	Physics 106:
Lecture 7 Develop 106	360 degrees = 2π radians = 1 revolution. s = $r\theta$ v _t = $r\omega$ a _t = $r\alpha$ a _c = $a_r = v_t^2/r = \omega^2 r$ $a_{tot}^2 = a_r^2 + a_t^2$ for rotation with constant angular acceleration: $\omega = \omega_t + \alpha t$ $\theta - \theta_0 = \omega_t t + \frac{1}{2}\alpha t^2$ $\omega^2 - \omega_0^2 = 2\alpha(\theta - \theta_0)$ $\theta - \theta_0 = \frac{1}{2}(\omega + \omega_t)t$ KE _{mt} = $\frac{1}{2}\omega^2$
Review 2 for 2 nd CQZ Rolling and Kinetic Energy Conservation of Angular Momentum	$\Sigma \mathbf{F} = \mathbf{m} \mathbf{a} \qquad \Sigma \tau = \mathbf{l} \alpha \qquad \tau = \mathbf{r} \mathbf{x} \mathbf{F} \qquad \mathbf{l}_{p} = \mathbf{l}_{cm} + Mh^{2}$ $\tau = \text{force}_{x}\text{moment arm} = Frsin(\phi) \qquad \tau_{net} = \Sigma \tau = \mathbf{I} \alpha \qquad \mathbf{F}_{net} = \Sigma \mathbf{F} = \mathbf{m} \mathbf{a} \qquad \tau = \mathbf{r} \mathbf{x} \mathbf{F} \qquad \mathbf{l}_{p} = \mathbf{l}_{cm} + Mh^{2}$ $W_{tot} = \Delta \mathbf{K} = \mathbf{K}_{f} - \mathbf{K}_{I} \qquad W = \tau_{net}\Delta\theta \qquad \mathbf{K} = \mathbf{K}_{rot} + \mathbf{K}_{cm} \qquad \mathbf{E}_{mech} = \mathbf{K} + \mathbf{U} \qquad \mathbf{P}_{average} = \Delta W/\Delta t$ $P_{\text{instantaneous}} = \tau.\omega \ (\tau \text{ constant}) \qquad \Delta \mathbf{E}_{mech} = 0 \ (\text{isolated system}) \qquad \mathbf{v}_{cm} = \omega r \ (\text{rolling, no slipping})$ $\boldsymbol{\ell} = \mathbf{r} \mathbf{x} \mathbf{p} \qquad \mathbf{p} = \mathbf{m} \mathbf{v} \qquad \mathbf{L} = \Sigma \ \boldsymbol{\ell}_{i} \qquad \tau_{net} = d\mathbf{L}/dt \qquad \mathbf{L} = \mathbf{I} \omega \qquad \boldsymbol{\ell}_{point \ mass} = \frac{mrvsin(\phi)}{\mathbf{L}_{0} = \Sigma \ \mathbf{l}_{0}\omega_{0}} = \mathbf{L}_{f} = \Sigma \ \mathbf{k}_{f}\omega$
http://web.njit.edu/~sirenko/	$\mathbf{a \times b} = -\mathbf{b \times a}$ $\mathbf{a \times a} = 0$ $ \mathbf{a \times b} = a.b.sin(\phi)$ $\mathbf{c} = \mathbf{a \times b}$ is perpendicular to plane of \mathbf{a} and \mathbf{b} $c_x = a_y \cdot b_z - a_z \cdot b_y$ $c_y = -a_x \cdot b_z + a_z \cdot b_x$ $c_z = a_x \cdot b_y - a_y \cdot b_x$ $\mathbf{i \times i = j \times j = k \times k} = 0$ $\mathbf{i \times j = k}$ $\mathbf{j \times k = i}$ $\mathbf{k \times i = j}$ etc.
02/22/2006 Andrei Sirenko, NJIT 1	02/22/2006 Andrei Sirenko, NJIT 2
Vector Product:	Rotational Analogy to Linear Motion Translation Rotation position \times θ Angular Displacement Angular Velocity Angular Accelerationposition \times θ θ velocity $v = dx/dt$ $\omega = d\theta/dt$ acceleration $a = dv/dt$ $\alpha = d\omega/dt$ θ , ω , α
	mass m $I = \Sigma m_i r_i^2$ Missing Linear Equation Variable Angular Equation
$\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a} \mathbf{a} \times \mathbf{a} = 0 \mathbf{a} \times \mathbf{b} = a \cdot b \cdot \sin(\phi)$	Kinetic Energy $K = \frac{1}{2}mv^2$ $K = \frac{1}{2}L\omega^2$ $v = v_0 + at$ $x - x_0 - \theta_0 = \omega_0 + at$ $x - x = v_0 t + \frac{1}{2}at^2$ $v = \omega_0 + at$
c = a × b is perpendicular to plane of a and b	Force $\mathbf{F} = \mathbf{ma} \tau_{net} = \mathbf{I} \cdot \alpha \begin{bmatrix} u & u_0 & u_0 & v_0 & u_0 & v_0 & u_0 \\ v^2 = v_0^2 + 2a(u - x_0) & t & t & \omega^2 = \omega_0^2 + 2a(\theta - \theta_0) \end{bmatrix}$
$c_x = a_y \cdot b_z - a_z \cdot b_y$ $c_y = -a_x \cdot b_z + a_z \cdot b_x$ $c_z = a_x \cdot b_y - a_y \cdot b_x$	$\vec{\tau} = \vec{r} \times \vec{F}$
$\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0$ $\mathbf{i} \times \mathbf{j} = \mathbf{k}$ $\mathbf{j} \times \mathbf{k} = \mathbf{i}$ $\mathbf{k} \times \mathbf{i} = \mathbf{j}$	$\tau = r \cdot F \cdot \sin \phi$
02/22/2006 Andrei Sirenko, NJIT 3	02/22/2006 Andrei Sirenko, NJIT 4

