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4.  Modeling a one-dimensional solid 
 

There are two different ways to explain how a band structure in a periodic potential of a solid 
develops.  One approach starts with a free moving electron in a constant potential that has a 
parabolic dispersion relation E(k).  Introducing periodic scattering centers, with small reflection 
probability, results in the opening of band gaps.  The other approach is to start from an atom with its 
discrete states.  The next steps in this approach are the splitting of the eigenstates states in a two-
atom molecule and further splitting in a chain with n atoms.  With the acoustic analog, you can 
study both approaches experimentally.  We will do this in the next two sections.  In later sections, 
we will model the electronic structure in more complex solids with superstructures (Section 4.3) and 
defects (Section 4.4). 
 
4.1 From a free electron to an electron in a periodic potential 
 

To model a free electron in one dimension, we are using propagating sound in a tube.  Since we 
cannot work with infinitely long tubes, we restrict ourselves to a finite tube with hard walls on both 
ends.  This is actually the same setup we used in Chapter 1 to model the “particle in a box”.  Due to 
the finite length L of the tube we get resonances with the frequencies f : 

L

c
nfn 2

=          (4.1) 

(c is the speed of sound and n is an integer number n=1,2,...∞).  The longer the tube, the denser the 
resonances become.  In an infinitely long tube, the resonances would be infinitely dense.  In solid-
state physics, the so-called “density of states” is used in this context.  Now let’s do an experiment. 
 
Equipment Required:   
 

TeachSpin Quantum Analog System:  Controller, V-Channel & Aluminum Cylinders, Irises 
Two-Channel Oscilloscope 
Two adapter cables (BNC - 3.5 mm plug)  
Computer with sound card installed and Quantum Analogs “SpectrumSLC.exe” running 
 
Setup: 
 

First, set the ATTENUATOR knob on the Controller at 10 (out of 10) turns 
 

Using the tube-pieces, make a tube with the end-piece containing the speaker on one end and the 
end-piece with the microphone on the other.  Attach a BNC splitter or “tee” to SINE WAVE INPUT on 
the Controller. Using the adapter cable, connect the output of the sound card to one arm of the 
splitter.  With a BNC cable, convey the soundcard signal from the splitter to Channel 1 of your 
oscilloscope.  Plug the lead from the speaker end of your experimental tube to SPEAKER OUTPUT on 
the Controller.  The sound card signal is now going to both the speaker and Channel 1. 
 

Connect the microphone on your experimental tube to MICROPHONE INPUT on the Controller.  Put a 
BNC splitter on the Controller connector labeled AC-MONITOR.  From the splitter, use an adapter 
cable to send the microphone signal to the microphone input on the computer soundcard and a BNC 
cable to send the same signal to Channel 2 of the oscilloscope.  Channel 2 will show the actual 
signal coming from the microphone.   
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The computer plots the instantaneous frequency generated by the sound card on the x-axis and the 
amplitude of the microphone input signal on the y-axis.  Configure the computer so that 
“Microphone” or “Line-In” is chosen as the input  
 

You will need to adjust the magnitude of both the speaker and microphone signals to keep the 
microphone input to the computer from saturating.  (It is the user's responsibility to ensure 
that the adapter cables are NOT used with signals greater than 5 Volts peak-to-peak.)   
 
Refer to Appendix 2, titled ‘Recognizing and Correcting Saturation’, for instructions.    
 
Experiment: 
 

Measure the resonances in tubes of different length and analyze the distance between the resonances 

nn fff −=∆ +1  as function of tube length.  Convince yourself that the resonances become more and 

more dense with increasing tube length.  As you use longer tubes, you will need to decrease the 
ATTENUATOR setting in order to get good data.  (Remember, this increases the signal amplitude.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAAADVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATION::::    
 

In tubes with the lengths 150 mm, 300 mm, 450 mm and 600 mm the distances 

between the resonances are ∆f = 288 Hz, 384 Hz, 574 Hz and 1145 Hz, respectively.  
The density of resonances is increasing with increasing tube length.  
 

