Reducer Capacity and Communication Cost in MapReduce Algorithms Design

Foto Afrati¹, Shlomi Dolev², Ephraim Korach², Shantanu Sharma², and Jeffrey D. Ullman³ ¹National Technical University of Athens, Greece. ²Ben-Gurion University of the Negev, Israel. ³Stanford University, USA.

Goal: Minimizing the communication cost in a MapReduce job

Communication Cost

- The total amount of data to transfer from the map phase to the reduce phase.
- **Dominates the**

- All-to-All Mapping Schema Problem
- **Inputs**: A list of inputs
- **Outputs**: Each pair of inputs corresponds to one output
- **Example**: Similarity-join

Inputs $w_1 = w_2 = w_3 = 0.20q$, $w_4 = w_5 = 0.19q$, $w_6 = w_7 = 0.18q$

Assignment of inputs Assignment of inputs

performance of a MapReduce algorithm.

Reducer Capacity, q

- Reducers do **not** have an unbounded memory.
- An upper bound on the sum of the sizes of the inputs that are assigned to the reducer.

Mapping Schema

3

An assignment of the set of inputs to some given reducers such that

5 X-to-Y Mapping Schema Problem

- **Inputs**: Two sets X and Y
- **Outputs**: Each pair of inputs $\langle x_i, y_i \rangle$, $\forall x_i \in X$, $\forall y_i \in Y$
- **Example**: Skewjoin

Set X: $w_1 = w_2 = w_3 = w_4 = 0.25q$ Set Y: $w'_1 = w'_2 = 0.25q$, $w'_3 = w'_4 = 0.24q$, $w'_5 = w'_6 = 0.23q$

Assignment of inputs

<i>w</i> ₁	w'_1, w'_2, w'_3	<i>w</i> ₃	w'_1, w'_2, w'_3
<i>w</i> ₁	w'_4, w'_5, w'_6	<i>w</i> ₃	w'_4, w'_5, w'_6
<i>w</i> ₂	w'_1, w'_2, w'_3	<i>w</i> ₄	w'_1, w'_2, w'_3

Assignment of inputs

- A reducer is assigned inputs whose sum of the sizes is less than or equal to the reducer capacity.
- For each output, must • assign the corresponding inputs to at least one reducer in common.

8 reducers & non-optimum **communication cost**

6 reducers & optimum communication cost

6 **Tradeoffs**

- The reducer capacity v/s the total number of reducers
- The reducer capacity v/s the parallelism at the reduce phase
- The reducer capacity v/s the communication cost

7 Reference

F. Afrati, S. Dolev, E. Korach, S. Sharma, and J.D. Ullman. • Assignment of different-sized inputs in MapReduce. In 2nd Workshop on Algorithms and Systems for MapReduce and Beyond (BeyondMR), pages 1–10, 2015.