of the ellipse. The semimajor axis a of the ellipse, the perihelion (nearest the Sun) distance R_{p}, and the aphelion (farthest from the Sun) distance R_{a} are also shown.

Planets and Satellites: Kepler's Laws

THE LAW OF AREAS: A line that connects a

 planet to the Sun sweeps out equal areas in the plane of the planet's orbit in equal times; that is, the rate$d A / d t$ at which it sweeps out area A is constant.

In time Δt, the line r connecting the planet to the Sun (of mass M) sweeps through an angle $\Delta \theta$, sweeping out an area ΔA (shaded).

THE LAW OF PERIODS: The square of the period of any planet is proportional to the cube of the semimajor axis of its orbit.

	$\begin{aligned} & \frac{G M m}{r^{2}}=(m)\left(\omega^{2} r\right) . \\ & T^{2}=\left(\frac{4 \pi^{2}}{G M}\right) r^{3} \end{aligned}$	Planet	Semimajor Axis $a\left(10^{10} \mathrm{~m}\right)$	Period T (y)	$\begin{gathered} T^{2} / a^{3} \\ \left(10^{-34} \mathrm{y}^{2} / \mathrm{m}^{3}\right. \end{gathered}$
		Mercury	5.79	0.241	2.99
		Venus	10.8	0.615	3.00
		Earth	15.0	1.00	2.96
		Mars	22.8	1.88	2.98
		Jupiter	77.8	$\overline{11.9}{ }^{-}$	$\overline{3} . \overline{01}$
		Saturn	143	29.5	2.98
		Uranus	287	84.0	2.98
		Neptune	450	165	2.99
		Pluto	590	248	2.99

Potential Energy :

ΔU between r_{1} and r_{2} is the work done by the Gravitation Force during the move from r_{1} to r_{2} :

$$
F=G \frac{m_{1} m_{2}}{r^{2}}
$$

$\mathrm{U}=0$; at infinity! (far away)

Potential Energy of a System :

$$
U=-\left(\frac{G m_{1} m_{2}}{r_{12}}+\frac{G m_{1} m_{3}}{r_{13}}+\frac{G m_{2} m_{3}}{r_{23}}\right) .
$$

3/22/2006

Potential Energy :
Is it $\Delta U=m g h$ or $U=-\frac{G M m}{r}$, anyway?
It is the same thing, just different zero levels.
$U=-\frac{G M m}{r} \quad$ is more universal (always correct)

$\Delta \boldsymbol{U}=\boldsymbol{m g} \boldsymbol{h}$ works for $\boldsymbol{h} \ll \boldsymbol{r}$, zero at the Earth surface

$$
U=-\frac{G M m}{r} \quad \text { always works, zero at } \infty
$$

$$
\begin{aligned}
& \Delta U=G M m / r-G M m /(r+h)=G M m(r+h-r) /(r \cdot(r+h)) \\
& =m h \cdot\left[G M /\left(r^{\cdot}(r+h)\right)\right] \approx m g h
\end{aligned}
$$

First Satellite Speed:

$F=G \frac{m_{1} m_{2}}{r^{2}}$

"Newton's cannon"

$$
\begin{aligned}
& \text { in } 1687 \text { in "Principia Mathematica" } \\
& \mathrm{v}_{\text {satellite }} \approx(\mathrm{gR})^{1 / 2} \\
& \mathrm{v}_{\text {satellite }} \approx 8,000 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~g} \approx 8.70 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$ because it is in 'free-fall' - just like a skydiver.

∞

From energy conservation:
$\mathrm{E}_{1}=\mathrm{mv}^{2} / 2-\mathrm{GmM} / \mathrm{R}$
$\mathrm{E}_{2}=0$ (velocity is small)
$\mathrm{v}^{2}=2 \mathrm{GM} / \mathrm{R}=2 \mathrm{gR}$
$\mathrm{v}=(2 \mathrm{GM} / \mathrm{R})^{1 / 2} \approx 11,200 \mathrm{~m} / \mathrm{s}$

Satellites: Orbits and Energy

$$
\frac{G M m}{r^{2}}=m \frac{v^{2}}{r}
$$

$$
\begin{aligned}
& \text { Kinetic Energy for the orbital motion } \\
& K=\frac{1}{2} m v^{2}=\frac{G M M m}{2 r} \\
& K=-\frac{U}{2} \quad \text { (circular orbit) }
\end{aligned}
$$

Total Energy: $E=K+U=\frac{G M m}{2 r}-\frac{G M m}{r}=-\frac{G M m}{2 r}$
 (circular orb

$$
E=-\frac{G M m}{2 a}
$$

Potential and Kinetic Energy

Potential Energy

$U=-\frac{G M m}{r}$
Kinetic Energy for the orbital motion
$F=G \frac{M m}{r^{2}}=m \frac{v^{2}}{r} \Rightarrow K=\frac{1}{2} m v^{2}=\frac{G M m}{2 r}$
Total Energy
$E=K+U=\frac{G M m}{2 r}-\frac{G M m}{r}=-\frac{G M m}{2 r}$

(a)

(b)