 
 

Resonances in tubes with lengths L = 150 mm (red),  L = 300 mm (green), 

                                                         L = 450 mm (pink) and L = 600 mm (yellow). 
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The quantum numbers used in solid-state physics are different from those used in atomic and 
molecular physics. In the measurements you have made, you will have noticed that there are 
equidistant resonances, which can be characterized by numbering them in the order of their 
frequency.  From theory, we know that they belong to standing waves in the tube with wavelength 

 
n

L2=λ          (4.2) 

The wavelength can also be expressed by another quantity called “wave number” k (in three 

dimensions it is the “wave-vector”,k
r

). 

 
L

nk
π

λ
π == 2

         (4.3) 

In the case of infinitely dense eigenstates, it is not useful to number the states by an integer number.  

It is better to use the wave-number k (or wave-vector k
r

in higher dimensions) to label the 
eigenstates.  In atomic physics we have characterized the quantum mechanical system by energies 
E(n,l,m) as function of integer quantum numbers, in solid-state physics the quantum mechanical 
system is characterized by the energy E(k) as function of wave number.  This relation is called 
“dispersion relation”.  We will do this analogously in the acoustic experiments. 

In the tube with finite length, we have discrete eigenstates, so that it is easy to determine the wave 
number by the index n of the resonance using eqn. 4.3.  This now allows us to measure the 
dispersion relation for a sound wave in an empty tube. 

Experiment: 

Measure the frequencies of the resonances in a tube of length L = 600 mm and plot the frequency as 
function of wave number k. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    

 
 

Dispersion of a sound wave in a 600 mm long tube. 
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What is analogous, what is different? 

Sound waves show a linear dispersion with a slope proportional to sound velocity.  

 k
c

kf
π2

)( =          (4.4) 

Electrons, however, have a parabolic dispersion 

 2
2

2
)( k

m
kE

h= .        (4.5) 

Modifications of this so called free-electron like dispersion are observed, when electrons have 
a wavelength that is comparable to twice the lattice constant, a, of the solid.  In this case, the 
electrons are scattered effectively by the periodic lattice.   

In the acoustic analog, we introduce periodic scattering centers separated by a distance, a, that 
is comparable to half the wavelength of sound.  A typical wavelength, at reasonable frequency, 
(3.4 kHz) is λ = 10cm (≈4 inch).  Therefore, we can model a lattice by periodic scattering 
centers at a separation distance of about a = 5cm (≈2 inch). 

Experiment: 

Take an overview spectrum (0-12 kHz) of a tube made from 12 tube-pieces each 5 cm long. 

Now, insert 11 irises with an inner diameter of 16 mm between the pieces and measure a spectrum 
again.  

What do you observe? 
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AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Due to the periodic irises, band gaps are opening.  The total number of resonances does not 
change.  In the first band there are 11 resonances because the first state has a frequency of 
zero and is not visible.  In the other bands, there are 12 resonances, one for each tube-piece 
(unit cell). The first and last resonances in a band are sometimes difficult to identify.  In some 
cases, the resonance matches the shape of a shoulder.  In the third and fourth band the peaks 
at the band edges have so little amplitude that only 10 resonances can be identified. 

 
Spectrum measured in a tube made from 12 pieces each 50 mm long without irises. 

 

 
Spectrum measured in a tube made from 12 pieces each 50 mm long and 11 irises 
which have a diameter of 16 mm. (Note: The little peak at 370 Hz is not a resonance 

in the tube. It is a peak in the transmission function of speaker/microphone.) 
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Due to the introduction of the periodic scattering sites, a band structure has developed.  It shows 
bands and band-gaps.  Because we have a tube with a finite length, the bands consist of discrete 
resonances.  The band-gaps indicate frequency ranges in which no sound can propagate through 
the periodic structure. 
 
Experiment: 

Remove the end-piece with the microphone and put your ear in its place.  Choose a frequency 
within a band.  Then choose a frequency within a band gap.  Listen to the difference in loudness.  

Now we want to study how the spectrum is influenced by a variety of parameters (Diameter of the 
irises d, number of pieces j and length of a tube-piece a ). 

 

Experiment: 

Replace the end-piece and measure spectra with irises of 13 mm and 10 mm diameter. 
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AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

End of Advisor InformationEnd of Advisor InformationEnd of Advisor InformationEnd of Advisor Information    

 
 

Spectrum measured in a tube made from 12 pieces 50 mm long and 11 irises of 13 mm 

diameter. 