Smooth rolling motion

Example 1

Kinetic Energy of Rolling

$$K = \frac{1}{2} \left(\frac{I_{\rm C}}{R^2} + M \right) v_{\rm C}^2$$

+ Energy conservation !!!

Kinetic Energy $\leftarrow \rightarrow$ Potential Energy

$$\Delta U + \Delta K = 0 \Rightarrow U_{\text{initial}} = K_{\text{final}} \Rightarrow Mgh = \frac{1}{2} \left(\frac{I_{\text{C}}}{R^2} + M \right) v_{\text{com}}^2$$

Disk: Hoop: Sphere:
$$I_{\text{com}} = \frac{1}{2} MR^2 \qquad I_{\text{com}} = MR^2 \qquad I_{\text{com}} = \frac{2}{5} MR^2$$

For disk:

Mgh = $\frac{1}{2}(1/2M + M) v_{com}^2$; $v_{com} = (4/3 \text{ gh})^{\frac{1}{2}}$

7

02/22/2006

Angular Momentum Conservation:

1. $L_i = L_{\text{bullet}} = m \cdot v \cdot r \cdot \sin(\pi/2) = ???$ 2. $L_f = I \cdot \omega = (Mr^2 + Mr^2 + mr^2) \omega_f =$ =2 kg m^2/s 3. $L_i = L_f$ (angular momentum conserv.) 4. $v_{\text{bullet}} = \omega_f \cdot (2Mr^2 + mr^2)/mr = 2000 m/s$ 5. $K_i = \frac{1}{2} m v^2_{\text{bullet}} = 2000 \text{ J}$ 6. $K_f = \frac{1}{2} I \omega^2 = 1 J$ 7. $K_{\ell}/K_{i} = 1/2000$ Andrei Sirenko, NJIT 10

Example: А

A horizontal disc of rotational inertia $I = 1 \text{ kg.m}^2$ and radius 100 cm is rotating about a vertical axis through its center with an angular speed of 1 rad/s. A wad of wet putty of mass 100 grams drops vertically onto the disc from above and sticks to the edge of the disk. What is the angular speed of the disk right after the putty sticks to it?

Example: А

- **A** horizontal disc of rotational inertia $I = 1 \text{ kg.m}^2$ and radius **100 cm** is rotating about a vertical axis through its center with an angular speed of 1 rad/s. A wad of wet putty of mass 100 grams drops vertically onto the disc from above and sticks to the edge of the disk. What is the angular speed of the disk right after the putty sticks to it?
- 1. Define a rotational axis and the origin
- 2. Calculate L before interaction or any change in I
- 3. Compare with L after the interaction or any change in I

- 1. $L_i = I_i \cdot \omega_i = 1 \text{ kg.m}^2 \cdot 1 \text{ rad/s} = 1 \text{ kg} \cdot \text{m}^2/\text{s}$
- 2. $I_f = (I_i + mr^2) = (1 \text{ kg.m}^2 + 0.1 \text{ kg.m}^2)$
- 3. $L_i = L_f$ (angular momentum conserv.)
- 4. $\omega_f = \omega_i I_i / I_f = 1 \text{ rad/s} \cdot (1/1.1) = 0.91 \text{ rad/s}$

