

3

Rotational Analo	av to Li	inear Motion
-------------------------	----------	--------------

	Translation	Rotation
position	×	θ
velocity	v = dx/dt	$\omega = d\theta/dt$
acceleration	a = dv/dt	$\alpha = d\omega/dt$
mass	m	$I = \Sigma m_i r_i^2$
Kinetic Energy	$K = \frac{1}{2}mv^2$	$\mathbf{K} = \frac{1}{2}\mathbf{I} \ \omega^2$
Force	F = ma	$\tau_{net} = \boldsymbol{I} \cdot \boldsymbol{\alpha}$
02/01/2006	Andrei Sirenko, NJIT	

Work and Rotational Kinetic Energy

Power, rotation about fixed axis

http://www.mcs.drexel.edu/~crorres/Archimedes/Claw/illustrations.html

02/01/2006

Andrei Sirenko, NJIT

11

Andrei Sirenko, NJIT

mg

mg

02/01/2006

1. raft

12

3.

2.

<u>Homework</u>

See the Physics 106 Course Syllabus

U of Texas HW is required

http://web.njit.edu/~sirenko/

02/01/2006

Andrei Sirenko, NJIT

17