 
 

Spectrum measured in a tube made from 12 pieces 50 mm long and 11 irises of 10 mm 
diameter. 
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Now we will measure spectra for a different number of unit cells.  In solid-state physics, a “unit 
cell” is the part of space that is repeated periodically to build up the solid.  In our case, it is the 
combination of a tube-piece and an iris.  We have not put a 12th iris in front of the microphone, 
since the end-piece reflects the sound perfectly, anyway.  You may convince yourself that the 
use of a 12th iris at one of the end-pieces makes no significant difference in the spectra.  Small 
changes are due to the amount of air within the hole of the iris.  For future experiments, you may 
decide for yourself whether to put an iris at an end-piece. 

 

Experiment: 

Put in the 16 mm irises again and measure spectra for different numbers of tube-piece / iris .  
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AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    
The width of the bands and band gaps stays the same.  The only difference in the 
spectra is the number of resonances in each band, which is equal to the number of unit 
cells being used. 
 

 
 

Spectrum measured in a tube made from 10 pieces 50 mm long and 9 irises of 16 mm 
diameter. 
 

 
 

Spectrum measured in a tube made from 8 pieces 50 mm long and 7 irises of 16 mm 
diameter. 
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Now let’s study how the spectrum depends on the length of a tube-piece a, which corresponds to 
the lattice constant in solid-state physics. 

 

Experiment: 

Take a spectrum with 8 pieces 50 mm long and irises of 16 mm diameter. Then replace the 50 mm 
long pieces by 75 mm long pieces. What difference in the spectra do you observe? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAAADVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATION::::    
    

Change of the tube-length modifies the position of bands and band gaps.  Increasing 
the length by a factor of 1.5 compresses the spectrum in frequency by a factor of 1.5.  
Due to this compression, the width of bands and band gaps is also changed. 

 

 
 

Spectrum measured in a tube made from 8 pieces 75 mm long and 7 irises of 

16 mm diameter. 
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Background information: 

Band gaps open up when the “Bragg condition” is fulfilled. You most probably know the Bragg 
condition from x-ray and neutron scattering at crystals, which are both examples of wave 
reflection at a periodic lattice. The Bragg conditions is fulfilled, when  

 an 2=λ          (4.6) 

(a is the distance of reflecting planes). In our one-dimensional case the reflecting irises represent 
the reflecting planes of a solid. Reflection in the solid is so effective at this wavelength since the 
reflected waves from each plane add up constructively with perfectly fitting phase. This is the 
reason why waves cannot propagate easily at this wavelength.  

A very convenient way to describe the scattering phenomena at periodic structures is to use the so-

called “reciprocal space”. The reciprocal space is the space of the wave vectors k
r

. In our one-
dimensional case we have a one-dimensional reciprocal space with the wave-numbers k. If a wave 

is reflected at a periodic structure and the Bragg condition is fulfilled and the wave number k
r

 has 

changed to k
r
′ , then the difference Gkk

rrr
=−′  is called a “reciprocal lattice vector” G

r
. In our one-

dimensional case the wave has been reflected and k has changed to –k with a k that fulfils the 
Bragg condition.  

 
a

nk
π=          (4.7) 

In consequence, the reciprocal lattice vectors for the one-dimensional case are given by 

 
a

nG
π2=          (4.8) 

with an integer number n that can be positive or negative or zero. In general, the reciprocal lattice 
vectors are forming a periodic lattice in the reciprocal space, which is called the “reciprocal lattice”. 
In this reciprocal lattice you can define unit cells of the reciprocal space that are called “Brillouin 
zones”. For the one-dimensional case the reciprocal lattice points and the Brillouin zones (BZ) are 
displayed in Fig. 4.1. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
Fig. 4.1: Reciprocal lattice points (black dots), and Brillouin zones boundaries marked 
by dashed lines. 
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Due to the finite length of the tube, we have discrete k-points in the reciprocal at which an eigenstate 
(resonance) is observed.  They are given by eqn 4.3.  If we compare the smallest reciprocal lattice 
vector  

 
a

G
π2=          (4.9) 

with the distance of the discrete k-points in the tube of finite length L 

 
L

k
π=           (4.10) 

we can see that there are 2L/a discrete k-points in each Brillouin zone.  Since L=j·a, we can 
conclude that the number of discrete k-points in a Brillouin zone is twice the number of unit cells. 
At k=0 and zero frequency (energy), there is no resonance (eigenstate) for a finite system. 

