Lecture 1

Physics 106 Spring 2007

http://web.njit.edu/~sirenko/

Lecture 1 Andrei Sirenko, NJIT

Course information:

- Physics 106:
 Continuation of Classical Mechanics:
- Rotation and Circular motion
- · Harmonic Oscillations
- Gravitation

Instructor:

Prof. Andrei Sirenko

http://web.njit.edu/~sirenko/ and click "Phys106 Spring 2007"

E-mail: sirenko@njit.edu

Office: 423E Tiernan Hall

• Office hours: Wednesday 2:30 – 4:00 pm

Friday 11:30 – 1:00 pm

or by appointment

Lecture 1 Andrei Sirenko, NJIT 2

Course Elements:

- > Textbook
- > Lectures (lecture notes)
- > Recitations
- Homework (due at the beginning of the next Recitation)
- > Exams (3 common exams, final exam)
- > Workshop
- > Lab (separate grade)

Lecture 1 Andrei Sirenko, NJIT 3 Lecture 1 Andrei Sirenko, NJIT 4

Textbook:

Halliday, Resnick, and Walker
Fundamentals of Physics, 7th edition
Chapters 10-15th Volume 1

(HR&W)

7th edition:

Web Page:

http://web.njit.edu/~sirenko/

and click "Phys 106 Spring 2007"

UTexas:

Class: 11787

Lectures: (Wednesdays 1:00 pm; TH107)

- > Presentation of the concepts and techniques of Physics.
- > Demonstrations of Physics in action.
- > Lecture quiz at the end of every lecture
- Lectures are not a substitute for reading the text!
 Text chapters are listed on the lecture schedule.
 Read ahead; you'll get more from lecture.
- Slides will be posted on the course web.
 Use these as a study guide/note taking aid.

Recitations (10:00 am; TH107)

- Recitations provide an opportunity to do a group activity relevant to the topic being studied, and to ask homework questions.
- The scenarios presented in the recitation group activities will be on the exams.

Grade Components:

- 48% for all three common exams (16% each)
- 32% for the final exam
- 8% for the total homework grade
- 4% for the total lecture quiz grade
- 8% for the workshop grade submitted by your WS instructor

"Phys 106 Workshop assignments will be posted at the course WebCT site at http://webct.njit.edu/ enter your UCID and password to have an access to this site. Please contact the Help Desk at 973-596-2900 for questions regarding your UCID and password."

"Students are required to bring their own printed copies to the WS and Recitation class."

Lecture 1 Andrei Sirenko, NJIT 7 Lecture 1 Andrei Sirenko, NJIT 8

How to Do Well

- Keep up!
- Do the homework carefully and understand the reason for each step.
- · Form a study group to discuss homework problems.
- Do plenty of extra problems and examples.
- The material gets more difficult through the term. Don't slack off if you are doing well!

Lecture 1

Lecture 1

Andrei Sirenko, NJIT

9

11

What should we know?

Vectors

addition, subtraction, scalar multiplication

> Trigonometric functions

 $\sin\theta$, $\cos\theta$, $\tan\theta$, $\theta = \tan^{-1}(a/b)$, etc.

> Integration and Derivatives (basic concepts)

$$2x = (x^2)'$$

> SI Units

> Newton's Laws

$$F_{12} = -F_{21}$$

> Energy Conservation

Kinetic Energy, Potential Energy, and Work

> Circular motion and Centripetal Force

$$a_c = v^2/R$$

Andrei Sirenko, NJIT 10 Lecture 1

Components of Vectors:

- aligned along axis

Andrei Sirenko, NJIT

Vector Multiplication

Dot product

$$\vec{A} \cdot \vec{B} = AB\cos\theta = A_x B_x + A_y B_y + A_z B_z$$

 θ is the angle between the vectors if you put their tails together

$$\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$$

since $\cos(\theta) = \cos(-\theta)$

12

Equations for Motion with Constant Accelerationa TABLE 2-1

Equation Number	Equation	Missing Quantity
2-11	$v = v_0 + at$	x - x ₀
2-15	$x - x_0 = v_0 t + \frac{1}{2} a t^2$	ν
2-16	$v^2 = v_0^2 + 2a(x - x_0)$	t
2-17	$x - x_0 = \frac{1}{2} (v_0 + v)t$	а
2-18	$x - x_0 = vt - \frac{1}{2}at^2$	v_0

Make sure that the acceleration is indeed constant before using the equations in this table.

