Lecture 7

Physics 106
Spring 2006
Review 2 for
$2^{\text {nd }} C Q Z$
Rolling and Kinetic Energy Conservation of Angular Momentum
http://web.njit.edu/~sirenko/

Physics 106:

```
360 degrees =2\pi radians = 1 revolution. s s r r < vt =r }\omega\quad\mp@subsup{a}{t}{}=r\alpha\quad\mp@subsup{a}{c}{}=\mp@subsup{a}{r}{}=\mp@subsup{v}{t}{2}/r=\mp@subsup{\omega}{}{2}r\quad\mp@subsup{a}{\mathrm{ tot }}{2}=\mp@subsup{a}{r}{2}+\mp@subsup{a}{t}{2
```

for rotation with constant angular acceleration:
$\omega=\omega_{0}+\alpha t \quad \theta-\theta_{0}=\omega_{0} t+1 / 2 \alpha t^{2} \quad \omega^{2}-\omega_{0}^{2}=2 \alpha\left(\theta-\theta_{0}\right) \quad \theta-\theta_{0}=1 / 2\left(\omega+\omega_{0}\right) t \quad K_{\mathrm{rtt}}=1 / 21 \omega^{2}$
$I=\Sigma m r_{i}^{2} \quad I_{\text {point }}=m r^{2} \quad I_{\text {noop }}=M R^{2} \quad I_{\text {disk }}=1 / 2 M R^{2} \quad I_{\text {sphere }}=2 / 5 M R^{2} \quad I_{\text {shell }}=2 / 3 M R^{2} \quad I_{\text {rod (center) }}=1 / 12 M L L^{2}$ $I_{\text {rod (end) }}=1 / 3 \mathrm{ML}^{2}$
$\Sigma \mathrm{F}=\mathrm{ma} \quad \Sigma \tau=\mathrm{l} \boldsymbol{\alpha} \quad \tau=\mathrm{rxF} \quad \mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{cm}}+\mathrm{Mh}^{2}$
$\tau=$ forcexmoment $\operatorname{arm}=\operatorname{Frsin}(\phi) \quad \tau_{\text {net }}=\Sigma \tau=\mathrm{I} \alpha \quad \mathrm{F}_{\text {net }}=\Sigma \mathrm{F}=\mathrm{m} \mathbf{a} \quad \tau=\mathbf{r} \times \mathrm{F} \quad \mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{cm}}+\mathrm{Mh}^{2}$
$\mathrm{W}_{\text {tot }}=\Delta \mathrm{K}=\mathrm{K}_{\mathrm{f}}-\mathrm{K}_{\mathrm{l}} \quad \mathrm{W}=\tau_{\text {net }} \Delta \theta \quad \mathrm{K}=\mathrm{K}_{\text {rot }}+\mathrm{K}_{\mathrm{cm}} \quad \mathrm{E}_{\text {mech }}=\mathrm{K}+\mathrm{U} \quad \mathrm{P}_{\text {average }}=\Delta \mathrm{W} / \Delta \mathrm{t}$
$P_{\text {instantaneous }}=\tau . \omega$ (τ constant) $\quad \Delta \mathrm{E}_{\text {mech }}=0$ (isolated system) $\quad \mathrm{V}_{\mathrm{cm}}=\omega r$ (rolling, no slipping)
$\boldsymbol{\ell}=\mathrm{rxp} \quad \mathrm{p}=\mathrm{mv} \quad \mathrm{L}=\boldsymbol{\Sigma} \boldsymbol{\ell} \quad \tau_{\text {net }}=\mathrm{dL} / \mathrm{dt} \quad \mathrm{L}=\mathrm{l}_{\omega} \quad \boldsymbol{\ell}_{\text {noint mass }}=\mathrm{mrvsin}(\phi)$
For isolated systems: $\tau_{\text {net }}=0 \quad L$ is constant $\quad \Delta L=0 \quad L_{0}=\Sigma b_{0} \omega_{0}=L_{f}=\Sigma l_{f} \omega$
$\mathbf{a x} \mathbf{b}=-\mathbf{b} \times \mathbf{a} \quad \mathbf{a} \mathbf{x a}=0 \quad|\mathbf{a} \mathbf{x} \mathbf{b}|=a \cdot b \cdot \sin (\phi) \quad \mathbf{c}=\mathbf{a} \mathbf{x} \mathbf{b}$ is perpendicular to plane $\mathbf{a} \mathbf{a}$ and \mathbf{b} $c_{x}=a_{y} \cdot b_{z}-a_{z} \cdot b_{y} \quad c_{y}=-a_{x} \cdot b_{z}+a_{z} \cdot b_{x} \quad c_{z}=a_{x} \cdot b_{y}-a_{y} \cdot b_{x}$
$\mathbf{i} \mathbf{x i = j} \mathbf{x} \mathbf{j}=\mathbf{k} \mathbf{x} \mathbf{k}=0 \quad \mathbf{i} \mathbf{x} \mathbf{j}=\mathbf{k} \quad \mathbf{j} \mathbf{x} \mathbf{k}=\mathbf{i} \quad \mathbf{k x} \mathbf{i}=\mathbf{j} \quad$ etc.