 

 

 

 

 

 

 

 

 

 

 

Let us now explore the dispersion relation in reciprocal space. 

 

Analyze the data: 

Plot the frequency as function of wave number for resonances in a setup made from 8 pieces 50 mm 
long and 7 irises of 16 mm diameter.   

Determine the wave number as given in eqn. 4.3.  

Where, in reciprocal space, do the band gaps open up?  

When counting the resonances, please note that the little peak at 370 Hz is not a resonance.  It is a 
peak in the transmission function of the speaker/microphone combination. 

 

 
 
 
 
 
 
 
 
Fig. 4.2: Discrete k-points in reciprocal space (black dots), and first Brillouin zone 
marked by dashed lines. The example represents a setup with 8 unit cells. 
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Background Information 
 

From Bloch’s theorem, we know that wave functions in a periodic structure can be written as the 
product of a function uk(x) that has the periodicity of the lattice and exp(ikx) with the periodicity 
given by the wave number. 
 ikx

k exux )()( =ψ         (4.11) 
 

A function of this form can be written in the form 
 

 ∑
−

−=
G

xGki
Gk eCx )(

)()(ψ .       (4.12) 

 

From this form of notation, we see that the wave function cannot be assigned to a single point in 
the reciprocal space.  The wave function is a sum with contributions from a single k-point in 
each Brillouin zone.  All of these k-points are connected by reciprocal lattice vectors.  In solid-
state physics, therefore, the dispersion E(k) is usually plotted only in the first Brillouin zone. This 
is called the “reduced zone scheme” in contrast to the “extended zone scheme”.  
 
Analyze the data: 
 

Plot the dispersion relation E(k) in the reduced zone scheme 
 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    
 

                    
 
Frequency as function of wave number for resonances in a setup made from 8 pieces 50mm 
long and 7 irises of 16mm diameter (dashed lines = Brillouin zone boundary). 
 

The band gaps are observed at the zone boundaries of the Brillouin zones and in the 
centers of the Brillouin zones. 
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Analyze the data: 

Analyze the spectra for a setup made from 10 unit cells with 50 mm tubes and 16 mm irises and for 
a setup made from 12 unit cells with 50 mm tubes and 16 mm irises.  Plot the dispersion relation 
into the reduced zone scheme.  Note that at higher frequencies, the first and the last resonance in a 
band cannot be identified easily.  You should keep in mind that each band has j resonances when it 
is build up from j unit cells.  Only the first band has j-1 resonances because the lowest state of that 
band has zero frequency and is not visible.  This is important when you determine the wave number 
from the resonance number n. 
 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION    
 

 
 

Reduced zone scheme for a setup with 8 pieces 50mm long and 7 irises of 16mm diameter. 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION    
 

           
Reduced zone scheme for a setup made from 10 unit cells with 50mm tube and 16mm iris (left) 

and a setup made from 12 unit cells with 50mm tube and 16mm iris (right).   
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Analyze the data: 
 

Analyze the spectra for a setup made from 8 unit cells with 75 mm tubes and 16 mm irises and 
compare it to a setup made from 8 unit cells with 50 mm tubes and 16 mm irises.  Plot the 
dispersion relation into the reduced zone scheme. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analyze the data: 

Analyze the spectra for a setup made from 8 unit cells with 50 mm tubes and 16 mm, 13mm and 
10 mm irises, respectively.  Plot the dispersion relations into the reduced zone scheme.  How 
does the dispersion depend on the iris diameter? 

 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION    
 

           
Reduced zone scheme for a setup made from 8 unit cells with 50mm tube and 16mm iris (left) 
and a setup made from 8 unit cells with 75mm tube and 16mm iris (right). 

 

As the length of a unit cell increases, the Brillouin zone shrinks.  In consequence, the 

width of the bands is getting smaller. 
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AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

With decreasing iris diameter, the reflectivity of the irises increases.  This makes the bandwidth 
smaller and band gaps wider.  The following tables show the width of the gaps and the bands. 

 

 

 

    

 

 

 

 

 

 

(Note: The numbers depend a little bit on temperature.) 