Andrei Sirenko, NJIT 13 Lecture 1

Newton's Laws

- I. If no net force acts on a body, then the body's velocity cannot
- II. The net force on a body is equal to the product of the body's mass and acceleration.
- III. When two bodies interact, the force on the bodies from each other are always equal in magnitude and opposite in direction $(\mathbf{F}_{12} = -\mathbf{F}_{21})$

Force is a vector Force has direction and magnitude Mass connects Force and acceleration;

$$\vec{F}_{tot} = 0 \Leftrightarrow \vec{a} = 0$$
 (constant velocity)

$$\overrightarrow{F}_{tot}$$
 = ma for any object

$$F_{tot,x} = ma_x$$
 $F_{tot,y} = ma_y$ $F_{tot,z} = ma_z$

Lecture 1 15

What does zero mean?

- > t = 0 beginning of the process
- > x = 0 is arbitrary; can set where you want it
- > $x_0 = x(t=0)$; position at t=0; do not mix with the origin

> v(t) = 0 x does not change $x(t) - x_0 = 0$

$$x(t) - x_0 = 0$$

$$\rightarrow v_0 = 0$$

$$v(t) = at$$

$$v_0 = 0$$
 $v(t) = at;$ $x(t) - x_0 = at^2/2$

$$v(t) = v_0$$

>
$$a = 0$$
 $v(t) = v_0$; $x(t) - x_0 = v_0 t$

$$v(t) = v_0 + at$$

>
$$a \neq 0$$
 $v(t) = v_0 + at$; $x(t) - x_0 = v_0 + at^2/2$

$$t = (v - v_0)/a$$

$$t = (v - v_0)/a \qquad x - x_0 = \frac{1}{2}(v^2 - v_0^2)/a$$

$$a = (v - v_0)/t \qquad x - x_0 = \frac{1}{2}(v + v_0)/t$$

$$a = (v - v_0)/t$$

> Acceleration and velocity are positive in the same direction as displacement is positive

Lecture 1 Andrei Sirenko, NJIT 14

Uniform Circular Motion

Centripetal acceleration

Period

Lecture 1 Andrei Sirenko, NJIT

 $ma_c = mv^2/R = \Sigma F$ (all forces along the direction towards the center)

> Gravitational Force:

ma

down to the ground

Т

>Tension Force: along the string

»Normal Force:

perpendicular to the support

ma = N - mq

 $ma = mv^2/R$

>Static Friction Force maximum value

 $\mathbf{F}_{fr}^{\text{max}} = \mu_{st} \mathbf{N}$

Lecture 1

Lecture 1

Andrei Sirenko, NJIT

17

$\mathbf{W} = \vec{\mathbf{F}} \cdot \vec{\mathbf{r}}$ What does mean?

W > 0 if θ < 90° \longrightarrow force is adding energy to object

W < 0 if θ > 90° force is reducing energy of object

$$\vec{F}$$

W = 0 if
$$r = 0$$
 or $F = 0$ or $F \perp r$

Work Examples

Push on a wall

W = 0 since wall does not move $(\vec{r} = 0)$

Andrei Sirenko, NJIT 18 Lecture 1

Kinetic Energy:

Potential Energy:

$$\Delta U = -W$$

· Gravitation:

$$U = mgy$$

• Elastic (due to spring force): $U = \frac{1}{2}kx^2$

Andrei Sirenko, NJIT

$$U=\frac{1}{2}kx^2$$

 $U \rightarrow K$

Conservation of Mechanical Energy

$$K_2 + U_2 = K_1 + U_1$$

Kinetic Energy:

Potential Energy:

$$\Delta U = -W$$

 $E_{
m mec} = K + U$

· Gravitation:

$$U = mgy$$

• Elastic (due to spring force): $U = \frac{1}{2}kx^2$

$$U=\frac{1}{2}kx^2$$

 $U \leftarrow \rightarrow K$

Conservation of Mechanical Energy

$$K_2 + U_2 = K_1 + U_1$$

Examples for Energy Conservation

Kinetic Energy changes

+ Gravitational Potential Energy

+ Elastic Potential Energy $W = \frac{1}{2}mv^{2}$ U = mgy $U = \frac{1}{2}kx^{2}$