Vector Product:

$\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a} \quad \mathbf{a} \times \mathbf{a}=0 \quad|\mathbf{a} \times \mathbf{b}|=\mathbf{a} \cdot \mathbf{b} \cdot \sin (\phi)$
$\mathbf{c}=\mathbf{a} \times \mathbf{b}$ is perpendicular to plane of \mathbf{a} and \mathbf{b}
$c_{x}=a_{y} \cdot b_{z}-a_{z} \cdot b_{y} \quad c_{y}=-a_{x} \cdot b_{z}+a_{z} \cdot b_{x} \quad c_{z}=a_{x} \cdot b_{y}-a_{y} \cdot b_{x}$
$\underset{\mathbf{i}}{ } \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=0 \quad \mathbf{i} \times \mathbf{j}=\mathbf{k} \quad \mathbf{j} \times \mathbf{k}=\mathbf{i} \quad \mathbf{k} \times \mathbf{i}=\mathbf{j}$

Smooth rolling motion

Rotation and Translation

Reference frame
Kinetic Energy of Rolling

$$
\begin{array}{r}
\mathrm{K}=\frac{1}{2} \mathrm{I}_{\mathrm{C}} \omega^{2}+\frac{1}{2} \mathrm{M} \mathrm{v}_{\mathrm{C}}^{2} \\
\mathbf{K}=\frac{\mathbf{1}}{\mathbf{2}}\left(\frac{\mathbf{I}_{\mathrm{C}}}{\mathbf{R}^{2}}+\mathbf{M}\right) \mathbf{v}_{\mathrm{C}}^{2}
\end{array}
$$

$$
\boldsymbol{v}_{\mathrm{com}}=\omega \boldsymbol{R}
$$

02/22/2006
Andrei Sirenko, NJIT

Example 1

Kinetic Energy of Rolling
$K=\frac{1}{2}\left(\frac{\mathbf{I}_{\mathrm{C}}}{\mathbf{R}^{2}}+\mathbf{M}\right) \mathbf{v}_{\mathrm{C}}^{2}$

+ Energy conservation !!!
Kinetic Energy $\longleftrightarrow \rightarrow$ Potential Energy
$\Delta \mathrm{U}+\Delta \mathrm{K}=0 \rightarrow \mathrm{U}_{\text {initial }}=\mathrm{K}_{\text {final }} \rightarrow \mathrm{Mgh}=\frac{\mathbf{1}}{\mathbf{2}}\left(\frac{\mathbf{I}_{\mathrm{C}}}{\mathbf{R}^{2}}+\mathbf{M}\right) \mathbf{v}_{\text {com }}^{2}$
Disk:
Hoop: Sphere:
$\mathrm{I}_{\mathrm{com}}=1 / 2 \mathrm{MR}^{2}$
$\mathrm{I}_{\text {com }}=\mathrm{MR}^{2} \quad \mathrm{I}_{\text {com }}=2 / 5 \mathrm{MR}^{2}$
For disk:

$$
M g h=1 / 2(1 / 2 M+M) v_{c o m}^{2} ; \quad \mathbf{v}_{\text {com }}=(4 / 3 g h)^{1 / 2}
$$

