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4. Modeling a one-dimensional solid

There are two different ways to explain how a batrdcture in a periodic potential of a solid

develops. One approach starts with a free moviegtren in a constant potential that has a
parabolic dispersion relation E(k). Introducingipdic scattering centers, with small reflection

probability, results in the opening of band gaphe other approach is to start from an atom wgh it

discrete states. The next steps in this approeeltha splitting of the eigenstates states in a two
atom molecule and further splitting in a chain witlatoms. With the acoustic analog, you can
study both approaches experimentally. We will ldis tn the next two sections. In later sections,
we will model the electronic structure in more coexpsolids with superstructures (Section 4.3) and
defects (Section 4.4).

4.1 From a free electron to an electron in a periad potential

To model a free electron in one dimension, we aiagupropagating sound in a tube. Since we
cannot work with infinitely long tubes, we restramirselves to a finite tube with hard walls on both
ends. This is actually the same setup we usedhapter 1 to model the “particle in a box”. Due to
the finite lengthL of the tube we get resonances with the frequerfiicies
Cc
f, n2L 4.1)

(cis the speed of sound ands an integer number=1,2,...). The longer the tube, the denser the
resonances become. In an infinitely long tube rés®nances would be infinitely dense. In solid-
state physics, the so-called “density of statesisisd in this context. Now let's do an experiment.

Equipment Required:

TeachSpin Quantum Analog System: Controller, Vi€@igh & Aluminum Cylinders, Irises
Two-Channel Oscilloscope

Two adapter cables (BNC - 3.5 mm plug)

Computer with sound card installed and Quantum égml'SpectrumSLC.exe” running

Setup:
First, set theATTENUATOR knob on the Controller at 10 (out of 10) turns

Using the tube-pieces, make a tube with the endep@®ntaining the speaker on one end and the
end-piece with the microphone on the othaAttach a BNC splitter or “tee” taNE WAVE INPUT ON

the Controller. Using the adapter cable, conneetdttput of the sound card to one arm of the
splitter. With a BNC cable, convey the soundcagha from the splitter to Channel 1 of your
oscilloscope. Plug the lead from the speaker éngar experimental tube t&PEAKER OUTPUT ON

the Controller. The sound card signal is now gamboth the speaker and Channel 1.

Connect the microphone on your experimental tube ¢e®oPHONE INPUT on the Controller. Put a
BNC splitter on the Controller connector labeledmoNITOR. From the splitter, use an adapter
cable to send the microphone signal to the microphoput on the computer soundcard and a BNC
cable to send the same signal to Channef the oscilloscope. Channel 2 will show the aktua
signal coming from the microphone.
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The computer plots the instantaneous frequencyrgerteby the sound card on the x-axis and the
amplitude of the microphone input signal on thexiza Configure the computer so that
“Microphone” or “Line-In" is chosen as the input

You will need to adjust the magnitude of both the geaker and microphone signals to keep the
microphone input to the computer from saturating. (It is the user's responsibility to ensure
that the adapter cables are NOT used with signaisager than 5 Voltgpeak-to-peak

Refer to Appendix 2, titled ‘Recognizing and Correting Saturation’, for instructions.

Experiment:
Measure the resonances in tubes of different leagthanalyze the distance between the resonances
Af = f ., — f, as function of tube length. Convince yourselt i@ resonances become more and

more dense with increasing tube length. As youlasger tubes, you will need to decrease the
ATTENUATOR setting in order to get good data. (Remembes,itiureases the signal amplitude.)

ADVISOR INFORMATION:

In tubes with the lengths 150 mm, 300 mm, 450 mm and 600 mm the distances
between the resonances are Af = 288 Hz, 384 Hz, 574 Hz and 1145 Hz, respectively.
The density of resonances is increasing with increasing tube length.