Total Mechanical Energy = Const.

$$E_f - E_i = -|W_{friction}| = f_k \cdot d \cdot \cos 180^\circ = -mg \ \mu \cdot d \cdot \cos 18^\circ$$

Lecture 1 Andrei Sirenko, NJIT

Linear Momentum

Particle:

$$ec{p}=mec{v}$$

System of Particles:

$$\vec{P} = m_1 \vec{v}_1 + m_2 \vec{v}_2 + ...$$

Extended objects:

$$\vec{P} = M \vec{v}_{\rm com}$$

Relation to Force: $\overrightarrow{F}_{tot} = \overrightarrow{ma}$

$$ec{F}_{
m net} = rac{dec{p}}{dt}$$

$$ec{F}_{
m net} = rac{dec{P}}{dt}$$

Lecture 1 Andrei Sirenko, NJIT

22

Completely Inelastic Collision Collisions in 1D

Conservation of Linear Momentum works!

$$ec{p}_{1i} + ec{p}_{2i} = ec{p}_{1f} + ec{p}_{2f}$$

$$egin{array}{lcl} m_1 v_{1i} &=& (m_1 + m_2) V \ V &=& rac{m_1}{m_1 + m_2} v_{1i} \end{array}$$

21

23

Example: Two equal objects, one initially at rest

$$mv_i = 2mv_f \longrightarrow v_f = v_i/2$$

Final Kinetic Energy = $\frac{1}{2}(2m)(v_i/2)^2$ Half the original Kinetic Energy

Lecture 1 = $\frac{1}{4}m(v_i)^2$

Lecture 1

Rotation concepts & variables.

Motion diagrams, FBD's.

Rotation kinematics

Chapter 10 (1-5)

http://web.njit.edu/~sirenko/

Lecture 1 Andrei Sirenko, NJIT 24

Rotation; Examples

http://www.ce.utexas.edu/prof/olivera/Earth.htm

Lecture 1 Andrei Sirenko, NJIT 25

Rotational Motion

> 33 1/3 rpm

> 45 rpm

Lecture 1 Andrei Sirenko, NJIT 26

Changing x,y,z coordinates into spherical polar coordinates

OQ = rsin @ so x = rsin @ cos \$, y = rsin @ sin \$ and z = rcos @

$$r = \sqrt{x^2 + y^2} \iff x = r \cos(\theta)$$

$$\theta = \tan^{-1}(y/x) \iff y = r \sin(\theta)$$

Uniform Circular Motion (Phys 105)

Object travels around a circle at constant speed

Centripetal acceleration

$$a = \frac{v^2}{r}$$

Period: T = $2\pi r/v$ = time to go around once

Uniform Circular Motion in Polar Coordinates .

ω = v/r where v is the linear speed around the circle

Linear velocity along circle: v = ds/dt= $rd\theta/dt$

v = ro

29

31

Lecture 1

Radian

1 Radian = 180° / $\pi \approx 57.3^\circ$ The arc length is equal to the radius $\Delta {\bf s} = {\bf r} \Delta \theta$

Lecture 1

Circle: $360^{\circ} = 2\pi \text{ radians} \approx 6.283 \text{ radians}$

 $\frac{1}{2}$ Circle: 180° = π radians \approx 3.1415 radians

- \rightarrow Radians = degrees \times (π /180)
- > 1 degree = π /180=0.0174532925 radians.
- > 180°= 3.14156 radians
- > 90° = 1.5708 radians
- > 45° = 0.7854 radians

Andrei Sirenko, NJIT

30

Angular Acceleration

$$\alpha = \frac{d\omega}{dt}$$

Plays same role in rotational motion as acceleration in linear motion

$$\alpha = 0 \implies \vec{a} = 0$$

Example: uniform circular motion

Angular variables are vectors

Direction of the vector: Right-hand-rule

Sign of $\Delta \theta$:

