OBSCURE: Information-Theoretically Secure, Oblivious, and Verifiable Aggregation Queries

Shantanu Sharma¹

a joint work with

Peeyush Gupta¹, Yin Li², Sharad Mehrotra¹, and Nisha Panwar¹

¹University of California, Irvine, USA. ²Xinyang Normal University, China.

Database owner

Public cloud servers

- Secure regardless of the computational power of the adversary
- No need to involve the database owner in executing a query
- Completely access-patterns hiding <u>but</u>
 <u>not slow</u>
- Supported queries: Sum, Maximum, Minimum, Group-by with complex selection predicates

Query: select count(*) from Employee where Name = 'John' and Salary = 1000

Additional Key Points

- Handle one or more database owners
- A tradeoff between the number of shares and the computation time
- Can be used with a secretsharing technique that supports multiplicative string-matching

Reference

• OBSCURE: Information-Theoretic Oblivious and Verifiable Aggregation Queries, *PVLDB*, 12(9), 2019.