6400 6600 6800 7000 7200 7400 7600 7800 8000 8200 8400 8600
Frequency [Hz]

Amplitude

Resonances in tubes with lengths L = 150 mm (red), L = 300 mm (green),
L =450 mm (pink) and L = 600 mm (yellow).
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The quantum numbers used in solid-state physicsddierent from those used in atomic and
molecular physics. In the measurements you haveeymgolu will have noticed that there are
equidistant resonances, which can be charactefizediumbering them in the order of their
frequency. From theory, we know that they belangtiinding waves in the tube with wavelength

_2
n

A (4.2)

The wavelength can also be expressed by anothatityuealled “wave numberk (in three
dimensions it is the “wave-vectok).

k=2 =n2 (4.3)
R

In the case of infinitely dense eigenstates, itasuseful to number the states by an integer numbe

It is better to use the wave-numbier(or wave-vectork in higher dimensions) to label the
eigenstates. In atomic physics we have charaetétize quantum mechanical system by energies
E(n,l,m) as function of integer quantum numbers, in setate physics the quantum mechanical
system is characterized by the eneEfl) as function of wave number. This relation islexil
“dispersion relation”. We will do this analogousiythe acoustic experiments.

In the tube with finite length, we have discretgesistates, so that it is easy to determine the wave
number by the index of the resonance using eqn. 4.3. This now allowsto measure the
dispersion relation for a sound wave in an empietu

Experiment:

Measure the frequencies of the resonances in aofukbegthL = 600 mm and plot the frequency as
function of wave numbék.

ADVISOR INFORMATION:
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Dispersion of a sound wave in a 600 mm long tube.
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What is analogous, what is different?
Sound waves show a linear dispersion with a sleppgutional to sound velocity.

f(k) =k (4.4)
2T
Electrons, however, have a parabolic dispersion
hZ
E(k) = —Kk?. (4.5)
2m

Modifications of this so called free-electron lidespersion are observed, when electrons have
a wavelength that is comparable to twice the lattonstanta, of the solid. In this case, the
electrons are scattered effectively by the peritatitce.

In the acoustic analog, we introduce periodic sciat) centers separated by a distaacéhat

is comparable to half the wavelength of sound.yg\cal wavelength, at reasonable frequency,
(3.4 kHz) isA = 10cm €4 inch). Therefore, we can model a lattice by quig scattering
centers at a separation distance of aboubcm €2 inch).

Experiment:
Take an overview spectrum (0-12 kHz) of a tube nfeaia 12 tube-pieces each 5 cm long.

Now, insert 11 irises with an inner diameter ofi® between the pieces and measure a spectrum
again.

What do you observe?



ADVISOR INFORMATION:
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Amplitude

)

2000

4000

6000
Frequency [Hz]

Spectrum measured in a tube made from 12 pieces each 50 mm long without irises.
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Amplitude

a8

2000
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6000
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Spectrum measured in a tube made from 12 pieces each 50 mm long and 11 irises
which have a diameter of 16 mm. (Note: The little peak at 370 Hz is not a resonance

in the tube. It is a peak in the transmission function of speaker/microphone.)

8000 10000 12000

Due to the periodic irises, band gaps are opening. The total number of resonances does not
change. In the first band there are 11 resonances because the first state has a frequency of
zero and is not visible. In the other bands, there are 12 resonances, one for each tube-piece
(unit cell). The first and last resonances in a band are sometimes difficult to identify. In some
cases, the resonance matches the shape of a shoulder. In the third and fourth band the peaks
at the band edges have so little amplitude that only 10 resonances can be identified.
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Due to the introduction of the periodic scattergigs, a band structure has developed. It shows
bands and band-gaps. Because we have a tube ¥ititealength, the bands consist of discrete
resonances. The band-gaps indicate frequency sange&hich no sound can propagate through
the periodic structure.

Experiment:

Remove the end-piece with the microphone and put gar in its place. Choose a frequency
within a band. Then choose a frequency withinradbgap. Listen to the difference in loudness.

Now we want to study how the spectrum is influenlbgd variety of parameters (Diameter of the
irisesd, number of piecesand length of a tube-pieee).

Experiment:
Replace the end-piece and measure spectra wigls mis13 mm and 10 mm diameter.
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ADVISOR INFORMATION:

Amplitude

2000 4000 6000 8000 10000 12000

Frequency [Hz]

Spectrum measured in a tube made from 12 pieces 50 mm long and 11 irises of 13 mm
diameter.

Amplitude

2000 4000 6000 8000 10000 12000

Frequency [Hz]

Spectrum measured in a tube made from 12 pieces 50 mm long and 11 irises of 10 mm
diameter.