Angular Momentum

$\vec{l}=\vec{r} \times \vec{p}=m(\vec{r} \times \vec{v}) \quad\left[\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}\right]$
System of particles

$\vec{L}=\vec{l}_{1}+\vec{l}_{2}+\ldots+\vec{l}_{n}=\sum_{i=1}^{n} \vec{l}_{i} \quad L=m \cdot r \cdot v \cdot \sin \phi$
For rotating body: $\mathbf{L}=\mathbf{I} \omega$

Torque:

$$
\begin{aligned}
\vec{\tau} & =[r \times \vec{F}] \\
\tau & =r \cdot F \cdot \sin \phi
\end{aligned}
$$

Linear Momentum

$$
\vec{p}=m \vec{v}
$$

[$\mathrm{kg} \mathrm{m} / \mathrm{s}$]

Angular Momentum

$\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}} \quad\left[\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}\right]$
$\overrightarrow{\mathbf{L}}=\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{p}}=\mathbf{m} \mathbf{r} \times \overrightarrow{\mathbf{v}}$
$L=m \cdot r \cdot v \cdot \sin \phi$

Both are vectors

$$
\vec{F}=\frac{d \vec{p}}{d t}=m \vec{a}
$$

$$
\frac{\mathbf{d}}{\mathbf{d t}}(\overrightarrow{\mathbf{L}})=\overrightarrow{\boldsymbol{\tau}}=\mathbf{I} \vec{\alpha}
$$

For rotating body:

$$
\mathbf{L}=\mathbf{I} \omega
$$

$\mathrm{m} \leftrightarrow \mathrm{I}$
$v \leftrightarrow \rightarrow \omega$
FOR ISOLATED SYSTEM: L IS CONSERVED

Angular Momentum Conservation:

"If the external torque is equal to zero, L is conserved"

1. Define a rotational axis and the origin
2. Calculate L before interaction or any changes in I
3. Compare with L after the interaction or any change in I

02/22/2006

Andrei Sirenko, NJIT
10

A Example:
A horizontal disc of rotational inertia $\mathbf{I}=\mathbf{1} \mathbf{~ k g} \cdot \mathbf{m}^{\mathbf{2}}$ and radius $\mathbf{1 0 0} \mathbf{~ c m}$ is rotating about a vertical axis through its center with an angular speed of $\mathbf{1} \mathbf{~ r a d} / \mathbf{s}$. A wad of wet putty of mass $\mathbf{1 0 0}$ grams drops vertically onto the disc from above and sticks to the edge of the disk. What is the angular speed of the disk right after the putty sticks to it?

A Example:
A horizontal disc of rotational inertia $\mathbf{I}=\mathbf{1} \mathbf{~ k g} \cdot \mathbf{m}^{\mathbf{2}}$ and radius $100 \mathbf{~ c m}$ is rotating about a vertical axis through its center with an angular speed of $\mathbf{1} \mathbf{r a d} / \mathbf{s}$. A wad of wet putty of mass $\mathbf{1 0 0}$ grams drops vertically onto the disc from above and sticks to the edge of the disk. What is the angular speed of the disk right after the putty sticks to it?

