Lecture 3

Physics 106
Spring 2006

Rotational dynamics:

- Newton's Second Law and examples
http://web.njit.edu/~sirenko/

Rotational Analogy to Linear Motion

	Translation	Rotation
position	x	θ
velocity	$v=d x / d t$	$\omega=d \theta / d t$
acceleration	$a=d v / d t$	$\alpha=d \omega / d t$

mass	m	$I=\Sigma m_{i} r_{i}{ }^{2}$
Kinetic Energy	$K=\frac{1}{2} m v^{2}$	$K=\frac{1}{2} I \omega^{2}$
Force	$F=m a$	$\tau_{\text {net }}=I \cdot \alpha$

Kinetic Energy of Rotation

$K=\frac{1}{2} I \omega^{2} \quad$ (radian measure)
$I=\sum m_{i} r_{i}^{2} \quad$ (rotational inertia)
$I=I_{\text {com }}+M h^{2} \quad$ (parallel-axis theorem).
Do a calculation or see the Text Book
Torque: $\vec{\tau}$

02/01/2006

Work and Rotational Kinetic Energy

Work-kinetic energy theorem

$$
\Delta K=K_{f}-K_{i}=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2}=W
$$

Work, rotation about fixed axis

$$
W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta
$$

Work, constant torque
$W=\tau\left(\theta_{f}-\theta_{i}\right)$

Power, rotation about fixed axis

$$
P=\frac{d W}{d t}=\tau \omega
$$

Newton's Second Law for Rotation
Force
$F=m a$
Net Force (or Total Force)

$$
\begin{aligned}
\overrightarrow{\mathrm{F}}_{\text {net }} & =\overrightarrow{\mathrm{F}}_{1}+\overrightarrow{\mathrm{F}}_{2} \\
\overrightarrow{\mathrm{~F}}_{\text {net }} & =\mathrm{m} \overrightarrow{\mathrm{a}}
\end{aligned}
$$

$$
\tau_{\text {net }}=I \cdot \alpha
$$

$$
\begin{aligned}
& \vec{\tau}_{\text {net }}=\vec{\tau}_{1}+\vec{\tau}_{2}+\vec{\tau}_{3}=I \cdot \vec{\alpha} \\
& \vec{\tau}_{\text {net }}=\left[\vec{r}_{1} \times \vec{F}_{1}\right]+\left[\vec{r}_{2} \times \vec{F}_{2}\right]+\left[\vec{r}_{3} \times \vec{F}_{3}\right]=I \cdot \vec{\alpha}
\end{aligned}
$$

02/01/2006

Newton's Second Law for Rotation $\tau_{1}=0 \quad \tau_{3}>0 \quad \tau_{2}<0$

$$
=0+(-3) \mathrm{m} \cdot \mathrm{~N}+(-3) \mathrm{m} \cdot \mathrm{~N}+0.87 \mathrm{~m} \cdot \mathrm{~N}=-2.13 \mathrm{~m} \cdot \mathrm{~N}
$$

$\alpha=\tau_{\text {net }} / I=-2.13 \mathrm{~m} \cdot \mathrm{~N} / 10 \mathrm{~kg} \cdot \mathrm{~m}^{2}=-0.21 \mathrm{rad} / \mathrm{s}^{2}$
This Angular acceleration speeds up CW rotation

Newton's Second Law for Rotation

 $\vec{\tau}_{\text {net }}=\overrightarrow{\tau_{1}}+\vec{\tau}_{2}+\vec{\tau}_{3}=I \cdot \vec{\alpha}$ $\vec{\tau}_{\text {net }}=\left[{\overrightarrow{r_{1}}}_{1} \times \vec{F}_{1}\right]+\left[{\overrightarrow{r_{2}}}_{2} \times \vec{F}_{2}\right]+\left[\vec{r}_{3} \times \vec{F}_{3}\right]=\boldsymbol{I} \cdot \vec{\alpha}$When torque is positive ?
τ is positive if it rotates the body to positive direction (CCW)
"clock is negative".

$$
\tau_{1}=0 \quad \tau_{3}>0 \quad \tau_{2}<0
$$

http:/ / www.mcs.drexel.edu/ ~crorres/ Archimedes/ Claw/ illustrations.html

$$
02 / 01 / 2006
$$

Andrei Sirenko, NJIT
9

http:/ / www.mcs.drexel.edu/ ~crorres/ Archimedes/ Claw/ illustrations.html

Arehimedes'Claw

http:/ / www.mcs.drexel.edu/ ~crorres/ Archimedes/ Claw/ illustrations.html

$$
02 / 01 / 2006
$$

Hiero: "Is it really 100\% gold ?"

02/01/2006

H
Archimedes
(287 BC-211 BC)

Give Me a Place to Stand and I will Move the Earth Give me a lever long enough and a place to stand, and I will move the world

Is it really possible ???

Is it really possible ???

$F_{\text {Arch }}=600 \mathrm{~N} \quad(60 \mathrm{~kg})$
$F_{\text {Arch }}=600 \mathrm{~N} \quad(60 \mathrm{~kg})$
$F_{\text {Earth }}=6 \times 10^{25} \mathrm{~N} \quad\left(M_{\text {Earth }}=6 \times 10^{24} \mathrm{~kg}\right)$
$L_{\text {Arch }} / L_{\text {Earth }}=1 \times \mathbf{1 0}^{23} ; \quad \rightarrow \quad D_{\text {Arch }} / D_{\text {Earth }}=1 \times \mathbf{1 0}^{23}$
$D_{\text {Arch }}=10^{21} \mathrm{~m}$ With the power of $P=600 \mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}, \mathrm{t}=\mathbf{1 0}^{\mathbf{2 1}} \mathrm{s} \cong \mathbf{5 \times 1 0 ^ { 1 4 }}$ years
(people do not live that long)
If Archimedes moves his arm with the speed of light, then
$D_{\text {Arch }}=50 \mathrm{~m}$ during $\mathbf{5 \times 1 0 ^ { 9 }}$ years (life time of the Earth)

Is it really possible ???

$$
\begin{aligned}
& F_{\text {Earth }}=6 \times 10^{25} \mathrm{~N} \\
& \left(M_{\text {Earth }}=6 \times 10^{24} \mathrm{~kg}\right)
\end{aligned}
$$

$$
F_{\text {Arch }}=600 \mathrm{~N}
$$

$$
\text { (} 60 \text { kg) }
$$

QZ Problem

A rigid sculpture consists of a thin hoop (of mass $m=1 \mathrm{~kg}$ and radius $R=1 \mathrm{~m}$) and a thin radial rod (of mass $M=2 \mathrm{~kg}$ and length $L=2 \mathrm{~m}$). The sculpture can pivot around a horizontal axis in the plane of the hoop, passing through its center.
a) What is the sculpture's rotational inertia \boldsymbol{I} about the rotation axis?
$\begin{array}{ll}\text { Rod: } & I_{\text {com }}=(1 / 12) M L^{2} \\ \text { Hoop: } & I_{\text {com }}=(1 / 2) \mathrm{mR}^{2}\end{array}$
b) Starting from rest, the sculpture rotates around the rotation axis from the initial upright position. What is the change of the sculpture's Potential Energy ΔU when it is inverted?
c) What is the Kinetic Energy of rotation when it is inverted?
d) What is the angular speed ω around the horizontal axis ?

02/01/2006

Homework

See the Physics 106 Course Syllabus
U of Texas HW is required
http://web.njit.edu/~sirenko/