End of Advisor Information
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Now we will measure spectra for a different numbkeunit cells. In solid-state physics, a “unit
cell” is the part of space that is repeated pecaitl to build up the solid. In our case, it i®th
combination of a tube-piece and an iris. We havteput a 1% iris in front of the microphone,
since the end-piece reflects the sound perfectlyway. You may convince yourself that the
use of a 19 iris at one of the end-pieces makes no significtfférence in the spectra. Small
changes are due to the amount of air within the bbthe iris. For future experiments, you may
decide for yourself whether to put an iris at ad-prece.

Experiment:
Put in the 16 mm irises again and measure speamtidifferent numbers of tube-piece / iris .
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ADVISOR INFORMATION:
The width of the bands and band gaps stays the same. The only difference in the
spectra is the number of resonances in each band, which is equal to the number of unit

cells being used.

Amplitude

oy n
6000 8000 10000 12000

Frequency [Hz]

Spectrum measured in a tube made from 10 pieces 50 mm long and 9 irises of 16 mm
diameter.

2000 4000

Amplitude

4000 6000 8000 10000 12000
Frequency [Hz]

2000

Spectrum measured in a tube made from 8 pieces 50 mm long and 7 irises of 16 mm
diameter.
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Now let’s study how the spectrum depends on thgtheaf a tube-pieca, which corresponds to
the lattice constant in solid-state physics.

Experiment:

Take a spectrum with 8 pieces 50 mm long and in$d$ mm diameter. Then replace the 50 mm
long pieces by 75 mm long pieces. What differencé spectra do you observe?

ADVISOR INFORMATION:

Change of the tube-length modifies the position of bands and band gaps. Increasing
the length by a factor of 1.5 compresses the spectrum in frequency by a factor of 1.5.
Due to this compression, the width of bands and band gaps is also changed.

Amplitude

2000 4000 6000 8000 10000 12000
Frequency [Hz]

Spectrum measured in a tube made from 8 pieces 75 mm long and 7 irises of
16 mm diameter.




Adv. Man. Rev 2.0 12/09

Background information:

Band gaps open up when the “Bragg condition” ifilfetl. You most probably know the Bragg
condition from x-ray and neutron scattering at tals which are both examples of wave
reflection at a periodic lattice. The Bragg corats is fulfilled, when

nA =2a (4.6)

(a is the distance of reflecting planes). In our dimeensional case the reflecting irises represent
the reflecting planes of a solid. Reflection in #wdid is so effective at this wavelength since the
reflected waves from each plane add up constrdgtiwgh perfectly fitting phase. This is the
reason why waves cannot propagate easily at thiglemgth.

A very convenient way to describe the scatteringnoimena at periodic structures is to use the so-

called “reciprocal space”. The reciprocal spacéhés space of the wave vectoks In our one-
dimensional case we have a one-dimensional re@pspace with the wave-numbers k. If a wave

is reflected at a periodic structure and the Bragedition is fulfilled and the wave numbér has

changed tok' , then the differencé&’ —k =G is called a “reciprocal lattice vectofs . In our one-
dimensional case the wave has been reflectedkdmals changed tok-with a k that fulfils the
Bragg condition.

k = nﬂ (47)
a

In consequence, the reciprocal lattice vectorsiferone-dimensional case are given by

G= ng (4.8)
a
with an integer numban that can be positive or negative or zero. In ganéne reciprocal lattice
vectors are forming a periodic lattice in the recgal space, which is called the “reciprocal |&ttic
In this reciprocal lattice you can define unit setif the reciprocal space that are called “Briltoui
zones”. For the one-dimensional case the reciprattite points and the Brillouin zones (BZ) are
displayed in Fig. 4.1.

1.BZ

+—>
A T S R T S R T S
ln' 8n ' 6n_4n’2n' o '2n4n 6n Bn ' o10n
a a a a a a a a a

Fig. 4.1: Reciprocal lattice points (black dots), and Builo zones boundaries marked
by dashed lines.
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Due to the finite length of the tube, we have disek-points in the reciprocal at which an eigetesta

(resonance) is observed. They are given by eqn #.@e compare the smallest reciprocal lattice
vector

a
with the distance of the discrete k-points in tieet of finite length L
7l
k=— 4.10
: (4.10)

we can see that there ark/&@ discrete k-points in each Brillouin zone. Since-a, we can
conclude that the number of discrete k-points Brilouin zone is twice the number of unit cells.
At k=0 and zero frequency (energy), there is no resmn@igenstate) for a finite system.