"Clocks are negative"

Positive $\Delta\theta$ Negative $\Delta\theta$

Sign of $\Delta\theta$ and ω is the same: $\omega = \Delta\theta/\Delta t$ $\omega = d\theta/dt$

Signs of ω and α can be the same of different

Example:

The length of the vector $\overrightarrow{\omega}$ is proportional to the magnitude of ω

Lecture 1

Andrei Sirenko, NJIT

Rotational Kinematics:

Linear Displacement Linear Velocity Linear Acceleration

Angular Displacement Angular Velocity Angular Acceleration

 \overrightarrow{x} , \overrightarrow{v} , \overrightarrow{a} \Leftrightarrow $\overrightarrow{\theta}$, $\overrightarrow{\omega}$, $\overrightarrow{\alpha}$

If α is constant:

$$\theta(t) = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$

$$\omega = \frac{\mathrm{d}\theta}{\mathrm{d}t} \rightarrow \omega(t) = \omega_0 + \alpha t$$

combine: $2\alpha (\theta - \theta_0) = \omega^2 - \omega_0^2$

Lecture 1 Andrei Sirenko, NJIT 34

Rotation:

Angular Displacement Angular Velocity Angular Acceleration

33

	Linear Equation	Missing Variable		Angular Equation	
	$v = v_0 + at$	$x - x_0$	θ - θ_0	$\omega = \omega_0 + \alpha t$	
	$x - x_0 = v_0 t + \frac{1}{2} a t^2$	v	ω	$\theta - \theta_0 = \omega_0 t + \frac{1}{2} \alpha t^2$	
	$v^2 = v_0^2 + 2a(x - x_0)$	t	t	$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$	
	$x - x_0 = \frac{1}{2}(v_0 + v)t$	a	α	$\theta - \theta_0 = \frac{1}{2}(\omega_0 + \omega)t$	
Lecture	$x - x_0 = vt - \frac{1}{2}at^2$	v ₀	ω ₀	$\theta - \theta_0 = \omega t - \frac{1}{2} \alpha t^2$	35

Equations for Motion with Constant Accelerationa **TABLE 2-1**

Equation Number	Equation	Missing Quantity
2-11	$v = v_0 + at$	x - x ₀
2-15	$x - x_0 = v_0 t + \frac{1}{2} a t^2$	ν
2-16	$v^2 = v_0^2 + 2a(x - x_0)$	t
2-17	$x - x_0 = \frac{1}{2} (v_0 + v)t$	а
2-18	$x - x_0 = vt - \frac{1}{2}at^2$	v_0

^a Make sure that the acceleration is indeed constant before using the equations in this table.

Andrei Sirenko, NJIT Lecture 1 36

Homework

See the Physics 106 Course Syllabus

FOP Chapter 10:

U of Texas: Register for the Class 11787 And start working on the first HW! Bring the printouts to the Recitation class

http://web.njit.edu/~sirenko/

Lecture 1

Andrei Sirenko, NJIT

37

Lecture 1

QZ: Our linear velocity with respect to the Sun

When do we move faster? $R_{E_{-}S} = 1.5 \times 10^{11} \text{ m}$ T=1 year = 365 days (a) Day (b) Night What is the velocity difference between Day and Night at the Equator line? $v = \omega R = 2\pi R/T$ |(V_{day} - V _{night})|/V _{average} $\omega = 2\pi/T$ (a) 0.00008(b) 0.015 (c) 0.03(d) 0.3(e) 100 % $R=6\times10^6$ m; T=1 day Show work!

Andrei Sirenko, NJIT

Acceleration in Circular Motion:

General Case:

The velocity changes with time.

 ω is not constant ($\alpha \neq 0$)

There are two components of acceleration:

$$a_c = v^2 / r = r \omega^2$$

- > Centripetal (radial, towards the center) and
- > Tangential (along the velocity vector)

$$a_{\rm T} = r \alpha$$

> Total acceleration value:

$$\vec{a} = \vec{a}_c + \vec{a}_T$$
; $a = (a_c^2 + a_T^2)^{1/2}$, $\tan \phi = a_T / a_c$

Lecture 1

Andrei Sirenko, NJIT

39