1. $L_{i}=I_{i} \cdot \omega_{i}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot 1 \mathrm{rad} / \mathrm{s}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
2. Define a rotational axis and the origin
3. Calculate L before interaction or any change in I
4. $\mathrm{I}_{\mathrm{f}}=\left(\mathrm{I}_{\mathrm{i}}+\mathrm{mr} \mathrm{r}^{2}\right)=\left(1 \mathrm{~kg} \cdot \mathrm{~m}^{2}+0.1 \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$

Compare with L after the interaction or any change in I
3. $\quad L_{i}=L_{f}$ (angular momentum conserv.)
4. $\quad \omega_{\mathrm{f}}=\cdot \omega_{\mathrm{i}} \mathrm{I}_{\mathrm{i}} / \quad \mathrm{I}_{\mathrm{f}}=1 \mathrm{rad} / \mathrm{s} \cdot(1 / 1.1)=0.91 \mathrm{rad} / \mathrm{s}$

More Examples:

2. One wheel of rotational inertia $\mathrm{I}_{1}=2 \mathrm{kgm}^{2}$ is rotating freely at $20 \mathrm{rad} / \mathrm{sec}$ in counterclockwise direction on a shaft whose rotational inertia is negligible. A second wheel of rotational inertia $I_{2}=5 \mathrm{kgm}^{2}$, rotating freely at $15 \mathrm{rad} / \mathrm{sec}$ in the opposite direction, is suddenly coupled along the same shaft to the first wheel. Afterwards, the coupled wheel system rotates at
a. $1.00 \mathrm{rad} / \mathrm{s}$, counterclockwise
b. $2.25 \mathrm{rad} / \mathrm{s}$, clockwise
c. $4.50 \mathrm{rad} / \mathrm{s}$, clockwise
d. $5.00 \mathrm{rad} / \mathrm{s}$, counterclockwise
e. $5.00 \mathrm{rad} / \mathrm{s}$, clockwise

More Examples:

3. A student, with arms at her sides, is spinning on a frictionless turntable. When the

 tudent extends her arms,a. her angular veloc
her rotational inertia decreases
d. her rotational kinetic energy increases.
\longrightarrow e. her angular momentum remains the same.
4. When a man on a frictionless rotating turntable extends his arms out horizontally, his angular momentum
$\longrightarrow \quad \begin{aligned} & \text { A) must increase } \\ & \text { B) must remain the same }\end{aligned}$
C) must increase
D) may increase or decrease depending on his initial angular velocity
E) none of the above
5. A large bug walks from the center of a rotating turntable to its edge and stops. The angular velocity of the turntable
a. stays the same
b. increases.
d. can not be determined unless the mass of the bug and radius and rotational inertia of the turntable are given
e. can not be determined even if the mass of the bug and radius and rotational inertia of the turntable are given.

$$
L=I \omega \quad \vec{L}=\text { const. } \quad \Rightarrow \quad \vec{L}_{i}=\vec{L}_{f}
$$

6. A wheel of moment of inertia of $5 \mathrm{~kg} \mathrm{~m}^{2}$ starts from rest and accelerates under a constant torque of 3.0 N m for 8.0 seconds. What is the wheel's rotational kinetic energy at the end of 8 seconds?
a. 57.6 J
b. 64.0 J
c. 78.8 J
d. 122 J
e. 154

$$
\mathrm{K}=\frac{1}{2} \mathrm{I}_{\mathrm{C}} \omega^{2}
$$

7. A $32-\mathrm{kg}$ wheel, essentially a thin hoop, with moment of inertia $\mathrm{I}=3 \mathrm{~kg} \mathrm{~m}^{2}$ is rotating

at $280 \mathrm{rev} / \mathrm{min}$. It must be brought to stop in 15 seconds. The required work to stop it is:
a. $\quad 1000 \mathrm{~J}$

Work, constant torque
c. 1200 J

1300 J
$W=\tau\left(\theta_{f}-\theta_{i}\right)$
\qquad
8. A $10-\mathrm{kg}$ disk with radius 30 cm must reach a final velocity of $300 \mathrm{rev} / \mathrm{min}$ in 10 sec . What is the required average power?

Power, rotation
A) 10 W
C) 45 W
D) 60 W
E) 72 W