1.BZ
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a

Fig. 4.2: Discrete k-points in reciprocal space (black datsy first Brillouin zone
marked by dashed lines. The example representsija \wéh 8 unit cells.

Let us now explore the dispersion relation in remipl space.

Analyze the data:

Plot the frequency as function of wave number ésonances in a setup made from 8 pieces 50 mm
long and 7 irises of 16 mm diameter.

Determine the wave number as given in eqn. 4.3.
Where, in reciprocal space, do the band gaps op@n u

When counting the resonances, please note thétttageak at 370 Hz iaot a resonance. lItis a
peak in the transmission function of the speakenmphone combination.
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ADVISOR INFORMATION:
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Frequency as function of wave number for resonances in a setup made from 8 pieces 50mm
long and 7 irises of 16mm diameter (dashed lines = Brillouin zone boundary).

The band gaps are observed at the zone boundaries of the Brillouin zones and in the
centers of the Brillouin zones.

Background Information

From Bloch’s theorem, we know that wave functiama iperiodic structure can be written as the
product of a functiomi(x) that has the periodicity of the lattice and elkg(with the periodicity
given by the wave number.

Ww(x) =u, (x)e™ (4.11)
A function of this form can be written in the form
W(X) =D Cye)€" %, (4.12)
G

From this form of notation, we see that the wavecfion cannot be assigned to a single point in
the reciprocal space. The wave function is a suth gontributions from a single k-point in
each Brillouin zone. All of these k-points are neated by reciprocal lattice vectors. In solid-
state physics, therefore, the disperdigk) is usually plotted only in the first Brillouin ne. This

is called the “reduced zone scheme” in contragitéd'extended zone scheme”.

Analyze the data:
Plot the dispersion relatid&(k) in the reduced zone scheme
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ADVISOR INFORMATION

12000
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Frequency [Hz]

2000
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-004 -0.02 0.00 002

L
0.04

Wave Number k [1/mm]

Reduced zone scheme for a setup with 8 pieces 50mm long and 7 irises of 16mm diameter.

Analyze the data:

Analyze the spectra for a setup made from 10 wgli$ evith 50 mm tubes and 16 mm irises and for
a setup made from 12 unit cells with 50 mm tubes$ Bh mm irises. Plot the dispersion relation

into the reduced zone scheme. Note that at hiigbguencies, the first and the last resonance in a

band cannot be identified easily. You should keemind that each band hasesonances when it

is build up fromj unit cells. Only the first band hgd resonances because the lowest state of that
band has zero frequency and is not visible. Thimportant when you determine the wave number

from the resonance numbmr

ADVISOR INFORMATION
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8000 [ *
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12000

6000
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2000

Reduced zone scheme for a setup made from 10 unit cells with 50mm tube and 16mm iris (left)
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Wave Number k [1/mm]
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-0.04 -002 000 002 0.04
Wave Number k [1/mm]

and a setup made from 12 unit cells with 50mm tube and 16mm iris (right).
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Analyze the data:

Analyze the spectra for a setup made from 8 utig @eth 75 mm tubes and 16 mm irises and
compare it to a setup made from 8 unit cells widhmtm tubes and 16 mm irises. Plot the
dispersion relation into the reduced zone scheme.

ADVISOR INFORMATION

Frequency [Hz]
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Frequency [Hz]
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e
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. .
0 I I I
-0.04 -0.02 0.00 002 0.04
‘Wave Number k [1/mm]

Reduced zone scheme for a setup made from 8 unit cells with 50mm tube and 16mm iris (left)
and a setup made from 8 unit cells with 75mm tube and 16mm iris (right).

L L L L L
-0.04 -002 000 002 0.04
Wave Number k [1/mm]

As the length of a unit cell increases, the Brillouin zone shrinks. In consequence, the
width of the bands is getting smaller.

Analyze the data:

Analyze the spectra for a setup made from 8 uilig geth 50 mm tubes and 16 mm, 13mm and
10 mm irises, respectively. Plot the dispersidatiens into the reduced zone scheme. How
does the dispersion depend on the iris diameter?
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ADVISOR INFORMATION:
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—0.‘04 —0.‘02 U.:)O U.:)2 0.:]4 —U.I04 —0.‘02 0.:](] l].;]? 0.:]4 —0.‘04 —0.‘02 U.:Jl] 0.‘02 U.:]4
Wave Number [1/mm] Wave Number [1/mm] Wave Number [1/mm]
Reduced zone schemes for setups all made from 8 unit cells with 50 mm tube.
Iris diameter is 16 mm (left), 13 mm (middle) and 10 mm (right).