 

 1. gap 2. gap 3. gap 

10 mm 1665 2463 2733 

13 mm 1281 2004 2316 

16 mm 955 1505 1817 

 1. band 2. band 3. band 4. band 

10 mm 1732 894 608 517 

13 mm 2082 1330 965 847 

16 mm 2371 1783 1426 1270 

   
Reduced zone schemes for setups all made from 8 unit cells with 50 mm tube.  

Iris diameter is 16 mm (left), 13 mm (middle) and 10 mm (right). 
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In condensed matter physics, the density of states (DOS) is often discussed.  If the dispersion 
relation is known in the complete Brillouin zone, the DOS can be calculated from these data.  To 
illustrate how the DOS of a one-dimensional system looks, we will now analyse the data with 
respect to this quantity. 

 

Analyze the data: 

Let’s take the spectrum for a setup made from 8 unit cells with 50 mm tubes and 16 mm irises 
and use it to determine the DOS.  Since this is a system with a small number of unit cells, we 
cannot simply count the number of states within an energy interval.  We will therefore calculate 
the density by one over the frequency distance between two states.  

 
ii ff

f
−

≈
+1

1
)(ρ         (4.12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a one-dimensional band structure, there are singularities in the density of states expected at the 
band edges (van Hove singularity), since the slope of the bands approaches zero at zone 
boundaries and symmetry planes.  Due to the finite number of unit cells, the density of states is 
finite in our experiment, but a significant upturn of DOS at the band edges is clearly visible. 

 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    
 

 
 

Density of states determined from a setup made from 8 unit cells with 50 mm tubes and 16 mm 

irises using eqn. 4.12  
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4.2 Atom – Molecule – Chain  

In the previous section, we have seen how band-gaps develop in a free moving wave when periodic 
scattering sites are introduced.  The other approach to solid-state physics starts with the eigenstates 
of a single atom.  When two atoms are combined into a molecule, a splitting of the eigenstates into 
bonding and anti-bonding states is observed.  Finally, bands develop from these levels, when many 
atoms are arranged into a chain.  In theory, this approach is called the tight binding model.   Now 
we want to study this approach experimentally starting with an atom, which we will model with a 
50 mm long cylinder with the speaker on one end and the microphone on the other. 

 

Experiment:  

Take an overview spectrum (0-22 kHz) in a single 50 mm long tube-piece. 

The peaks at 370 Hz, 2000 Hz and 4900 Hz are not resonances in the tube.  They are due to the 
frequency response of the speaker and microphone combination, which is not frequency 
independent.  Below 16 kHz there are 4 resonances in the 50 mm long cylinder, which can be 
described as standing waves with 1, 2, 3 and 4 node-planes perpendicular to the cylinder axis, 
respectively.  At frequencies above 16 kHz, resonances are observed that have radial nodes 
(cylindrical node surfaces).  The inner diameter of the tube, which is 25.4 mm (1 inch), determines 
the frequency of the first radial mode.  In the following, we want to concentrate on the resonances 
below 16 kHz (longitudinal modes).  For these states, the magnetic quantum number m is zero (σ-
states). 

Experiment:  

Measure a spectrum in a longer tube-piece (75 mm).  You will see that the resonances of the 
longitudinal modes shift down in energy, but the first radial mode stays above 16 kHz. 
 

 

 

 

 

 

 

 

 

 

 

 

 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    

 

 
 

Overview spectrum of an “atom” modeled by a single 50 mm long tube-piece.   
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The next step is to model a molecule by combining two pieces of 50 mm long tube with an iris of 
10 mm diameter (Ø10mm) between them.  We are choosing to use the smallest iris because we 
want to model a weak coupling of the atoms.  

 

Experiment:  

Take a spectrum (0-12 kHz for example) in a combination of two 50 mm long tube-pieces with an 
iris Ø10 mm between them. What do you observe? 

Note that the lowest bonding state has the frequency zero. The first antibonding state is observed at 
about 1100 Hz. For the other peaks the splitting in bonding / antibonding states is visible clearly. 
Remember that the small peaks at 370Hz and 2000Hz are due to the frequency response of speaker 
and microphone. 
 
Experiment:  

Repeat the experiment with Ø13 mm and Ø16 mm irises. What is different? 

