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Hydrogen Energy Levels

The basic hydrogen energy level structure is in agreement with the Bohr model
Common pictures are those of a shell structure with each main shell associated with a
value of the principal quantum number n.
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Hydrogen Spectrum
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Light and Atoms The interaction of radiation with matter
Stimulated Emission
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Like absorption and emission, stimulated emission requires that the photon energy
given by the Planck relationship be equal to the energy separation of the
participating pair of quantum energy states
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Application of Lasers

Laser Dreams

Types of Lasers

The laser medium can be a solid, gas, liquid or semiconductor.

Solid-state lasers have lasing material distributed in a solid matrix (such as the ruby or
neodymium:yttrium-aluminum garnet "YAG" lasers). The neodymium-YAG laser emits
infrared light at 1064 nanometers (nm).

Gas lasers (helium and helium-neon, HeNe, are the most common gas lasers) have a
primary output of visible red light. CO2 lasers emit energy in the far-infrared, and are
used for cutting hard materials.

Excimer lasers (the name is derived from the terms excited and dimers) use reactive
gases, such as chlorine and fluorine, mixed with inert gases such as argon, krypton or
xenon. When electrically stimulated, a pseudo molecule (dimer) is produced. When lased,
the dimer produces light in the ultraviolet range.

Dye lasers use complex organic dyes, such as rhodamine 6G, in liquid solution or
suspension as lasing media. They are tunable over a broad range of wavelengths.

Semiconductor lasers, sometimes called diode lasers, are not solid-state lasers. These
electronic devices are generally very small and use low power. They may be built into

larger arrays, such as the writing source in some laser printers or CD players.

And more: Ring lasers, Disk lasers, Free electron lasers, ...
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Typical Laser Wavelengths:

Laser Type

Xenon chloride (UV)
Nitrogen (UV)

Argon (blue)

Helium neon (red)
Rhodamine 6G dye (tunable)
Ruby (CrAlQ,) (red)

Wavelength
(nm)

308
337
488

633
570-650
694
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Principles of Laser Radiation
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Principles of 3-level laser operation
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Electron Is pumped to a higher
energy level.

Nucleus — ——
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Electron relaxes to a lower
energy state and releases a
photon.
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...produces two photons of the
same wavelength and phase.

Pumping level is unstable, so
the electron quickly Jumps to a
slightly lower energy level.
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Principles of the Solid State Laser operation

©2003 HowstuftWarks

¢ "f

©2003 HowStutorks

Flash Tube

o
(o2

Mirrored
Surface Partially
Mirrored Surface

©2003 HowStuffWorks.

5 5
008 O g
L e

Excited Atom

Semiconductor Lasers

Conduction band

A

Valence band

Band structure near a semiconductar p-n junction.
Left: Mo forward-bias voltage. Right: Forward-bias voltage present
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Output

Three level energy diagram of the
He-Ne laser transition

Emission of Light

25 3s The laser process in a HeNe laser starts with
collision of electrons from the electrical
ﬁ_ il — discharge with the helium atoms in the gas.
interatomic N Laser transition This excit-es helium from the ground state to
| . N the long-lived, metastable excited states.
collision 1E-7 sec 632 nm Collision of the excited helium atoms with the

| N ground-state neon atoms results in transfer of

5/ energy to the neon atoms. This is due to a
electron | coincidence of energy levels between the

impact | P / 2P helium and neon atoms.
1S J 1E-8 sec This process is given by the reaction equation:
I A He* + Ne — He + Ne* + AE
l Inside an B
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Fundamentals of Laser Operation

If the atom is in the excited state, it may decay into the ground state by the process of spontaneous emission:
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Saleh, Bahaa E. A. and Teich, Malvin Carl (1991). Fundamentals of Photonics.

New York: John Wiley & Sons. ISBN 0-471-83965-5. The intensity of the stimulated emission [W/m?]
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General description of a HeNe laser

The typical HeNe laser is basically an optical cavity that consists of a glass capillary tube with a mirror at
each end. The tube contains a helium and neon gas mixture that, when excited, utilizes the mirrors at each
end of the tube to transform the spontanecus emission into a stimulated laser light emission. One mirror
(called the high reflector mirror) reflects virtually 100% of the light, while the other (called the output coupler
mirror) reflects approximately 99%. Therefore, about 1% of the light will exit the laser at the desired
wavelength.

Some HelNe lasers do not incorporate internal mirrors but, rather, include a special glass window, called a
Brewster window. This window is mounted at a precise angle (Brewster angle} to allow light to pass through
and become linearly polarized. The output coupler mirror is positioned outside of the HeNe tube. The light is
almost completely transmitted, virtually cutting out reflection and resulting in a minimal loss of output power.
This intense, clearly visible light is ideal for applications requiring the observation of extremely tiny particles,
such as dust.
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Gaussian laser modes
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Examples of longitudinal
laser modes

Z

i

OO ¢

A e
= g= Av = —
L a3 Y
c c 1 1 1
Ar =Z—=—{— R
v T2l 2 LlmLy u nig Loy u nals &

26