With decreasing iris diameter, the reflectivity of the irises increases. This makes the bandwidth
smaller and band gaps wider. The following tables show the width of the gaps and the bands.

1. gap 2. gap 3. gap

10 mm 1665 2463 2733

13 mm 1281 2004 2316

16 mm 955 1505 1817

1.band | 2.band | 3.band | 4.band

10 mm 1732 894 608 517
13 mm 2082 1330 965 847
16 mm 2371 1783 1426 1270

(Note: The numbers depend a little bit on temperature.)
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In condensed matter physics, the density of st@€}S) is often discussed. If the dispersion
relation is known in the complete Brillouin zonketDOS can be calculated from these data. To
illustrate how the DOS of a one-dimensional systeaks, we will now analyse the data with
respect to this quantity.

Analyze the data:

Let’s take the spectrum for a setup made from 8 eglls with 50 mm tubes and 16 mm irises
and use it to determine the DOS. Since this igstem with a small number of unit cells, we
cannot simply count the number of states withireaargy interval. We will therefore calculate
the density by one over the frequency distance éatviwo states.

1
f.—f

i+l i

p(f) =

(4.12)

ADVISOR INFORMATION:

10 -

Density of States [1/kHz]

0 1 1 1 1
2000 4000 6000 8000 10000 12000

Frequency [Hz]

Density of states determined from a setup made from 8 unit cells with 50 mm tubes and 16 mm
irises using eqn. 4.12

In a one-dimensional band structure, there areuangjes in the density of states expected at the
band edges (van Hove singularity), since the slopghe bands approaches zero at zone
boundaries and symmetry planes. Due to the fmit@ber of unit cells, the density of states is
finite in our experiment, but a significant uptwhDOS at the band edges is clearly visible.
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4.2 Atom — Molecule — Chain

In the previous section, we have seen how band-geypslop in a free moving wave when periodic
scattering sites are introduced. The other appré@solid-state physics starts with the eigenstate
of a single atom. When two atoms are combined antaolecule, a splitting of the eigenstates into
bonding and anti-bonding states is observed. Fina&nds develop from these levels, when many
atoms are arranged into a chain. In theory, th@ach is called the tight binding model. Now
we want to study this approach experimentally stgrivith an atom, which we will model with a
50 mm long cylinder with the speaker on one endthadnicrophone on the other.

Experiment:
Take an overview spectrum (0-22 kHz) in a singlerBf long tube-piece.

The peaks at 370 Hz, 2000 Hz and 4900 Hz are sohexnces in the tube. They are due to the
frequency response of the speaker and microphomabioation, which is not frequency
independent. Below 16 kHz there are 4 resonanteéke 50 mm long cylinder, which can be
described as standing waves with 1, 2, 3 and 4 -ptaiees perpendicular to the cylinder axis,
respectively. At frequencies above 16 kHz, resoeanare observed that have radial nodes
(cylindrical node surfaces). The inner diametethef tube, which is 25.4 mm (1 inch), determines
the frequency of the first radial mode. In thddwaling, we want to concentrate on the resonances
below 16 kHz (longitudinal modes). For these statike magnetic quantum numbrets zero ¢-
states).

Experiment:

Measure a spectrum in a longer tube-piece (75 mfou will see that the resonances of the
longitudinal modes shift down in energy, but thetfradial mode stays above 16 kHz.

ADVISOR INFORMATION:

Amplitude

L

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000
Frequency [Hz]

Overview spectrum of an “atom” modeled by a single 50 mm long tube-piece.
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ADVISOR INFORMATION CONTINUED:

Amplitude

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000
Frequency [Hz]

Overview spectrum of an “atom” modeled by a single 75 mm long tube-piece.

The next step is to model a molecule by combinwg pieces of 50 mm long tube with an iris of
10 mm diameter (@10mm) between them. We are chgdsi use the smallest iris because we
want to model a weak coupling of the atoms.

Experiment:

Take a spectrum (0-12 kHz for example) in a contimneof two 50 mm long tube-pieces with an
iris @10 mm between them. What do you observe?