 

AAAADVISOR INFORMATION CDVISOR INFORMATION CDVISOR INFORMATION CDVISOR INFORMATION CONTINUEDONTINUEDONTINUEDONTINUED::::    

 

 
 

       Overview spectrum of an “atom” modeled by a single 75 mm long tube-piece.   
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Experiment:  

Take spectra with an increasing number of unit cells and observe how bands develop.  
 
Analyze data 
 

Compare the frequency difference between bonding and antibonding states with the width of the 
corresponding band in a setup with large number of unit cells. 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION    

 
 

Overview spectrum of a “molecule” modeled by a combination of two 50 mm long tube-pieces 

with an ∅10 mm iris between them.   

 

   
 

                    Same spectra but with ∅13 mm and ∅16 mm iris, respectively. 

 
With increasing iris diameter, the frequency difference between bonding/antibonding 

states is getting larger. 
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This entire page is This entire page is This entire page is This entire page is AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

    

    

    
    

 bonding/ 
antibonding 

2. band bonding/ 
antibonding 

3. band bonding/ 
antibonding 

4. band 

10 mm 510 894 324 608 293 517 

13 mm 762 1330 540 965 463 847 

16 mm 1019 1783 798 1426 700 1270 

   
 

Spectra of setups with 3, 4 and 6 unit cells, respectively.   

A unit cell is a combination of a 50 mm long tube-piece and a ∅10 mm iris.   

 

   
 

Same as above, but with ∅13 mm irises.   

 

   
 

Same as above, but with ∅16 mm irises.   
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4.3 Superstructures and unit cells with more than one atom  
 
In this section, we will study the band structure of a periodic lattice that has a more complicated 
periodicity.  A superstructure is a periodic perturbation of a periodic lattice.  The periodic 
perturbation has a translation vector that is an integer multiple of the original lattice vector.  This 
can be, for example, a modification of every second unit cell.  A superstructure results in a new 
periodicity with a larger lattice vector, smaller Brillouin zone and a smaller reciprocal lattice 
vector.  There are many fields in condensed matter physics where superstructures play an 
important role.  For example, in surface science many surface structures show a superstructure 
with respect to the bulk lattice.  Another well-known example for a superstructure in a bulk lattice 
is a Peierls distortion.  We will study the effect on band structure by introducing a periodic 
perturbation into our one-dimensional lattice. 
 
Experiment: 
 

Make a setup of 12 tube-pieces 50 mm long and 13 mm irises and measure a spectrum.  Then, 
replace every other iris by a 16 mm iris and measure the spectrum again.  What do you observe? 
Plot the band structure for both cases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    
 

   
            Band structure in a setup of 12 tube-pieces 50 mm long and 13 mm irises. 

 

   
 

Band structure in a setup of 12 tube-pieces 50 mm long and alternating  
13 mm and 16 mm irises. 
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In the middle of the bands, new gaps are opening up.  They are due to the zone boundary of 
the new Brillouin zone, which now has half the width of the former one.  For a correct drawing 
of the reduced zone scheme, the bands have to be folded back into the first Brillouin zone, as 
displayed in the following figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Experiment: 
 

Make a setup of 5 unit cells with each unit cell made of a 50 mm tube, a 16 mm iris, a 75 mm tube, 
and 16 mm iris.  Measure a spectrum and plot the band structure. 
    

 
 
 
 
 
 
 

 

 

 

       

  

    
Band structure in a setup of 12 tube-pieces 50 mm long and alternating 13 mm and 
16mm irises.  Band dispersion shown in the Brillouin zone of the lattice without 
superstructure (left) and in the correct Brillouin zone (right). 

  AAAADVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATION::::    

    
 
Band structure in a setup of 5 unit cells with each unit cell made up of a 50 mm tube, a 
16 mm iris, a 75 mm tube, and a 16 mm iris. 
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Experiment: 

We want to understand this band structure better by using the tight binding model and compare 
therefore the energy levels with the resonances found in the single “atoms”.  Take spectra in a 
50 mm tube and in a 75 mm tube.  Compare the “atomic” levels with the band structure.  What 
can you conclude?  You may also compare to a spectrum measured in a single unit cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAAADVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATION::::    

 

 

 
 

Top:   Band structure in a setup of 5 unit cells with each unit cell made from 
a 50 mm tube, a 16 mm iris, a 75 mm tube, and a 16 mm iris.  

Middle: resonances in a single 50 mm tube.  