Note that the lowest bonding state has the frequeeam. The first antibonding state is observed at
about 1100 Hz. For the other peaks the splittingdnding / antibonding states is visible clearly.
Remember that the small peaks at 370Hz and 2006Hdee to the frequency response of speaker
and microphone.

Experiment:
Repeat the experiment with @13 mm and @16 mm irMésat is different?
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ADVISOR INFORMATION

Amplitude

U !

2000 4000 6000 8000 10000 12000
Frequency [Hz]

Overview spectrum of a “molecule” modeled by a combination of two 50 mm long tube-pieces
with an 010 mm iris between them.

Amplitude
Amplitude

UL |

2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000
Frequency [Hz] Frequency [Hz]

Same spectra but with 113 mm and 016 mm iris, respectively.

With increasing iris diameter, the frequency difference between bonding/antibonding
states is getting larger.

Experiment:
Take spectra with an increasing number of unitscatid observe how bands develop.

Analyze data

Compare the frequency difference between bondidgaatibonding states with the width of the

corresponding band in a setup with large numbendfcells.
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AL
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This entire page is ADVISOR INFORMATION

2000 4000 6000 8000 10000 12000

4000 6000 8000 10000 12000
Frequency [Hz] Frequency [Hz]

Spectra of setups with 3, 4 and 6 unit cells, respectively.
A unit cell is a combination of a 50 mm long tube-piece and a 110 mm iris.
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w JMM
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Same as above, but with 113 mm irises.

Amplituc
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Amplituc
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Frequency [Hz] Frequency [Hz]
6000 8000 10000 12000
Frequency [Hz]

Frequency [Hz]
Frequency [Hz]
Same as above, but with 116 mm irises.

bonding/ 2. band bonding/ 3. band bonding/ 4. band
antibonding antibonding antibonding
10 mm 510 894 324 608 293 517
13 mm 762 1330 540 965 463 847
16 mm 1019 1783 798 1426 700 1270
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4.3 Superstructures and unit cells with more than e atom

In this section, we will study the band structufea@eriodic lattice that has a more complicated
periodicity. A superstructure is a periodic pdration of a periodic lattice. The periodic
perturbation has a translation vector that is a@ger multiple of the original lattice vector. §hi
can be, for example, a modification of every seconi cell. A superstructure results in a new
periodicity with a larger lattice vector, smalleril®uin zone and a smaller reciprocal lattice
vector. There are many fields in condensed maiteysics where superstructures play an
important role. For example, in surface scienca&ymsurface structures show a superstructure
with respect to the bulk lattice. Another well-kno example for a superstructure in a bulk lattice
is a Peierls distortion. We will study the effemt band structure by introducing a periodic
perturbation into our one-dimensional lattice.

Experiment:

Make a setup of 12 tube-pieces 50 mm long and 13inses and measure a spectrum. Then,
replace every other iris by a 16 mm iris and mease spectrum again. What do you observe?
Plot the band structure for both cases.

ADVISOR INFORMATION:
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Band structure in a setup of 12 tube-pieces 50 mm long and 13 mm irises.
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Band structure in a setup of 12 tube-pieces 50 mm long and alternating
13 mm and 16 mm irises.
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In the middle of the bands, new gaps are opening up. They are due to the zone boundary of
the new Brillouin zone, which now has half the width of the former one. For a correct drawing
of the reduced zone scheme, the bands have to be folded back into the first Brillouin zone, as
displayed in the following figure.
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Band structure in a setup of 12 tube-pieces 50 mm long and alternating 13 mm and

16mm irises. Band dispersion shown in the Brillouin zone of the lattice without

superstructure (left) and in the correct Brillouin zone (right).

Experiment:

Make a setup of 5 unit cells with each unit celdmaf a 50 mm tube, a 16 mm iris, a 75 mm tube,
and 16 mm iris. Measure a spectrum and plot tinel s&ucture.

ADVISOR INFORMATION:
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Band structure in a setup of 5 unit cells with each unit cell made up of a 50 mm tube, a
16 mm iris, a 75 mm tube, and a 16 mm iris.
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Experiment:

We want to understand this band structure bettersinyg the tight binding model and compare
therefore the energy levels with the resonancesdom the single “atoms”. Take spectra in a
50 mm tube and in a 75 mm tube. Compare the “atblevels with the band structure. What

can you conclude? You may also compare to a spratreasured in a single unit cell.

ADVISOR INFORMATION:
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Top:  Band structure in a setup of 5 unit cells with each unit cell made from
a 50 mm tube, a 16 mm iris, a 75 mm tube, and a 16 mm iris.

Middle: resonances in a single 50 mm tube.
Bottom: resonances in a single 75 mm tube.

4-24



Adv. Man. Rev 2.0 12/09

ADVISOR INFORMATION

The band below 2000 Hz is derived from the lowest “atomic” levels at zero frequency. The next band,
2500-3200 Hz, is derived from a resonance in the 50 mm tube. The band 3700-4400 Hz is derived
from a resonance in the 75 mm tube. At 6800 Hz a resonance is found in both tubes. From this
resonance, the broad band (6600-7800Hz) is derived. The small bands at 9200 Hz and 11500 Hz are
derived from resonances in the 75 mm tube. The small band at 10400 Hz is derived from a resonance

in the 50 mm tube. The two degenerate levels at 6800 Hz split into bonding/antibonding states if a
spectrum is measured in a single unit cell.

Experiment:

You may now build different superstructures by walirand try to understand the change in band
structure due to the new periodicity.
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4.4 Defect states

In this section we will see how defects changebidned structure. Defects destroy the periodicity of
the lattice. They are localized perturbations.th defect density is small, the band structure is
more or less conserved and additional states &nadirced due to the defects. The most important
example for such defects states in condensed mattgsics is certainly the doping of
semiconductors. The introduction of defect-statesmtes the acceptor and donator levels that are
responsible for the unique properties of these nadde

Experiment:

Make a setup of 12 tube-pieces 50 mm long and 16rees and measure a spectrum. Then,
replace one tube-piece by a 75 mm long piece arsdune the spectrum again. What do you
observe? Plot the band structure for both cases.

ADVISOR INFORMATION:
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Band structure in a setup of 12 tube-pieces 50 mm long and 16 mm irises with and without a
defect at position 8. The defect is a 75 mm tube-piece instead of a 50 mm tube-piece.




Adv. Man. Rev 2.0 12/09

Note that the defect-state that is observed infitse band-gap has a localized wavefunction.
Since it is localized, it cannot be assigned tba s wave-number. The state is therefore plotted
as a horizontal line into the band structure ineortd indicate that it has no well-defined wave-
vector. You may have noticed that the peaks witheénupper bands have shifted a little bit and
no longer show the high regularity they did withdefect. This is due to the fact that the lattice
has lost its periodicity and, strictly speakingsino longer allowed to use the wave-number as a
good quantum number. However, from the plot oftthed structure you see that the defect does
not change the band structure significantly. We traat it as a small perturbation and use the
reciprocal space with the Brillouin zone as weidithe periodic lattice.

Experiment:

Put the defect at other positions within the onmaatisional lattice and measure the spectra
produced. Does the frequency of the defect-resmmdapend on the position?

ADVISOR INFORMATION:

The frequency is almost independent of the defect-position.

Experiment:
Use other tube lengths as a defect. You can tmyp25 37.5 mm and 62.5 mm for example.

ADVISOR INFORMATION:
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Spectra taken in a setup of 12 tube-pieces 50 mm long and 16 mm irises with a defect
at position 8. The defect is a 37.5 mm (left) and a 62.5 mm (right) tube-piece instead of
a 50 mm tube-piece. The defect-resonance is marked by an arrow.
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In some cases you find the defect state closeltanal edge. Such a situation is used in doped
semiconductors. Donor-levels are defect statdsatfeaoccupied by electrons and have a position
just below the conduction band. The electronslzaexcited easily into the conduction band and
move there freely. This is very similar our casthva 62.5 mm tube as a defect. Acceptor-levels
are unoccupied defect states just above the valeaoe. Electrons can be excited easily from the
valence band into the defect states and the rentpholes in the valence band are responsible for
the conductivity.

Further experiments:

You may build other setups with different typesdefects. Be aware that, within a band gap, the
propagation of a wave is suppressed strongly Hgatabn at the lattice. If the defects are too far
from each other, or from speaker and microphorey tannot be observed. You may try using
shorter setups that have a small number of urlg.céh this case, it is easier to observe all defe
states with sufficient amplitude.