Bottom: resonances in a single 75 mm tube. 
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AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATINFORMATINFORMATINFORMATIONONONON    

The band below 2000 Hz is derived from the lowest “atomic” levels at zero frequency.  The next band, 
2500-3200 Hz, is derived from a resonance in the 50 mm tube.  The band 3700-4400 Hz is derived 
from a resonance in the 75 mm tube.  At 6800 Hz a resonance is found in both tubes. From this 
resonance, the broad band (6600-7800Hz) is derived.  The small bands at 9200 Hz and 11500 Hz are 
derived from resonances in the 75 mm tube. The small band at 10400 Hz is derived from a resonance 
in the 50 mm tube.  The two degenerate levels at 6800 Hz split into bonding/antibonding states if a 
spectrum is measured in a single unit cell. 

 

Experiment: 

You may now build different superstructures by yourself and try to understand the change in band 
structure due to the new periodicity.  
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4.4 Defect states  
In this section we will see how defects change the band structure.  Defects destroy the periodicity of 
the lattice.  They are localized perturbations.  If the defect density is small, the band structure is 
more or less conserved and additional states are introduced due to the defects.  The most important 
example for such defects states in condensed matter physics is certainly the doping of 
semiconductors.  The introduction of defect-states creates the acceptor and donator levels that are 
responsible for the unique properties of these materials. 
 
Experiment: 
 

Make a setup of 12 tube-pieces 50 mm long and 16 mm irises and measure a spectrum.  Then, 
replace one tube-piece by a 75 mm long piece and measure the spectrum again.  What do you 
observe?  Plot the band structure for both cases.  
 
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAAADVISOR DVISOR DVISOR DVISOR IIIINFORMATIONNFORMATIONNFORMATIONNFORMATION::::    

    
 

    
 
Band structure in a setup of 12 tube-pieces 50 mm long and 16 mm irises with and without a 

defect at position 8.   The defect is a 75 mm tube-piece instead of a 50 mm tube-piece. 
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Note that the defect-state that is observed in the first band-gap has a localized wavefunction. 
Since it is localized, it cannot be assigned to a sharp wave-number.  The state is therefore plotted 
as a horizontal line into the band structure in order to indicate that it has no well-defined wave-
vector.  You may have noticed that the peaks within the upper bands have shifted a little bit and 
no longer show the high regularity they did without defect.  This is due to the fact that the lattice 
has lost its periodicity and, strictly speaking, it is no longer allowed to use the wave-number as a 
good quantum number.  However, from the plot of the band structure you see that the defect does 
not change the band structure significantly.  We can treat it as a small perturbation and use the 
reciprocal space with the Brillouin zone as we did in the periodic lattice. 

 

Experiment: 

Put the defect at other positions within the one-dimensional lattice and measure the spectra 
produced.  Does the frequency of the defect-resonance depend on the position? 

 

AAAADVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATION::::    

The frequency is almost independent of the defect-position. 

 

Experiment: 

Use other tube lengths as a defect.  You can try 25 mm, 37.5 mm and 62.5 mm for example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AAAADVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATIONDVISOR INFORMATION::::    
    

   
 
Spectra taken in a setup of 12 tube-pieces 50 mm long and 16 mm irises with a defect 
at position 8.  The defect is a 37.5 mm (left) and a 62.5 mm (right) tube-piece instead of 

a 50 mm tube-piece.  The defect-resonance is marked by an arrow. 
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In some cases you find the defect state close to a band edge.  Such a situation is used in doped 
semiconductors.  Donor-levels are defect states that are occupied by electrons and have a position 
just below the conduction band.  The electrons can be excited easily into the conduction band and 
move there freely.  This is very similar our case with a 62.5 mm tube as a defect.  Acceptor-levels 
are unoccupied defect states just above the valence band.  Electrons can be excited easily from the 
valence band into the defect states and the remaining holes in the valence band are responsible for 
the conductivity. 

 

Further experiments: 

You may build other setups with different types of defects.  Be aware that, within a band gap, the 
propagation of a wave is suppressed strongly by reflection at the lattice.  If the defects are too far 
from each other, or from speaker and microphone, they cannot be observed.  You may try using 
shorter setups that have a small number of unit cells.  In this case, it is easier to observe all defect-
states with sufficient amplitude. 

 

 

 


